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Abstract the program to the data structures that it manipulates, en-

We present an overview of the Jahob system for modular abling the verification of properties that relate actiond an

analysis of data structure properties. Jahob uses a subset 1aLe:

Java as the implementation language and annotations with__ 1 Nere are several challenges associated with this effort.
formulas in a subset of Isabelle as the specification lan- First, there must be a verified connection between the con-

guage. It uses monadic second-order logic over trees to reaCTete data structures that the program manipulates and the

son about reachability in linked data structures, the lkmbe S€tS and relations that the Jahob analyzer operates with. To
theorem prover and Nelson-Oppen style theorem provers toestablish this co_nnectlon, Jaho_b program encapsulane_ t_hel
reason about high-level properties and arrays, and a neWdata structgres in r_nodules, with each module containing
technique to combine reasoning about constraints on unin-an abstraction function that maps the encapsulated cencret

terpreted function symbols with other decision procedures data Structuregolfhe CO_rre;ponhdlng iets andI relat!ons_ .
It also incorporates new decision procedures for reasoning A Sécond challenge is that the Jahob analyzer is designed

about sets with cardinality constraints. The system cagrinf L0 Verify extremely precise, detailed properties that age s
loop invariants using new symbolic shape analysis. Initial nificantly beyond the reach of traditional analyses. More-

results in the use of our system are promising; we are con-over, the range of potential properties to verify is extrgme
tinuing to develop and evaluate it. large, making it implausible that any single analysis wél b

able to verify all properties of interest. The Jahob system i
) therefore structured to incorporate multiple specializeal-
1. Introduction yses, each of which is tailored to analyze a targeted class
Complex software systems currently play a crucial role in Of properties. Together, these analyses are capable of veri
the management and operation of our society. Moreover, thisfying important properties of unprecedented sophisticati
role will only increase in importance as software becomes and importance.
even more pervasively deployed across the activitiesagafr

tructure, and devices of our society. Given this centrad,rol 2. Example
software reliability is a critical and increasingly impant In this section we use a simple list example to demon-
issue. strate how the Jahob system can verify data structure con-

The goal of the Jahob project is to increase software relia- sistency properties. Figure 1 presents the specificatioa fo
bility by statically verifying that certain classes of ers@an standardList class. The running program uses a standard
never occur. The Jahob system analyzes annotated programiinked list data structure to implement instances of thissl
written in a subset of Java. A basic idea behind Jahob is to (we present and discuss the implementation below). Clients
model the state that the program manipulates (its data-struc however, should not be concerned with the details of any par-
tures) as abstract sets of objects and relations betwesa the ticular implementation. The specification of thést class
objects. The program uses these sets and relations to stattherefore serves as an interface that abstracts away the par
key data structure consistency constraints that must teld b ticular implementation details of the class, leaving bdhin
tween the data structures. Each method also uses these setmly those aspects of the class upon which clients rely.
and relations to state its specification, which consists of a  In this case, th&ist specification uses the abstract spec-
precondition and a postcondition. Given the invariants and ification variablecontent to hold the set of objects present
specifications, the Jahob verifier statically analyzes tbe p  in the list. This set does not exist when the program runs —
gram to ensure that 1) it preserves important data structureit is simply an abstraction that the Jahob program uses to ex-
consistency properties, and 2) each method conforms to itspress the specification and that the Jahob verifier uses as it
specification. Method specifications connect the actions of verifies the program.



class List
{
/*:

public static specvar content :: objset; */

public List() /*:

modifies content
"content

ensures {"

*/
public void add(Object o) /*:

requires "o “: content & o "= null"
modifies content
ensures "content = old content Un {o}"
*/
public boolean empty() /*:
ensures '"result = (content = {})"
*/

public Object getOne() /*:
requires "content ~= {}"
ensures '"result : content"

*/

public void remove (Object o) /*:
requires "o : content"
modifies content

ensures '"content

old content - {o}"
*/

Figure 1. List Specification

As Figure 1 shows, Jahob is structured as an annotation
language for Java. Jahob annotations appear as comments

to the standard Java compiler. It is possible to distinguish

class Client {
List a, b;
/*:
public ghost specvar init :: bool;
invariant
"init -->
a null & b "= null &
a..List.content Int b..List.content

{;
*/
public Client() /x*:

modifies "List.content"

ensures "init"
*/
{
a = new List();
b = new List();
Object x = new Object(); a.add(x);
Object y = new Object(); a.add(y);

//: init "True";

}
public static void move() /*:
requires "init"
modifies "List.content"
ensures "a..List.content = {}"
*/
{
while ('a.empty()) {
Object o = a.getOne();
a.remove(0) ;
b.add(o);

Jahob annotations from standard comments by the fact thaty

Jahob annotations all start with eithgr: or /*: — in
other words, they have a ":” after the initial comment token.
For example, the first comment in Figure 1 declares the
specification variableontent (which, as mentioned above,

abstracts the contents of the list).

2.1 Method Interfaces

After the declaration of thepecvar specification variable,
theList specification contains a sequence of method inter-
face declarations. Each declaration may contaiaguires

Figure 2. List Client

variable that come from different instantiations of thiest
module. One could, for example, state that one instantiatio
contains a set of objects that is a subset of another, or that
two lists contain disjoint objects.

We next consider the interface for théd (o) method,
which adds the objeetto the list. Here theequires clause

clause, which states the precondition of the method; a States thab must not already be in the list (“: content)
modifies clause, which states the sets and relations that theand thato must not benull (o~=null). As this exam-

method may modify; and aensures clause, which states

ple illustrates, developers can use boolean combinatibns o

the properties that the method guarantees will hold when it clauses in theequires andensures clauses.

returns, assuming that the precondition held when it was in-

voked. TheList constructorList (), for example, modi-
fies thecontent specification variable — specifically, it en-
sures that theontent specification variable is empty when
it constructs thé&.ist.

Note that the program may invoke thést constructor
multiple times to construct many different lists. Accorglio

the semantics of Jahob, each instantiation has its own spec

ification variablecontent. It is therefore possible to write
specifications that relate different instances ofs¢pecvar

The ensures clause of theadd method uses th&n
(union) operator to state that the effect of #dl method
is to add the objeat to the set of objectsontent already
in the list. The remaining methodexpty, getOne, and
remove) Similarly userequires, modifies, andensures
clauses to specify their interfaces.

2.2 List Client

We next show how a client can instantiate thiest class
to obtain multipleList instances, specify invariants involv-



ing these instances, manipulate the lists, and use the Jahob
system to verify that the program correctly respects the in-
variants. TheClient class in Figure 2 creates two lists (
andb), adds some objects to these lists, then moves all of
the elements from into b.

The key invariant in this example is that the sets of
elements in the two lists are disjoint and remain disjoint
throughout all of the manipulations of the client. There is,
however, a technical detail that somewhat complicates the
expression of this invariant. Specifically, before therdliis
instantiated, the lists do not exist. It therefore does raiten
sense to express the invariant directly as holding whenever
the program executes. Instead, tie ent uses the boolean
init specification variable to state that the invariant holds
whenever th&€lient exists. The invariant in Figure 2 also
states that, once th&ient has been initialized, that and
b are not null.

2.3 List Implementation

We next discuss the implementation of thiest class. There
are two key considerations: 1) implementing thet meth-
ods in Java, and 2) establishing the connection between
the List’s Java data structures and the abstract specifica-
tion variables used to specify the st interface. Figure 3

public List() { }

public void add(Object o) {
Node n = new Node();
n.data = o;
n.next = first;
first = n;

}

public boolean empty() {
return (first==null);

}

public Object getOne() {
return first.data;

}

public void remove (Object o) {
if (first!=null) {

if (first.data==o0) {
first = first.next;

} else {
Node prev = first;
Node current = first.next;
boolean go = true;
while (go &% (current!=null)) {

if (current.data==o0) {
prev.next = current.next;
go = false;

presents the state of thest.
The implementation uses the variaklflerst to refer to
the firstNode in the list. EachiNode object has a fieldiext
that contains a reference to the next object in the list and
a field data that contains a reference to the object in the
list. The private specification variabledes is the set of }
all Nodes that is reachable by followingext references }
starting from thefirst variable. }
The Jahob specification uses an abstraction function to
define the contents of theodes set. This abstraction func-
tion consists of a set comprehension that statesithids is
the set of all objecta in the reflexive, transitive closure of
thenext relation onNode objects starting witlfirst. The
specification can then use thede set to define theontent
set as the set of all objects which objects indlbée set ref-
erence. This definition uses the existential quantifiein its Of course, this verification also depends on the verification
set comprehension. that the list methods correctly implement their interfaces
Note that these abstraction functions directly reference For this verification to succeed, the concrete data strastur
implementation entitiesfirst, next) to define the sets  must satisfy several additional invariants. Figure 3 prese
nodes andcontents in terms of the state that the imple- these properties — specifically, the list must be acycliGiwit
mentation uses to represent the list. The abstraction func-no sharing of sublists, no node in the list refers tothest
tions therefore establish a formal connection between thenode, and the data references are not shared.
concrete implementation state and the abstract speaificati Figure 4 presents the implementation of thiest meth-
state. This connection allows the the Jahob verifier to start ods. These methods provide a standard list implementation.
with facts that have been established by reasoning about theThey manipulate only the concrete data structures that make
abstract state and conclude facts that are valid about tite co up the list. The Jahob verifier must check that, given the defi-
crete state of the program as it is running. nition of the abstractontent set in Figure 3 and the method
In our example, the Jahob verification of the disjointness interfaces in Figure 1 (which provide the interfaces in term
of the twoList contents sets in the client in Figure 2, in  of the abstractontent set), that the method implementa-
combination with the abstraction function, enables th@Bah tions in Figure 4 correctly implement the abstract method
verifier to conclude that the concrete lists are disjointab.w  interfaces in Figure 1.

}

current = current.next;

Figure 4. List Implementation Methods



class List
{
private Node first;
/*:
// representation nodes:
specvar nodes :: objset;
private vardefs "nodes == { n. n "= null & rtrancl_pt (/) x y. x..Node.next = y) first n}";

// list content:
public specvar content :: objset;
private vardefs "content == {x. EX n. x = n..Node.data & n : nodes}";

// next is acyclic and unshared:
invariant "tree [List.first, Node.next]";

// ’first’ is the beginning of the list:
invariant "first = null |
(first : Object.alloc &
(ALL n. n..Node.next ~= first &
(n "= this --> n..List.first ~= first)))";

// no sharing of data:
invariant "ALL nl n2. nl : nodes & n2 : nodes & nl..Node.data = n2..Node.data --> nl=n2";
*/
}
class Node {
public /*: claimedby List */ Object data;
public /*: claimedby List */ Node next;
}

Figure 3. List Implementation State and Invariants

2.4 Verification to leverage loop invariant inference engines, includingcsp

A key verification challenge is that there are an enormous Ulative engines that may generate incorrect loop invasiant
number of possible data structures, many of which may re- Any incorrect loop invariants would be detected and rejcte

quire specialized verification strategies. It is therefuifé- during the verification condition analysis.

cult to imagine that any single verification algorithm could N our example, the verification condition generator an-
successfully verify all data structure implementationsour ~ @lyzes €ach method in turn. It appropriately augments the
example, the verification of theist implementation in- requires andensures clauses with the specified invari-

volves detailed reasoning about the references in the imple ants to ensure that the methods preserve them. The verifica-

mentation. Other programs may use array-based data struction conditions for the data structure implementation doul
tures such as hash tables that produce very different verifi-°€ verified, for example, by a combination of field constraint
cation conditions. The Jahob framework is therefore set up analysis [80] and the MONA decision procedure [40]. Loop
as a verification condition generator that can invoke any one Invariants could be provided explicitly or inferred by sym-
of a number of decision procedures to discharge the proofP0!iC shape analysis [80, 65, 79]. . _
obligations provided by the verification condition generat The verification conditions for the client could be dis-
By populating Jahob with a variety of decision procedures, charged by a decision procedure specialized for reasoning

each of which may be specialized to the verification condi- 2P0ut membership changes in abstract sets of objects. It is
tions that arise in the analysis of different data structare /S0 possible in many cases to use off-the-shelf automated
clients, Jahob can effectively deploy very specializegnev theor.e.m provers [78] to discharge these kinds of verificatio
unscalable, techniques to verify the full range of datacstru  conditions.
ture implementations and clients.

Opg issge that .arise.s in the generation of t.he yerifipation 3. Status
conditions is loop invariants. The current verification dbn
tion generator is able to exploit the availability of exjtlic
provided loop invariants for complex code. It is also able

We have implemented the Jahob framework, populated
it with interfaces to the Isabelle interactive theorem
prover [63], the SMT-LIB interface [67] to Nelson-Oppen



style [62] theorem provers, the MONA decision proce- tomation [36] or in terms of using lighter-weight substgut
dure [40], and a decision procedure for Boolean Algebra of specification variables [51].
with Presburger Arithmetic [43] based on reduction to the Recently, verification systems have incorporated tech-
Omega decision procedure [66] for Presburger arithmetic. niques for inferring loop invariants [23, 21, 11, 50]. Like
We are using a simple goal decomposition technique to more specialized analyses [75, 82, 19, 70, 24], such tech-
prove different conjuncts in the goal using different diegis nigues for loop invariantinference are effective for azaiyg
procedures. In addition, we are using field constraint analy simple array data structures and basic memory safety prop-
sis [80] to combine reasoning about uninterpreted function erties, but have so far been limited in the range of proper-
symbols with reasoning using other decision procedures. ties that they can prove about linked data structures. These
We have verified implementations and uses of global data systems are compatible with our methodology of combining
structures. By providing intermediate assertions we have specialized analyses based on abstract interpretatiam to i
verified implementations of operations on associatios.list crease the automation in the context of a verification frame-
We have also annotated and partially verified high-level work; one of the properties that makes Jahob different is the
properties in an implementation of a turn-based strategy ability to utilize recently developed precise data struetu
game. We have also implemented a mechanisms for reasonanalyses such as shape analysis.

ing a_boutdata structure repr_es_entation ir_' t_he pres_enopofd Shape analysis. Shape analyses are precise analyses for
namic data structure instantiation, combining the ideasifr iy ed gata structures. They were originally used for com-
the Hob project [47] with approaches from systems such as ;i optimizations [37, 27, 26], but subsequently evolved

Spec# [6]. We are currently evaluating the practicality@f 0 1o more precise analyses that have been successfully used
approach. to analyze invariants of data structures that are of interes
for verification [42, 25, 41, 49, 58, 71]. Most shape analy-
ses that synthesize loop invariants are based on precothpute
4. Related Work transfer functions and a fixed set of properties to be tracked
Key features of Jahob system are modular reasoning withrecent approaches enable automation of such computation
expressive procedure contracts and support for data abstra using decision procedures [86, 84, 85, 65, 80] or finite dif-
tion, and automated support for reasoning about linked dataferencing [69].
structure implementation and usage. Jahob thereforesbuild ~ Recently there has been a resurgence of decision proce-
on program verification research to provide a framework dures and analyses for linked list data structures [4, 18, 54
for modular analysis, and builds on new analyses for data 7, 68], where the emphasis is on predictability (decisian pr
structure implementation and data structure use to providecedures for well-defined classes of properties of linkes)lis
a higher degree of automation than verification frameworks efficiency (membership in NP), the ability to interoperate
based on general-purpose reasoning. with other reasoning procedures, and modularity.

Shape analyses are among the most sophisticated analy-
ses for structural properties of programs; they have alsa be
applied to verify properties such as sorting, by abstrgctin
the ordering relation [53, 58]. Analyses and decision pro-
cedures have also been constructed that combine reasoning
about reachability and reasoning about quantitative grope

ties such as length of lists and height and balancing of trees
KeY I | f k h : . X
[55], KeY [3], as well as more general frameworks such as [32, 31, 45, 57, 9]. Size constraints can be imposed on set

ACL2 [38, 59], and STeP [8], and PVS [64]. Traditionally, bstracti f data struct ielding logics that
these systems are based on verification condition genera-a stractions of data Structures, yielding fogics that & r

tion combined with theorem provers. They typically require son about numbers of data structure elements and support

loop invariants, and additionally either require eithdein quaNr:mekr)s [333] ere recentlv pronosed for reasoning about
action with the theorem prover or lemmas specific for the W logics w y prop ng u

program being verified. Specification frameworks include Z reachability, such as the logic of reachable shapes [83]. Ex

isting logics, such as guarded fixpoint logic [29] and de-
[81], VDM [36], B [2], RAISE [13]. Many of these frame- L2 ! . Y .
works recognize the importance of data abstraction [36], scription logics with reachability [10] are attractive lbbese

which is an important component of Jahob. Some of these?]c thhe|r e>|<pr<_ass;:/e p%wer, .bUt ISO far n%dXC'S'On pr((j)cr(]edures
frameworks provide no automation for performing formal orthese logics have eenimp emented. Automated theorem
proofs, and some provide support in terms of verification provers such as Vampire [78] can be useq to reason about
condition generators and interactive theorem proversigt]. prqper.ues. of linked dat_a .structure.sz bl{t axmmaﬂzmghea
hob, on the other hand, aims at providing automated proofsablllty n f|rst?ord§r logic is non-trivial in practice [652]

that data structures conform to their abstraction; previou and not possible in general.

approaches have been less ambitious either in terms of au-

Verification systems with modular reasoning.  Sys-
tems based on verification-condition generation and theo-
rem proving include the program verifier [39], the intereeti
program verifier [17], the Stanford Pascal Verifier [74, 60],
the Gypsy environment [28], Larch [30], ESC/Modula-3
[16], ESC/Java [22], ESC/JavaZ2 [12], Boogie [6], Krakatoa
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