
Back to the Future
Revisiting Precise Program Verification using SMT Solvers

Shuvendu K. Lahiri Shaz Qadeer
Microsoft Research

{shuvendu, qadeer}@microsoft.com

Abstract
This paper takes a fresh look at the problem of precise verifica-
tion of heap-manipulating programs using first-order Satisfiability-
Modulo-Theories (SMT) solvers. We augment the specification
logic of such solvers by introducing the Logic of Interpreted Sets
and Bounded Quantification for specifying properties of heap-
manipulating programs. Our logic is expressive, closed under
weakest preconditions, and efficiently implementable on top of
existing SMT solvers. We have created a prototype implementa-
tion of our logic over the solvers SIMPLIFY and Z3 and used our
prototype to verify many programs. Our preliminary experience is
encouraging; the completeness and the efficiency of the decision
procedure is clearly evident in practice and has greatly improved
the user experience of the verifier.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Algorithms, Reliability, Verification

Keywords Software verification, SMT solvers, decision proce-
dures, heap-manipulating programs, reachability, linked lists

1. Introduction
First-order theorem provers like SIMPLIFY (Detlefs et al. 2005) are
a fundamental component of many scalable program verification
tools. These provers are used in many ways—to solve the verifi-
cation condition of each procedure in a modular analysis (Flana-
gan et al. 2002; Barnett et al. 2005) and to compute and refine
abstractions in a whole-program analysis (Ball et al. 2001; Hen-
zinger et al. 2002). First-order reasoning has the important ability
to combine various useful theories required for program verifica-
tion, e.g., arithmetic, arrays, and uninterpreted functions, in a sys-
tematic manner (Nelson and Oppen 1979). Recently, Satisfiability-
Modulo-Theories (SMT) solvers (Satisfiability Modulo Theories
Library (SMT-LIB)) such as YICES (Dutertre and de Moura 2006)
and Z3 (de Moura and Bjorner 2007), have combined advances in
Boolean satisfiability solvers with powerful first-order theory rea-
soning using decision procedures. We believe that these powerful
solvers have created an opportunity for scaling automated verifica-
tion to deep properties of complex software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL ’08 January 7–12, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

Despite these recent advances, automated verification of heap-
manipulating programs remains difficult with first-order reasoning.
The main reason behind this difficulty is that the specification logic
supported by SMT solvers is not expressive enough. In particular,
it is usually cumbersome and often impossible to specify prop-
erties of unbounded lists and trees and non-aliasing invariants of
deeply-nested heap structures. Previous attempts (Flanagan et al.
2002) at reasoning about these programs using first-order provers
relied heavily on the use of quantifiers both for expressing asser-
tions about (unbounded) data structures and for axiomatizing theo-
ries for linked lists and trees. The result has been unsatisfactory for
two reasons. First, most recursive predicates useful for expressing
invariants about unbounded data-structures cannot be axiomatized
in first-order logic (Börger et al. 1997). Consequently, these ax-
iomatizations tend to be incomplete leading to an unacceptable fre-
quency of failed proofs. Second, quantifier-reasoning in first-order
SMT solvers remains incomplete, heuristic-driven, and brittle. To
properly use these solvers, considerable user ingenuity is required
for writing carefully crafted quantified assertions. Such expertise is
usually beyond the capability of normal programmers.

In this paper, we revisit the problem of precise verification of
heap-manipulating programs using first-order SMT solvers. Our
work is motivated by our desire to analyze systems software such
as device drivers and operating systems code, which make heavy
use of linked lists and deeply-nested linked data structures. We are
interested in building an assertion checker for correctness proper-
ties of such programs such as memory-safety and data-structure
invariants.

Towards this end, we present the Logic of Interpreted Sets
and Bounded Quantification for specifying properties of heap-
manipulating programs and a verifier for proving these properties.
Our logic uses first-order logic as a substrate. In addition to provid-
ing useful but conventional theories such as arithmetic and equality
with uninterpreted functions, the logic also provides several novel
features that alleviate, to a significant extent, the aforementioned
difficulties faced by first-order solvers in verifying data-structure
properties. The contributions of this paper can be categorized along
the following dimensions:

Logic. We introduce a new logic that facilitates precise, au-
tomated, and efficient reasoning about many heap-intensive pro-
grams. The logic provides an interpreted recursive predicate to rea-
son about lists and two interpreted set constructors useful for writ-
ing specifications involving bounded quantification over the con-
structed sets.

1. The logic is expressive. In addition to describing rich data struc-
ture invariants (such as disjointness of two lists), and properties
of entire collections (such as sortedness of a list), the logic is ex-
pressive enough for describing concisely object invariants over
a given type and non-aliasing constraints.

171

2. The logic is closed under weakest precondition. Given a loop-
free and call-free program annotated with preconditions, post-
conditions and assertions in our logic, we present a procedure
to generate a formula also in our logic that is unsatisfiable if and
only if the program does not go wrong by failing any assertions.

3. The logic is simple. In spite of its expressiveness, the decision
problem for the logic is NP-complete.

The increased expressiveness of our logic due to quantifiers and
closure under weakest precondition make it much more attractive
for program verification, compared to other similar logics (Nelson
1983; Rakamarić et al. 2007).

Decision procedure. We describe an efficient decision proce-
dure for the logic using a set of sound, complete and terminat-
ing inference rules. The resulting decision procedure can leverage
theory reasoning (for arithmetic and uninterpreted functions) and
conflict-clause driven backtracking search of modern SMT solvers.
The presence of bounded quantification over interpreted sets allows
us to instantiate the quantifiers in a lazy manner, an attribute that
is essential for good performance. Lazy instantiation greatly im-
proves the performance of the decision procedure as (often use-
less) quantifier instantiation is one of the bottlenecks for first-order
SMT provers supporting general quantifiers. We have implemented
an initial prototype of the decision procedure over existing SMT
solvers SIMPLIFY and Z3, using universally quantified first-order
axioms with matching triggers.

Evaluation. We have used our decision procedure to verify
many small to medium-sized C programs. Our preliminary expe-
rience is encouraging; the completeness and efficiency of the deci-
sion procedure is clearly evident in practice and has improved the
robustness of the verification efforts manifold.

Although we have applied our verifier to annotated programs,
where the user supplies the annotations, the ability to perform pre-
cise and automated verification is the cornerstone of many other
verification techniques. Predicate abstraction techniques (Graf and
Saı̈di 1997) make calls to a theorem prover to construct an ab-
straction. Refinement of abstractions (Kurshan 1995; Clarke et al.
2000) relies on computing the weakest precondition and solving
the generated verification condition. Symbolic execution of pro-
grams (Godefroid et al. 2005) requires solving path constraints pre-
cisely. The contributions of this paper are applicable, not only to
modular program verification, but to these other domains as well.

Proofs for the lemmas and theorems in this paper have been
omitted for lack of space. They can be found in a technical re-
port (Lahiri and Qadeer 2007a).

2. Motivating example
We consider the linked data structures present in an real-world
application called muh (Muh). muh is an Internet Relay Chat (IRC)
bouncer, a program that acts as a middleman between an IRC-client
and an IRC-server. The application is written in C.

The main data structures, described in Figure 1, consists of
two acyclic doubly-linked lists, pointed to by log list.head and
channel list.head, containing a list of logentry and channel
nodes respectively. Figure 2 and Figure 3 describe the lists and their
contents. Each node in the log list, pointed to by the data field
in the dlink node, contains two character arrays channel name
and filename and an integer logtype. Similarly, each node in
the channel list contains two character arrays name, and topic,
and a pointer to a channel log node. The channel log structure
further contains an integer ftype and a pointer to a FILE called
logfile.

Note that the list node dlink node uses its void * data field
polymorphically (Figure 1). When the node participates in the
log list, the data field is cast to a (logentry∗) pointer, and

typedef struct _dlink_node
{
struct _dlink_node *next;
struct _dlink_node *prev;
void *data;

} dlink_node;

typedef struct _dlink_list
{

dlink_node *head;
dlink_node *tail;

} dlink_list;

typedef struct _logentry
{
char *channel_name;
char *filename;
int logtype;

} logentry;

extern dlink_list log_list;

typedef struct _channel_log
{
int ftype;
FILE *logfile;

} channel_log;

typedef struct _channel
{

char *name;
char *topic;
channel_log *log;

} channel;

extern dlink_list channel_list;

Figure 1. Main data structures of muh

log_list.head log_list.tail

next next next

prev prev prev

data data data

channel namechannel_name

filenamefilename

l tlogtype

struct _logentry

Figure 2. The log list

channel_list.head channel_list.tail

next next nextnext

prev

next

prev

next

prevprev

data

prev

data

prev

datadata data data

name

topic

ft
log

ftype

l filstruct channel logfilestruct _channel

struct _channel_log

Figure 3. The channel list

172

void clear_logs(int clear)
{

dlink_node *ptr;
dlink_node *next_ptr;
struct _logentry *logptr;

.......

/* then clear the loglist */
for(ptr = log_list.head; ptr; ptr = next_ptr)
{

next_ptr = ptr->next;
logptr = ptr->data;

xfree(logptr->channel_name);
xfree(logptr->filename);
xfree(logptr);

dlink_delete(ptr, &log_list);
dlink_free(ptr);

}
}

void rem_channel(struct _channel *chptr)
{

dlink_node *ptr;

/* close the logfile if we have one */
if(chptr->log != NULL)
{

.....
xfree(chptr->log);

}

if((ptr = dlink_find(chptr, &channel_list)) == NULL)
return;

dlink_delete(ptr, &channel_list);
dlink_free(ptr);

xfree(chptr->name);
xfree(chptr->topic);
xfree(chptr);

}

Figure 4. Freeing entries from log list and channel list.

when it participates in the channel list, the data field is cast to
a (channel∗) pointer.

The example is representative of real-world applications written
in C, which consist of a combination of multiple linked data struc-
tures. These data structures can either be recursively defined (e.g.
dlink node) or deeply-nested (e.g. channel).

During the lifetime of the application, various operations mu-
tate these data structures through a set of functions. These functions
correspond to adding or deleting a log to a list, adding or deleting a
channel to a list, opening or closing a FILE, or freeing a set of en-
tries of a list. In this section, we focus on the routines clear logs
and rem channel, which free objects present in the data structures.
Figure 4 describe parts of the procedures that free elements (using a
procedure xfree) from the log list and the channel list. An
important memory-safety property to enforce is the following:

Absence of double-free: An object is not freed twice in the
applications lifetime.

Let us consider the procedure clear logs in Figure 4. The pro-
cedure iterates over the linked list pointed to by log list.head,
freeing the objects in each node. It first frees the channel name
and filename objects, then frees the logentry object pointed to

c ∈ Integer
x ∈ Variable
f ∈ Function
ϕ ∈ Formula ::= α | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ
α ∈ ∀Formula ::= γ | α1 ∧ α2 | α1 ∨ α2 | ∀x ∈ S.α
γ ∈ GFormula ::= t1 = t2 | t1 < t2 |

t1
f−→ t2

f−→t3 | ¬γ
t ∈ Term ::= c | x | t1 − t2 | t1 + t2 |

f(t) | ite(t = t′, t1, t2)
S ∈ Set ::= g−1(t) | Btwn(f, t1, t2)

Figure 5. Logic of Interpreted Sets and Bounded Quantification
(LISBQ)

by the data pointer and finally deletes the dlink node object from
the list and frees it. The procedure rem channel similarly removes
an entry from the channel list and frees the objects.

Let us examine a few scenarios to understand why it is non-
trivial to establish the absence of double-free for this routine:

1. Consider a given iteration of the loop, where channel name
and filename are freed. If both these pointers are aliased,
then xfree(logptr->filename) would free an object that
has already been freed by xfree(logptr->channel name).
Hence, we would like to enforce that the channel name and
filename pointers in a logentry node do not alias.

2. Now consider two different iterations of the loop operating on
two linked list nodes u and v. Let us imagine that u->data and
v->data are aliased. In this case, each of the three xfree calls
on the later iteration would free an already freed object.

3. Another scenario causing a double-free could arise if the
channel name or filename fields in some node in log list
aliases with name or topic fields in some node in channel list.
In this scenario, a call to rem channel followed by a call to
clear logs would cause a double-free.

4. Finally, if the data field in a dlink node object aliases with
the channel name fields in a logentry object, a double-free
may be erroneously reported. This situation is avoided by en-
forcing that pointers to objects of two different types can never
be equal.

In Section 3, we present a simple and natural specification logic
that can express the necessary invariants to prove the absence of
double-free error in the program. In Section 4, we revisit this ex-
ample to illustrate the use of our logic. In spite of the expressive-
ness, the decision problem of the logic still remains NP-complete
and we propose an efficient decision procedure for the logic using
SMT solvers.

3. Logic
Our logic, presented in Figure 5, is interpreted over a finite
partially-ordered set D of sorts. The set D contains the sort Integer
of integers. Each variable x has some sort D ∈ D. Each uninter-
preted function f has a sort D → E for sorts D,E ∈ D. A model
M for a formula in the logic provides an interpretation MD for
each sort D, where MInteger is just the set of integers. The model
also provides an interpretation Mx ∈ MD for each variable x of
sort D and an interpretation Mf : MD →ME for each function f
of sort D → E. The interpretation is extended to arbitrary terms in
the logic in the natural way.

The logic provides a ternary reachability predicate · f−→ · f−→ ·
for each function f of sort D → D where D ∈ D. The model

M |= t1
f−→ t2

f−→ t3 iff there are distinct u0, u1, . . . , un ∈ MD

173

T ∈ Stmt ::= Assert(ϕ) | Assume(ϕ) |
x := new | free(x) |
x := t | f(x) := y |
T1;T2 | T1�T2

Figure 6. Program

such thatMf (ui) = ui+1 for all i ∈ [0, n), u0 = Mt1 , un = Mt3 ,
and ui = Mt2 for some i ∈ [0, n]. We often refer to the binary

reachability predicate t1
f−→t2 which is defined to be t1

f−→t2
f−→ t2.

The logic allows bounded universal quantification over two
different kinds of (potentially unbounded) sets. The set f−1(t) is
constructed using a function f of sort D → E where D,E ∈ D
and D �= E. The model M |= x ∈ f−1(t) iff Mf(x) = Mt.
The set Btwn(f, t1, t2) is constructed using a function f of sort
D → D where D ∈ D. The model M |= x ∈ Btwn(f, t1, t2) iff

M |= t1
f−→ x

f−→ t2. Note that our sorting requirements preclude
the use of the same function symbol f in a term f−1(t) and a term
Btwn(f, t1, t2). This restriction is important for the completeness
of our decision procedure; it ensures that models for the sets g−1(t)
and Btwn(f, t1, t2) can be computed independently.

The set of formulas Formula in our logic is closed under
boolean combination. We have both universal and existential quan-
tification but do not have alternation of quantifiers.

We require that logical formulas satisfy the sort-restricted prop-
erty. This property is crucial for the termination of the decision pro-
cedure described in Section 3.3.

In every formula ∀x ∈ S.α, the sort of any term in α
containing x as a strict sub-term is less than the sort of x.

We assume the existence of a type checking or type inference
algorithm that can check for any formula ϕ in our logic that it is
type-correct and satisfies the property described above.

3.1 From programs to formulas

In this section, we show how we translate a program T without
loops and procedure calls into a formula ϕ in our logic. The transla-
tion has the property that ϕ is unsatisfiable iff S does not go wrong
by failing an assertion. We assume that a preprocessing phase has
eliminated all loops either soundly by using a programmer-supplied
loop invariant or unsoundly by unrolling each loop a bounded
number of times. Similarly, all procedure calls have been elimi-
nated either soundly by using programmer-supplied pre- and post-
conditions or unsoundly by inlining upto a bounded depth.

The syntax of the programs we consider is given in Figure 6.
The statement Assert(ϕ) is used to introduce intermediate asser-
tions and postconditions. The statement Assume(ϕ) is used to in-
troduce preconditions and conditional statements. The statement
x := new creates a new object. Allocation of objects whose ad-
dresses are in sort D is modeled using a map AllocD : D →
Integer . The statement x := new gets desugared into the code
sequence

Assume(AllocD(k) = 0);AllocD(k) := 1; x := k

where k is a fresh variable (not used anywhere else) introduced per
allocation site. The statement free(x) frees an object. If x is of sort
D, this statement is desugared into the code sequence

Assert(AllocD(x) = 1); AllocD(x) := 2.

The statement x := t evaluates t and writes it into a variable x. The
statement f(x) := y writes the value in variable y into the field f
at cell x. The statement T1;T2 evaluates T1 followed by T2. The
statement T1�T2 executes either T1 or T2 nondeterministically.

wp(Assert(ψ), ϕ) = ψ ∧ ϕ
wp(Assume(ψ), ϕ) = ψ ⇒ ϕ

wp(x := t, ϕ) = ϕ[x/t]
wp(f(x) := y,ϕ) = Γ(ϕ, f, x, y)

wp(T1;T2, ϕ) = wp(T1,wp(T2, ϕ))
wp(T1�T2, ϕ) = wp(T1, ϕ) ∧ wp(T2, ϕ)

Figure 7. Weakest precondition

Γ(ϕ1 ∧ ϕ2, f, p, q) ≡ Γ(ϕ1, f, p, q) ∧ Γ(ϕ2, f, p, q)
Γ(ϕ1 ∨ ϕ2, f, p, q) ≡ Γ(ϕ1, f, p, q) ∨ Γ(ϕ2, f, p, q)

Γ(¬ϕ, f, p, q) ≡ ¬Γ(ϕ, f, p, q)

Figure 8. Definition of Γ(ϕ, f, p, q)

This statement, together with the assume statement, is used to
model conditional execution.

The weakest precondition computation for the various state-
ments in our language (other than x := new and free(x) which
are desugared) is given in Figure 7. As we discuss below, the set
of formulas in our logic is closed under the computation of weak-
est precondition with respect to any statement T . Let true denote
the formula x = x for some designated variable x. We first com-
pute wp(T, true) as described in the figure. The translation has
the property that ¬wp(T, true) is unsatisfiable iff T does not go
wrong. In Sections 3.2 and 3.3, we present a procedure to decide
whether ¬wp(T, true) is satisfiable.

We use the notation ϕ[x/t] to indicate the result of syntactically
replacing x everywhere with t in the formula ϕ. The computation
described in Figure 7 is straightforward and follows the classical
description (Dijkstra 1976) except in the case of the statement
f(x) := y. It is nontrivial to provide the weakest precondition of
a formula ϕ with respect to f(x) := y because of the use of the

predicate · f−→ · f−→ · in ϕ. This predicate may be used either as an

atom t1
f−→ t2

f−→ t3 or in defining the bound set Btwn(f, t1, t2)
of a universally quantified fact. The main difficulty is that a local
change in the value of the function f at xmight cause global change
in the value of this predicate. However, for closure under weakest
precondition, we must capture this change using the vocabulary of
the logic.

The function Γ defined in Figures 8-11 is used for comput-
ing the weakest precondition of ϕ with respect to the statement
f(p) := q. Figure 8 computes Γ(ϕ, f, p, q) for a formula ϕ by
straightforward recursion on the structure of the formula. Figure 9
computes Γ(α, f, p, q) for a formula α. The first two rules are
straightforward recursion but to understand the next four rules,
we must first understand Γ(γ, f, p, q) defined in Figure 10 and
Γ(t, f, p, q) defined in Figure 11.

The rules for computing Γ(t, f, p, q) in Figure 11 are mostly
straightforward. Let fp

q denote the function that is identical to
f except at p where its value is q. The only nontrivial rule
Γ(f(t), f, p, q) states that the value of fp

q (t) is q if p = t and
f(Γ(t, f, p, q)) otherwise.

In Figure 10, Γ(t1 = t2, f, p, q) and Γ(t1 < t2, f, p, q) are
obtained in a straightforward fashion by recursively computing
Γ(t1, f, p, q) and Γ(t2, f, p, q). The computation of Γ(t1

g−→ t2
g−→

t3, f, p, q) is easy since g is different from f . We need to work

harder, however, to compute Γ(t1
f−→ t2

f−→ t3, f, p, q). Suppose f

is a function of sort D → D. Let u
f−→
w
v be the predicate defined

174

Γ(α1 ∧ α2, f, p, q) ≡ Γ(α1, f, p, q) ∧ Γ(α2, f, p, q)

Γ(α1 ∨ α2, f, p, q) ≡ Γ(α1, f, p, q) ∨ Γ(α2, f, p, q)

Γ(∀x ∈ g−1(t).α, f, p, q) ≡
let
t′ = Γ(t, f, p, q), α′ = Γ(α, f, p, q)

in
∀x ∈ g−1(t′).α′

Γ(∀x ∈ f−1(t).α, f, p, q) ≡
let
t′ = Γ(t, f, p, q), α′ = Γ(α, f, p, q)

in
∧ q = t′ ⇒ α′[x/p] ∧ ∀x ∈ f−1(t′).α′

∧ q �= t′ ⇒ ∀x ∈ f−1(t′).x = p ∨ α′

Γ(∀x ∈ Btwn(g, t1, t2).α, f, p, q) ≡
let
t′1 = Γ(t1, f, p, q), t

′
2 = Γ(t2, f, p, q), α

′ = Γ(α, f, p, q)
in
∀x ∈ Btwn(g, t′1, t

′
2).α

′

Γ(∀x ∈ Btwn(f, t1, t2).α, f, p, q) ≡
let
t′1 = Γ(t1, f, p, q), t

′
2 = Γ(t2, f, p, q), α

′ = Γ(α, f, p, q)
in

∧ t′1
f−→
p
t′2 ⇒ ∀x ∈ Btwn(f, t′1, t

′
2).α

′

∧ p �= t′2 ∧ t′1 f−→
t′2
p ∧ q f−→

p
t′2 ⇒ ∀x ∈ Btwn(f, t′1, p).α

′

∧ p �= t′2 ∧ t′1 f−→
t′2
p ∧ q f−→

p
t′2 ⇒ ∀x ∈ Btwn(f, q, t′2).α

′

Figure 9. Definition of Γ(α, f, p, q)

as follows:

u
f−→
w
v ≡ u

f−→v
f−→w ∨ (u

f−→v ∧ ¬u f−→w)

Intuitively, u
f−→
w

v holds iff u can reach v by following zero

or more f links without going through w. Formally, the model

M |= t1
f−→
t3

t2 iff there are distinct u0, u1, . . . , un ∈ MD such

that Mf (ui) = ui+1 for all i ∈ [0, n), u0 = Mt1 , un = Mt2 , and
ui �= Mt3 for all i ∈ [0, n). Then, we have the following identity:

u
fp

q−−→v
fp

q−−→w ≡ ∨ u
f−→v

f−→w ∧ u f−→
p
w

∨ p �= w ∧ u f−→
w
p ∧ u f−→v

f−→p ∧ q f−→
p
w

∨ p �= w ∧ u f−→
w
p ∧ q f−→v

f−→w ∧ q f−→
p
w

The first disjunct captures the case when p cannot destroy the path

witnessing u
f−→ v

f−→w and therefore u
fp

q−−→ v
fp

q−−→w holds as well.
The second disjunct captures the case when there is a path from
u to v and the update to f creates a path from v to w. The third
disjunct captures the case when there is a path from v to w and the
update to f creates a path from u to v.

The identity given above provides a precise update for the pred-

icate u
f−→ v

f−→ w with respect to the statement f(p) := q. Con-
sequently, it is crucial for the closure of our logic under weakest

Γ(t1 = t2, f, p, q) ≡ Γ(t1, f, p, q) = Γ(t2, f, p, q)

Γ(t1 < t2, f, p, q) ≡ Γ(t1, f, p, q) < Γ(t2, f, p, q)

Γ(t1
g−→t2

g−→t3, f, p, q) ≡
let
t′1 = Γ(t1, f, p, q), t

′
2 = Γ(t2, f, p, q), t

′
3 = Γ(t3, f, p, q)

in

t′1
g−→t′2

g−→t′3

Γ(t1
f−→ t2

f−→t3, f, p, q) ≡
let
t′1 = Γ(t1, f, p, q), t

′
2 = Γ(t2, f, p, q), t

′
3 = Γ(t3, f, p, q)

in

t′1
fp

q−−→t′2
fp

q−−→ t′3

Γ(¬γ, f, p, q) ≡ ¬Γ(γ, f, p, q)

Figure 10. Definition of Γ(γ, f, p, q)

Γ(c, f, p, q) ≡ c

Γ(x, f, p, q) ≡ x

Γ(t1 + t2, f, p, q) ≡ Γ(t1, f, p, q) + Γ(t2, f, p, q)

Γ(t1 − t2, f, p, q) ≡ Γ(t1, f, p, q) − Γ(t2, f, p, q)

Γ(g(t), f, p, q) ≡ g(Γ(t, f, p, q))

Γ(f(t), f, p, q) ≡
let
t′ = Γ(t, f, p, q)

in
ite(p = t′, q, f(t′))

Γ(ite(t1 = t2, t3, t4), f, p, q) ≡
let
t′1 = Γ(t1, f, p, q), t

′
2 = Γ(t2, f, p, q),

t′3 = Γ(t3, f, p, q), t
′
4 = Γ(t4, f, p, q)

in
ite(t′1 = t′2, t

′
3, t

′
4)

Figure 11. Definition of Γ(t, f, p, q)

preconditions. Finally, this identity provides a simple way to com-

pute Γ(t1
f−→ t2

f−→t3, f, p, q) as shown in Figure 10.
We now go back to Figure 9 to understand the last four rules

for computing Γ(α, f, p, q). The third and fifth rules are straight-
forward because f and g are different functions. The intuition for
Γ(∀x ∈ f−1(t).α, f, p, q) rests on the identity

(fp
q)−1(t′) = ite(q = t′, f−1(t′) ∪ {p}, f−1(t′) \ {p}),

where t′ = Γ(t, f, p, q) and we have extended the ite(·, ·, ·)
constructor to sets for brevity. The intuition for the rule Γ(∀x ∈
Btwn(f, t1, t2).α, f, p, q) rests on the identity relating u

fp
q−−→v

fp
q−−→

w and u
f−→ v

f−→ w defined above; there is a one-one correspon-
dence between the disjuncts there and the conjuncts in the defini-
tion of Γ(∀x ∈ Btwn(f, t1, t2).α, f, p, q).

175

[AND]
ϕ1 ∧ ϕ2

ϕ1, ϕ2

[OR]
ϕ1 ∨ ϕ2

ϕ1 ϕ2

[ITE]
ϕ[ite(t1 = t2, t3, t4)]

t1 = t2, ϕ[t3] t1 �= t2, ϕ[t4]

[EQ]
ϕ1[t1] ϕ2[t2]

t1 = t2 t1 �= t2

Figure 12. Basic inference

The contribution of this section can be summarized in the fol-
lowing theorem about the definition of the wp(T, ϕ) captured by
Figures 7-11.

THEOREM 1. For any program T , the formula ¬wp(T, true) is
in the logic LISBQ. Moreover, the program T goes wrong iff
¬wp(T, true) is satisfiable.

3.2 Decision procedure for ground logic

In this section, we provide a decision procedure for checking satis-
fiability of a formula ϕ in our logic. First, we convert ϕ into nega-
tion normal form and skolemize the resulting existential quantifiers
that result from moving a negation inside a universal quantifier. The
resulting formula remains in our logic. We first present a decision
procedure for the case of ground formulas (Figures 12 and 13) and
then augment the procedure to deal with quantifiers (Figure 14).

Our algorithm maintains a context, which is a conjunction of
formulas currently asserted to be true. The algorithm provides a
collection of rewrite rules that operate over the context. In each
step of the algorithm, an applicable rewrite rule is applied which
may cause a case-split together with the addition to the context of
one or more formulas.

Each inference rule is written as a conjunction of antecedents
above the line and a disjunction of consequents below the line.
In some cases such as [AND], a consequent below the line might
have several comma-separated formulas which are interpreted as
conjoined. If there is a rule such that the current context contains
all the formulas above the line, then the it is guaranteed that the
disjunction of the formulas below the line is entailed by the context.
In this case, we say that the rule matches the context. A context is
called saturated if for every matching rule, the context contains all
the formulas in one of the disjuncts below the line.

Let U denote the quantifier-free theory of equality with unin-
terpreted functions and relations. The signature of U contains all
symbols of our logic LISBQ (Figure 5) except +, −, <, and the
constants in Integer . Note that while LISBQ interprets the relation

· f−→· f−→·, the logic U treats it as uninterpreted. Let V denote the

logic with the same signature as U in which the relation · f−→· f−→· is
interpreted. Let A denote the quantifier-free theory of linear arith-
metic. The signature of A contains all symbols of LISBQ except
the function symbols, such as f , and the relation symbols, such a

· f−→· f−→ ·. The only symbols shared among U and A are the vari-
ables in Variable . Let UA denote the combination of U and A.
The signature of UA is exactly the same as the logic in Figure 5

except that in UA the relation · f−→· f−→· is treated as uninterpreted.
A literal is a quantifier-free formula that is free of boolean con-

nectives ∧ and ∨, and ite(·, ·, ·) terms. We assume the existence
of an oracle for the theory UA that can decide whether the set of
literals in the current context is satisfiable. The context is consistent
if the oracle decides that set of literals in the context is satisfiable.
Otherwise, the context is inconsistent.

Our algorithm essentially explores a decision tree while main-
taining a context. It initializes the context to the input formula ϕ.
At each step, if the current context is inconsistent, the algorithm

[REFLEXIVE]

t
f−→ t

[STEP]
f(t)

t
f−→f(t)

[REACH]

f(t1) t1
f−→ t2

t1 = t2 t1
f−→f(t1)

f−→t2

[CYCLE]

f(t1) = t1 t1
f−→ t2

t1 = t2

[SANDWICH]

t1
f−→ t2

f−→ t1
t1 = t2

[ORDER1]

t1
f−→ t2 t1

f−→t3

t1
f−→ t2

f−→ t3 t1
f−→t3

f−→t2

[ORDER2]

t1
f−→t2

f−→t3

t1
f−→t2, t2

f−→t3

[TRANSITIVE1]

t1
f−→ t2 t2

f−→t3

t1
f−→t3

[TRANSITIVE2]

t0
f−→t1

f−→t2 t1
f−→ t

f−→ t2

t0
f−→ t1

f−→ t, t0
f−→t

f−→t2

[TRANSITIVE3]

t0
f−→ t1

f−→ t2 t0
f−→t

f−→t1

t0
f−→t

f−→ t2, t
f−→t1

f−→ t2

Figure 13. Reachability

backtracks to the last untried decision if there remains one and oth-
erwise returns unsatisfiable. Otherwise, if the current context is sat-
urated, the algorithm reports that ϕ is satisfiable. Otherwise, there
is a matching rule such that none of the formulas below the line are
present in the context. If there is only one formula below the line,
it is added to the context. Otherwise, a case split is performed with
one formula added to the context for each case.

Figure 12 gives the basic inference rules. The rules [AND] and
[OR] are straightforward and follow from the logical meaning of ∧
and ∨. The rule [ITE] is applicable whenever the context contains
a ground formula ϕ containing a term ite(t1 = t2, t3, t4), in
which case we perform a case split on t1 = t2. If t1 = t2 we
replace ite(t1 = t2, t3, t4) with t3 in ϕ, otherwise we replace
ite(t1 = t2, t3, t4) with t4. The rule [EQ] performs a case split
on the equality between any two terms t1 and t2 that exist in the
context.

The rules in Figure 13 are dedicated to proving facts about

the ternary reachability predicate u
f−→ v

f−→ w. The rules make

extensive use of the binary reachability predicate u
f−→ v which, as

mentioned earlier, is equivalent to u
f−→ v

f−→ v. Rule [REFLEXIVE]

says that · f−→ · is a reflexive relation. In rule [STEP], as in a few
other rules discussed later, we take a notational liberty by putting a
term f(t) above the line. Rule [STEP] is applicable whenever a term
f(t) occurs in any ground formula in the context and concludes the
obvious fact that f(t) is reachable from t. Rule [REACH] draws
conclusions based on the presence of f(t1) in the context and the
reachability from t1 of another term t2.

Rules [CYCLE] and [SANDWICH] entail an equality without in-
troducing a case split. Both rules draw conclusions from the pres-
ence of cycles in the graph of the reachability relation. Rules
[ORDER1] and [ORDER2] connect the ternary and binary reacha-
bility predicates. Rule [ORDER1] says that if t1 reaches both t2 and
t3, then either t1 reaches t2 followed by t3 or t1 reaches t3 fol-
lowed by t2. Rule [ORDER2] draws the more obvious conclusion
in the other direction. Rules [TRANSITIVE1], [TRANSITIVE2], and

[TRANSITIVE3] state various facts related to the transitivity of · f−→·
and · f−→· f−→·.

176

Given a quantifier-free formula ϕ as input, the procedure de-
fined by the rules in Figures 12 and 13 terminates because the num-
ber of new terms created is bounded by the number of ite(·, ·, ·)
terms inϕ. Since the procedure simply combines backtracking with
the creation of new facts among this bounded set of terms, we con-
clude that the procedure will terminate. Soundness of the algorithm
is proved by reasoning locally about each inference rule to verify
that the conjunction of antecedents indeed implies the disjunction
of the consequents.

The argument for the completeness of the algorithm is as fol-
lows. Suppose during the execution of the algorithm, we arrive at a
consistent and saturated context C. We create a model that satisfies
each formula in C using the following steps: Remove each formula
in C that is not a literal. Due to the rules [AND], [OR], and [ITE], it
suffices to find a model for the resulting set of formulas. Purify the
remaining literals by introducing fresh variables and new equalities
and saturate the context with all derived facts in the theory U using
congruence closure. For each sortD, introduce a fresh variable ⊥D

and add literals ⊥D �= x, for every other variable x of sort D. The
role of these variables will become clear later when we define the
model. Note that the addition of these disequalities to the context
does not create any fresh implications. Split the context into the set
CV containing literals only from theory V and the set CA contain-
ing literals only from theory A. Due to the rule [EQ], both CV and
CA are convex and entail the same set of equalities. In addition,
both theories V and A are stably infinite. Therefore, in order to get
a model for CV ∧ CA, we only need to get models separately CV

and CA (Nelson and Oppen 1979). Here we only show how to gen-
erate a model for CV , since a model for CA can be generated from
the decision procedure for arithmetic.

We now show how to construct a model M for a consistent
and saturated CV . In order to define a model M for CV , we
need for each sort D different from the sort Integer , a domain
MD , an assignment Mx ∈ D for every variable x of sort D,
and an assignment Mf : MD → MD for every function f of
sort D → D. We start in the usual way and define MD to be the
partition {u1, . . . , un} of the set of variables of sort D satisfying
the following condition: for all i ∈ [1, . . . , n] and for all variables
x and y of sort D, x ∈ ui and y ∈ ui iff x = y ∈ CV . For each
u ∈ MD , let [|u|] denote a fixed representative member of u. Now
we define Mx to be the unique u ∈MD such that x ∈ u. Note that
the equivalence class containing the variable ⊥D is the singleton
{⊥D} because CV contains disequalities differentiating ⊥D from
every variable of sort D.

We would like to define f(u) for an arbitrary element u ∈MD .
If (f([|u|]) = [|v|]) ∈ CV for some v ∈ MD , then we define
Mf (u) = v. However, if (f([|u|]) = [|v|]) �∈ CV for any v ∈ MD ,
then we must pick some element of MD to be f(u). The main
difficulty is that the interpretation of the function f is tied to the

interpretation of the relation · f−→ · f−→ ·. We must be careful not
to define f(u) to be inconsistent with the constraints in CV . To
help us in this task, we define for each u ∈ MD , the relation

Ru = {(v, w) ∈MD ×MD | [|u|] f−→ [|v|] f−→ [|w|] ∈ CV }.

LEMMA 1. For all u ∈MD , the following facts hold:

1. (u, u) ∈ Ru.
2. Ru is reflexive over dom(Ru).
3. Ru is transitive.
4. Ru is totally-ordered over dom(Ru).

With the aid of Ru, we now provide a complete interpretation for
Mf . Let u be an arbitrary element of MD . If (f([|u|]) = [|v|]) ∈
CV for some v ∈ MD , then define Mf (u) = v. Otherwise, if
Ru = {(u, u)} then define Mf (u) = u. Otherwise, define Mf (u)
to be the least element, with respect to Ru, of dom(Ru) \ {u}.

[INV]
f(t′) = t

∀x ∈ f−1(t).α

α[x/t′]

[BTWN]

t1
f−→ t

f−→t2
∀x ∈ Btwn(f, t1, t2).α

α[x/t]

Figure 14. Quantifier instantiation

Lemma 1 guarantees that defining f in the last two cases does not
create any contradictions with the context CV . The interpretation

for · f−→· f−→· is now defined as

u
f−→v

f−→w ⇔ [|u|] f−→ [|v|] f−→ [|w|] ∈ CV .

In addition to defining the interpretation for each function f
of sort D → D, we also need to define an assignment Mg :
MD → ME for every function g whose sort is D → E where
D and E are different. Let u be an arbitrary element of MD .
If (g([|u|]) = [|v|]) ∈ CV for some v ∈ ME , then we define
Mg(u) = v. Otherwise, we define Mg(u) = {⊥E}.

LEMMA 2. The model M defined above satisfies M |= CV .

Based on Lemma 2, we obtain the following theorem.

THEOREM 2. Let ϕ ∈ Formula be quantifier-free. Then the pro-
cedure described by the rules in Figures 12 and 13 terminates and
decides the satisfiability of ϕ.

In Section 3.3, we extend our decision procedure to the full logic
with quantification. The following lemma captures an important
property of the rules in Figures 12 and 13 that is used to prove
the completeness of our decision procedure for the full logic.

LEMMA 3. Let X be any collection of facts of the form t1 = t2.

Let Y be any collection of facts of the form t1
f−→t2

f−→ t3. Let C be
any consistent and saturated context. If C entails

�
(X ∪ Y), then

one of the following must hold:

1. t1 = t2 ∈ C for some t1 = t2 ∈ X.

2. t1
f−→t2

f−→ t3 ∈ C for some t1
f−→t2

f−→t3 ∈ Y .

3.3 Decision procedure for quantified logic

We now extend our decision procedure to handle quantified facts
by adding the rules in Figure 14. The first rule [INV] handles
quantification over the set constructor f−1(t); if the current context
contains the fact f(t′) = t then this rule instantiates the body of
the quantifier at t′. The rule [BTWN] works in similarly for the set
constructor Btwn(f, t1, t2).

Our decision procedure terminates even after adding the quan-
tifier instantiation rules in Figure 14 because the input formula is
required to be sort-restricted. There is a partial-order on the set
of sorts and whenever a quantifier ∀x ∈ S.ϕ is instantiated, any
new terms generated are of a sort less than the sort of x. By well-
founded induction over the partial-order on the set of sorts, we can
show that for each sortD there is a decision depth in the backtrack-
ing search beyond which the number of terms of sort D remains
unchanged. In fact, for an input formula ϕ, the number of terms of
sortD generated by our algorithm is bounded by |ϕ| ·K|D|, where
K is the number of function symbols. Since the number of sorts
is finite, the procedure will terminate. Since the size of the model
constructed in Section 3.2 is linear in the number of terms and the
number of terms is linear in the size of the formula, we have the
following theorem about the complexity of our logic.

THEOREM 3. The satisfiability problem for the logic LISBQ is NP-
complete.

177

The local soundness of the rules [INV] and [BTWN] is obvious.
For completeness, we appeal to Lemma 3. Consider a context C
that is consistent and saturated with respect to all the rules in
Figures 12, 13, and 14. Let D1 be the conjunction

�
t1 �= t2 for

all t1 and t2 such that t1 = t2 �∈ C. Let D2 be the conjunction
�¬t1 f−→ t2

f−→t3 for all t1, t2, and t3 such that t1
f−→t2

f−→ t3 �∈ C.
Lemma 3 guarantees that C ∧ D1 ∧ D2 is satisfiable, which in
turn implies that all the quantified facts in C have been instantiated
enough. Therefore, a model for the set of literals in C is a model
for all the facts inC. We have already shown, earlier in this section,
how to construct a model for the set of literals in C. Thus, we have
the following theorem.

THEOREM 4. Let ϕ ∈ Formula . Then the procedure described
by the rules in Figures 12, 13, and 14 terminates and decides the
satisfiability of ϕ.

It is important to note that set-bounded quantification is not
essential for either termination or completeness of our decision
procedure. Termination is ensured by the sort-restricted property.
Completeness could be ensured simply by instantiating quantified
facts on all ground terms of the appropriate sort. However, such
a procedure would lead to a huge number of instantiations and
would consequently be very expensive in practice. Set-bounded
quantification allows us to instantiate quantifiers lazily and yields
an efficient implementation.

3.4 Expressiveness

In this section, we show various examples to illustrate the expres-
siveness of our logic.

Cyclic lists. We specify that hd points to the head of a cyclic
list as follows:

hd �= null ∧ f(hd)
f−→hd

Suppose each element of this list contains a field data. The invari-
ant for a loop that iterates, using a variable i, over this list setting
the data field to 0 is specified as follows:

∀u ∈ Btwn(f, f(hd), i) \ {i}. data(u) = 0

Sortedness. Suppose hd points to a null-terminated list. The
invariant that the values stored in the data field of the list members
are sorted is specified as follows:

∀u ∈ Btwn(f, f(hd), null) \ {null}.
∀v ∈ Btwn(f, u, null) \ {null}. data(u) ≤ data(v)

List of lists. Suppose hd is pointing to a null-terminated list
linked by the field f and each member of the list has a field l that
points to a distinct null-terminated list linked by the field g. The
disjointness of these lists is specified as follows:

∀u ∈ Btwn(f, hd, null) \ {null}.
∀v ∈ Btwn(f, hd, null) \ {null}.

u = v ∨ ∀w ∈ Btwn(g, l(u), null) \ {null}.¬l(v) g−→w

The ability to specify such invariants is useful for verifying systems
software that uses composite data structures (Berdine et al. 2007).

List union. Suppose a, b, and c are null-terminated lists con-
structed using linking fields f1, f2, and f3 respectively. We specify
that a is the union of b and c as follows:

∀u ∈ Btwn(f1, a, null).b
f2−→u ∨ c

f3−→u

∀u ∈ Btwn(f2, b, null).a
f1−→u

∀u ∈ Btwn(f3, c, null).a
f1−→u

This invariant is useful in proving the correctness of the in-place
list reversal program.

4. Revisiting the motivating example
In this section, we revisit the example presented in Section 2 and
describe the various invariants required to prove the absence of
double-free property. We show that these invariants can be naturally
expressed using the simple logic we presented in Section 3. To
easily follow the specifications, the reader should reexamine the
program in Section 2.

For the purpose of illustration, we consider programs written
in a subset of C that is simple yet rich enough to express the pro-
gram in Section 2. The language precludes performing arithmetic
on pointers, taking the address of (using the & operator) a stack
variable or a field inside a structure, and the use of arrays, unions
and nested structures. Before we describe our specifications, we
briefly describe the memory model and how we define the opera-
tional semantics of the program.

• The memory is partitioned into a set of maps f1, f2, . . . , fn,
one corresponding to each field declared in the program, and
indexed by the objects or references. Without loss of generality,
we assume that the field names are globally distinct.

• The value of the C expression x->f is obtained by looking up
the map f at the index obtained by evaluating x. An update
x->f = y updates the map f at the location obtained by evalu-
ating x, with the value obtained by evaluating y.

4.1 Sorts

To generate a well-sorted formula from a program, we assign sorts
to the different fields and variables in the program. The sorts are
generated by analyzing the type structure of the program. Initially,
a sort is assigned to each distinct type in the program. If two types
can be the target of a void∗ field (e.g. data in our example), we
merge the sorts for the two types. For our example, the set of sorts
D consists of at least the following sorts:

D ≡ {Integer , P dlink node, P 〈logentry, channel〉,
P channel log, P FILE, P char, . . .}

P dlink node is the sort for a pointer to a dlink node. The sort
P 〈logentry, channel〉 is for a pointer to either logentry or
channel, unified due to the presence of the polymorphic data
field in dlink node. Given the sort set D, we can assign sorts to
the different variables and fields in the program, by substituting the
sort corresponding to each type in the program.

For each sort D ∈ D, we maintain a map TypeD : D →
Integer , that maps an object of sort D to an integer constant
denoting the dynamic type of object. We introduce a constant for
each type, by prefixing a @ to the type name (e.g. @logentry for
an object of type logentry, @channel log for an object of type
channel log). The dynamic type of each object is assigned during
the allocation of the object. All the casts in the program are checked
to see that they match the dynamic type of the objects.

Finally, the partial order ≺ on D is generated by analyzing the
signature of the fields in the program, apart from the linking fields
like next and prev. For each field f : D → E in the program, we
add the constraint that E ≺ D. The partial order for our program
is the following:

P 〈logentry, channel〉 ≺ P dlink node
P char ≺ P 〈logentry, channel〉
Integer ≺ P 〈logentry, channel〉
P channel log ≺ P 〈logentry, channel〉
Integer ≺ P channel log
P FILE ≺ P channel log

4.2 Specifications using g−1 set constructor

The g−1 set constructor is useful for expressing both non-aliasing
of heap objects and type invariants.

178

To prove the absence of double-free property in our example,
we need to ensure non-aliasing of various fields of the same sort
(e.g. the char∗ fields channel name, filename, etc.). For a field
f, and a set of fields F, we first define a macro NotAliased(f, F, u)
as follows:

NotAliased(f, F, u) ≡
f−1(f(u)) = {u} ∧ �

g∈F g
−1(f(u)) = {}

This macro specifies that the object f(u) pointed to by a given
field f, cannot be also pointed to by any of the fields in F. The set
F usually contains a set of fields that have the same sort as f. Note
that we have used set equality as a syntactic sugar for the more
elaborate formula using bounded quantification.

We can use this macro to specify that any object pointed to by
the char∗ field channel name is distinct from the objects pointed
to by the other char∗ fields as follows:

∀u ∈ TypeP 〈logentry,channel〉
−1(@logentry).

NotAliased(channel name, {filename, name, topic}, u)
It means for any object u of sort P 〈logentry, channel〉 with

a dynamic type logentry, the object channel name(u) of sort
P char, can’t be pointed to by any of the other char∗ fields.

Observe that the use of TypeD
−1(@T) allows us to describe type

invariants for any given dynamic type T within the sort D, such as
logentry in the previous example.

4.3 Specifications using Btwn(f, x, y) set constructor

Let us now illustrate the use of the set constructor Btwn(f, x, y) to
describe properties of linked lists.

• Disjointness of lists: To specify that the two linked lists have
disjoint elements, we can exploit the fact that the nodes in the
two linked lists have different dynamic types:

∀u ∈ Btwn(next, log list.head, null) \ {null}.
TypeP 〈logentry,channel〉(data(u)) = @logentry

∀u ∈ Btwn(next, channel list.head, null) \ {null}.
TypeP 〈logentry,channel〉(data(u)) = @channel

These invariants describe that for any node u in the linked list
between log list.head (respectively, channel list.head)
and null, but excluding null, the type of the object pointed to
by data(u) is @logentry (respectively, @channel). By the
property of functions, this ensures that the set of nodes in the
two lists are disjoint. The interesting nature of this specification
is that we can specify the disjointness of the two lists by stating
an invariant locally for each list.

• Non-aliasing for lists: We also need to ensure that each node in
each linked list points to a distinct object. We use both the set
constructors in the following specification:

∀u ∈ Btwn(next, log list.head, null) \ {null}.
NotAliased(data, {}, u)

∀u ∈ Btwn(next, channel list.head, null) \ {null}.
NotAliased(data, {}, u)

The first invariant describes that for any node u in the linked
list between log list.head and null, but excluding null, the
object pointed to by data(u) has exactly one object (namely u)
pointing into it using the data field. This ensures that the data
field for each object in the list points to a distinct object. The
second invariant states this property for the second list.

• Data structure invariant: In Figure 4, the routines clear logs
and rem channel delete pointers from the doubly-linked lists
using the dlink delete routine. The correctness of the routine
relies on the input list being a doubly-linked list. We use the

following macro to describe the invariants for a generic acyclic
doubly-linked list DlistInv(dlist, next, prev):

DlistInv(dlist, next, prev) ≡
∧ prev(dlist.head) = null
∧ next(dlist.tail) = null
∧ Btwn(next, dlist.head, null) =

Btwn(prev, dlist.tail, null)
∧ null ∈ Btwn(next, dlist.head, null)
∧ ∀u ∈ Btwn(next, dlist.head, null) \ {null}.

u = dlist.head ∨ next(prev(u)) = u
∧ ∀u ∈ Btwn(prev, dlist.tail, null) \ {null}.

u = dlist.tail ∨ prev(next(u)) = u

The first two invariants are self-explanatory. The third invariant
states that the set of objects reachable following the next field
from the dlist.head is the same as the set reachable following
the prev field from the dlist.tail. The fourth invariant states
that the lists obtained by following the next and prev fields are
both acyclic. The last two invariants constrain the fields next
and prev to be fields of a doubly-linked list.

Although the invariant looks complex, these data structure in-
variants have to be written only once for each type of doubly-
linked list. and then instantiated for the different lists (e.g.
log list and channel list) in the program. This predicate
can be reused across all other programs that manipulate acyclic
doubly-linked lists as well.

In addition to these invariants, we also need invariants stating
that all objects reachable from the two lists are allocated. Moreover,
for the loops iterating over the lists, we need to specify that the
iterator (e.g. ptr in clear logs) points to an object in the list. All
these invariants are expressible in our logic.

4.4 Sort-restriction

To enable the algorithm described in Section 3.3 to terminate on
the above queries, we need to ensure that the formulas are sort-
restricted as well. In this section, we show that almost all the
formulas in this section meet the requirement.

Let us consider the following invariant, described in Section 4.3.

∀u ∈ Btwn(next, channel list.head, null) \ {null}.
TypeP 〈logentry,channel〉(data(u)) = @channel

For this formula, the variable u of sort P dlink node appears as
a subterm of data(u), which has a sort P 〈logentry, channel〉
and a subterm of TypeP 〈logentry,channel〉(data(u)), which has a sort
Integer . In both cases, the sorts of the subterms are less than the
sort for u, according to the partial order ≺ described in Section 4.1.

However, consider the following invariant also described in the
previous section:

∀u ∈ Btwn(next, dlist.head, null) \ {null}.
u = dlist.head ∨ next(prev(u)) = u

In this formula, u appears as a strict subterm of prev(u) and
next(prev(u)), both of which have the same sort as u. In fact,
any legal sort assignment would equate the sorts for the terms
next(prev(u)) and u, and therefore the formula can not be sort-
restricted for any sort assignment.

It turns out that for this example (and also for the rest of the
examples we consider this paper), the only two formulas that do not
meet the sort restrictions are the last two invariants of DlistInv.
This is not surprising because the invariant constrains the two fields
next and prev that form singly-linked lists. In Section 6, we
describe our solution for ensuring that the algorithm terminates on
such ill-behaved formulas as well.

179

[ORDER1] ∀x, y, z : {Reach(f, x, y, y), Reach(f, x, z, z)}
Reach(f, x, y, y) ∧ Reach(f, x, z, z) ⇒
Reach(f, x, y, z) ∨ Reach(f, x, z, y)

[TRANSITIVE1] ∀x, y, z : {Reach(f, x, y, y), Reach(f, y, z, z)}
Reach(f, x, y, y) ∧ Reach(f, y, z, z) ⇒
Reach(f, x, z, z)

Figure 15. Encoding inference rules using axioms with triggers

5. Implementation
We have created an initial prototype of the decision procedure
framework over existing SMT solvers, where we encode our in-
ference rules using universally-quantified first-order axioms with
appropriate matching triggers. Our implementation translates an-
notated C programs into the BoogiePL intermediate language (De-
Line and Leino 2005). Each procedure in a BoogiePL program is
translated into a verification condition by the Boogie verifier (Bar-
nett and Leino 2005). Finally, the verification conditions are proved
by the SIMPLIFY (Detlefs et al. 2005) and Z3 (de Moura and
Bjorner 2007) automated theorem provers.

Figure 15 gives the axioms encoding two illustrative rewrite
rules from Figure 13. We use predicates Reach(f, x, y, z) and

In(x, y) to stand for the relations x
f−→y

f−→z and ∈ respectively. To
avoid the use of excessive parentheses, we use the convention that
⇒ has lower precedence than ∧ and ∨. For each axiom, a set of
triggers is specified using curly braces. Each trigger is a collection
of terms enclosed within {·}, which together must refer to all
of the universally-quantified variables. The axiom is instantiated
for those terms which if substituted for the quantified variables
in the trigger terms result in terms that are all present in ground
formulas. Typically, each rewrite rule results in an axiom in which
the conjunction of the literals above the line implies the disjunction
of the literals below the line and the terms in the literals above the
line appear in the trigger.

In addition to encoding the rules of our decision procedure
as axioms, we also provide triggers for the universally-quantified
assertions in the program. To encode the reasoning for the rule
[BTWN] (Figure 14), we infer a trigger {Reach(f, t1, x, t2)} for
the formula ∀x ∈ Btwn(f, t1, t2).α. To encode the reasoning for
the rule [INV], we infer a trigger In(x, f−1(t)) for the formula
∀x ∈ f−1(t).α. To generate the term In(x, f−1(t)), we add the
following axiom:

[ININV] ∀y : {f(y)} In(y, f−1(f(y)))

We automatically generate the appropriate triggers for any universally-
quantified assertions that belongs to the sort-restricted fragment of
our logic.

There are many advantages to implementing a rewriting-based
decision procedure using first-order axioms over SMT solvers:

1. First, it allows us to quickly create an initial prototype for
evaluation.

2. Second, it allows us to leverage efficient ground reasoning for
equality, uninterpreted functions and arithmetic.

3. Finally, we can leverage the advances in matching based quan-
tifier instantiation using triggers (Detlefs et al. 2005; de Moura
and Bjorner 2007). This is useful not only for the implementa-
tion of the rewrite rules, but also allows us to express quantified
invariants outside our logic in the rare cases when required. We
present the need for such invariants, and our solution to deal
with them in Section 6.

However, our approach has some drawbacks over a custom im-
plementation. First, matching in typical SMT solvers is expensive.
Second, a custom implementation of our decision procedure would

Example SIMPLIFY SIMPLIFY Z3
Old Time (s) New Time (s) Time (s)

iterate 1.8 1.4 1.5
iterate acyclic 1.7 1.5 1.43

slist add 1.5 1.3 1.36
reverse acyclic 2.0 1.4 1.37

slist sorted insert 16.4 3.1 4.85
dlist add 38.9 7.1 1.75

dlist remove 45.4 2.4 1.65
allocator * (901.8) 57.1 2.0
list appl * 200.1 30.22
muh free * * 8.2

Figure 16. Results of assertion checking. The experiments were
conducted on a 3.6GHz, 2GB machine running Windows XP. A
timeout (indicated by *) of 5000 seconds was set for each experi-
ment. For allocator, time inside the parenthesis denotes the run-
time after manual decomposition.

allow us to perform additional optimizations, e.g. ordering the var-
ious rules to detect unsatisfiability faster in common cases.

6. Evaluation
We have used the decision procedure presented in this paper in
the tool HAVOC (Chatterjee et al. 2007), and performed a set of
preliminary experiments for verifying small to medium sized C
benchmarks. HAVOC is a tool for checking properties of heap-
manipulating C programs. The memory model in HAVOC accounts
for additional complications of low-level C programs, including
pointer arithmetic, internal pointers, nested structures, unions and
arrays. The main differences over the memory model presented
in this paper are: (i) each expression evaluates to a pointer type
ptr : (Obj, int) consisting of an object and an offset; and (ii)
there is a single map Mem : ptr → ptr for the entire memory. This
low-level model is required to maintain soundness across pointer
arithmetic and internal pointers in C. HAVOC also uses a alternate
variant of the reachability predicate presented in this paper, called
well-founded reachability predicate (Lahiri and Qadeer 2006; Chat-
terjee et al. 2007).1 The rules presented in the paper were suitably
extended to account for this memory model and reachability predi-
cate.

Figure 16 presents a set of C benchmarks that manipulate
singly and doubly-linked lists. These benchmarks use pointer
arithmetic, internal pointers into objects and cast operations in
addition to linked data structures. The examples iterate and
iterate acyclic respectively initialize the data elements of a
cyclic and acyclic lists respectively; slist add adds a node to a
singly linked list; reverse acyclic is a routine for in-place rever-
sal of an acyclic list. The example slist sorted insert inserts
a node into a sorted (by the data field) linked list. dlist add and
dlist remove are the insertion and deletion routines for cyclic
doubly-linked lists. allocator is a low-level custom storage allo-
cator; it maintains a list of freed regions in an object and returns
a region whose size satisfies the clients request. list appl is a
simple application with multiple doubly-linked lists, parent point-
ers, and uses the primitive doubly-linked list operations. muh free
is a simplified version of the muh example presented in Section 2.
The examples range from 10 to 150 lines of C code. For all these
examples, we check a set of partial correctness properties including

1 The well-founded reachability predicate also enjoys most of the properties

of x
f−→ y

f−→ z, such as closure under weakest-precondition, and a
rewriting-based decision procedure for the ground fragment. The results
are present in a recent technical report (Lahiri and Qadeer 2007b).

180

(but not limited to) the implicit memory-safety requirements. For
instance, we check that the output list of slist sorted insert
is sorted; for reverse acyclic, we verify that the input and the
output lists have the same nodes; for allocator, we verify that
the region returned by the application was already present in the
free list and meets the size requirement; for list appl, we verify
that the disjoint lists satisfies certain data invariants; finally for muh
we check the absence of double-free property.

In an earlier work (Chatterjee et al. 2007), we verified a subset
of the examples in Figure 16 using an incomplete axiomatization
of the reachability predicate, with universally quantified invariants.
For most of the examples, we had to write down the triggers
for the quantified invariants carefully; the theorem provers were
quickly overwhelmed without such restrictions. The second column
in Figure 16 denotes the runtime using our previous approach,
using the SIMPLIFY theorem prover (reported from (Chatterjee
et al. 2007)). The third and the fourth column denotes the runtime
using the algorithm described in this paper (using SIMPLIFY and
Z3 as the SMT provers respectively); for these cases, the triggers
for the quantified invariants (with a couple of exceptions below)
were generated automatically, using the scheme of Figure 15.

The results clearly indicate that the new algorithm outper-
forms the older axiomatization in terms of efficiency. We can
now solve several new examples (list appl, muh free) that
were not amenable to be solved by our previous approach. For
the allocator example, the time reported inside the parenthesis
(901.8 seconds) denotes the time taken to verify the example with
our previous approach, using additional triggers and manual de-
composition of the proof into two VCs — without these changes
the example did not verify within the time limit. It illustrates the
brittleness of our previous approach. The improved results with
Z3 (over SIMPLIFY) also indicate that the recent advances in SMT
solvers are crucial to scale better. However, the recent advances
alone are not sufficient to solve these problems (as we learned from
our failed attempts with Z3 with our old axiomatization). In most
of these cases, the theorem provers quickly ran out of memory
due to large number of (often useless) instantiations of the quanti-
fiers. However, the real gain (not evident from the results) was in
the predictability of the new approach. In our experience, most of
the failed proofs in our verification effort with the new framework
points at insufficient assertions or bugs in the program.

For these examples, the main source of formulas that do not fit
the sort-restricted fragment of LISBQ comes from specification
of the doubly-linked list invariant. For the following doubly-linked
list assertion mentioned in Section 2:

∀u ∈ Btwn(next, dlist.head, null) \ {null}.
u = dlist.head ∨ next(prev(u)) = u

our solution has been to add a trigger {prev(u)} to ensure that
this assertion never generates a new term prev(t) after instantiat-
ing u with t. Note that even though a new term next(prev(t))
could still be generated after instantiation, asserting this literal
next(prev(t)) = t in the context would cause this term to be
equated with an existing term t. This restriction ensures that the
instantiations terminates even in the presence of such formulas.

7. Related work
In this work, we have augmented first-order SMT solvers with use-
ful theories for precise verification of heap-manipulating programs.
We discuss the various works that are similar in spirit to our goal
of automatically verifying such programs.

Nelson (1983) presents a ground logic with the ternary predi-

cate x
f−→
z
y, and an axiomatization for the logic. No claim is made

about the completeness of the axiomatization, but the paper pro-

vides the weakest precondition for the predicate. Rakamarić et al.
(2007) provide a rewriting-based decision procedure for the ground

fragment of our logic with x
f−→ y

f−→ z. However, they do not pro-
vide the weakest precondition for the predicate, and are imprecise
across updates to the linking fields. In addition, the rewrite rules in
our decision procedure are fewer and simpler resulting in a simpler
proof of completeness. Balaban et al. (2005) present a logic that
allows reachability over singly-linked lists to be expressed. Their
decision procedure is based on a small-model property of the logic.
In all these cases, the logics are strictly less expressive than ours
since they do not have any support for quantifiers — as a result
they cannot express most of the properties that we discuss in this
paper.

Ranise and Zarba (2006) present a decidable ground logic that
combines reachability constraints with arithmetic. But they provide
no implementation to evaluate the feasibility of their approach.
Moreover, the logic can’t express many properties of collections
(such as sortedness of lists), since it does not provide support for
quantifiers. Kuncak and Rinard (2005) provide a logic with sets for
reasoning about data structures. Unlike our logic, their logic does
not allow sets to be constructed from the reachability predicate.

There have been several other attempts at first-order axiomatiza-
tion of reachability (Lev-Ami et al. 2005; Lahiri and Qadeer 2006),
which are incomplete. McPeak and Necula (2005) use decidable
fragment of first-order logic augmented with arithmetic on scalar
field to specify properties of data structures. However, they do not
provide any theories for recursive predicates like reachability, and
rely on user provided ghost variables to express properties of data
structures — the updates to these ghost variables have to be inserted
manually by the user to generate the verification conditions. How-
ever, they demonstrate completeness of quantifier instantiation for
certain syntactic class of formulas that could help extend our deci-
sion procedure for doubly-linked list assertions.

Unlike the papers discussed so far that have essentially used
first-order logic for reasoning about linked data structures, other
approaches have used higher-order logic for the same purpose. The
pointer assertion logic engine (PALE) (Møller and Schwartzbach
2001) uses monadic second-order logic to express properties in-
volving reachability. Although the logic can express more complex
shape properties than that allowed by our logic, the logic precludes
the use of integer valued functions and the decision procedure for
the logic has high complexity. The work of Yorsh et al. (2006) on
the logic of reachable patterns is in a similar direction. They pro-
vide a logic for expressing complex shape properties, show how
to generate precise verification conditions and provide a decision
procedure by translation to monadic second-order logic.

Separation logic (Reynolds 2002) has been proposed to reason
about heap-manipulating programs. Berdine et al. (2004) describe a
rewrite-based decision procedure for a fragment of separation logic
with linked lists. Among other things, it is not clear how to harness
efficient arithmetic theory reasoning in this framework.

Automatic computation of (shape) invariants for programs with
linked data structures (shape analysis) has also received consider-
able attention in recent years. This work is orthogonal and comple-
mentary to our work and we only discuss it briefly. Most of this
work is based on specialized abstract domains for the heap (Lev-
Ami and Sagiv 2000; Distefano et al. 2006) or use predicate ab-
straction (Graf and Saı̈di 1997) with decision procedures for log-
ics with reachability (Balaban et al. 2005; Rakamarić et al. 2007;
Lahiri and Qadeer 2006). Better decision procedures are crucial
for the latter approaches, but they can also be used to improve the
imprecision of the underlying abstract domain in the former ap-
proaches (Lev-Ami et al. 2005).

181

8. Conclusions
In this paper, we revisit the problem of precise verification of heap-
manipulating programs using first-order SMT solvers. To solve this
problem, we present the Logic of Interpreted Sets and Bounded
Quantification for specifying properties of heap-manipulating pro-
grams and a verifier for proving these properties. The verification
is fully precise within a procedure and loop body, and is scalable
across typical loop-free code fragments found in practice.

We are currently working on extending our work in two direc-
tions: First, we would like to extend our logic to support range of
indices of an array as another interpreted set constructor — this
would allow reasoning about rich properites of the most common
data structures (arrays and lists) in a single framework. Second,
we would like to perform abstraction across loop and procedure
boundaries to reduce the annotation requirement by automatically
inferring many annotations. The recent advances in SMT solvers
and the results of this paper that leverage these advances have cre-
ated a strong foundation for carrying forward this work.

Acknowledgments
We would like to thank Nikolaj Bjorner and Leonardo de Moura
for help with Z3 and Amit Goel and Sava Krstić for suggesting
improvements to our decision procedure.

References
I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate ab-

straction. In Verification, Model checking, and Abstract Interpretation
(VMCAI ’05), LNCS 3385, pages 164–180, 2005.

T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Programming Language Design and
Implementation (PLDI ’01), pages 203–213, 2001.

M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured
programs. In Program Analysis For Software Tools and Engineering
(PASTE ’05), pages 82–87, 2005.

M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview. In Construction and Analysis of Safe, Secure and
Interoperable Smart Devices, LNCS 3362, pages 49–69, 2005.

J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and
H. Yang. Shape analysis for composite data structures. In Computer
Aided Verification (CAV ’07), LNCS 4590, pages 178–192, 2007.

J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of
separation logic. In FSTTCS ’04: Foundations of Software Technology
and Theoretical Computer Science, LNCS 3328, pages 97–109, 2004.

E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.
Springer-Verlag, 1997.

S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić. A reachability
predicate for analyzing low-level software. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’07), LNCS 4424,
pages 19–33, 2007.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Computer Aided Verification (CAV
’00), LNCS 1855, pages 154–169, 2000.

L. de Moura and N. Bjorner. Efficient Incremental E-matching for SMT
Solvers. In Conference on Automated Deduction (CADE ’07), LNCS
4603, pages 183–198, 2007.

R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for
checking object-oriented programs. Technical Report MSR-TR-2005-
70, Microsoft Research, 2005.

D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based
on separation logic. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’06), LNCS 3920, pages 287–302, 2006.

B. Dutertre and L. M. de Moura. A Fast Linear-Arithmetic Solver for
DPLL(T). In Computer Aided Verification (CAV ’06), LNCS 4144, pages
81–94, 2006.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In Programming Language
Design and Implementation (PLDI’02), pages 234–245, 2002.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. In Programming Language Design and Implementation (PLDI
’05), pages 213–223. ACM, 2005.

S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In
Computer-Aided Verification (CAV ’97), LNCS 1254, pages 72–83, June
1997.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Principles of Programming Languages (POPL ’02), pages 58–70, 2002.

V. Kuncak and M. C. Rinard. Decision procedures for set-valued fields.
Electr. Notes Theor. Comput. Sci., 131:51–62, 2005.

R. P. Kurshan. Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeton University Press, 1995.

S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists.
In Principles of Programming Languages (POPL ’06), pages 115–126,
2006.

S. K. Lahiri and S. Qadeer. Back to the Future: Revisiting Precise Program
Verification using SMT Solvers. Technical Report MSR-TR-2007-88,
Microsoft Research, 2007a.

S. K. Lahiri and S. Qadeer. A decision procedure for well-founded reacha-
bility. Technical Report MSR-TR-2007-43, Microsoft Research, 2007b.

T. Lev-Ami, N. Immerman, T. W. Reps, S. Sagiv, S. Srivastava, and
G. Yorsh. Simulating reachability using first-order logic with applica-
tions to verification of linked data structures. In Conference on Auto-
mated Deduction (CADE ’05), LNCS 3632, pages 99–115, 2005.

T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static analy-
ses. In Static Analysis Symposium (SAS ’00), LNCS 1824, pages 280–
301, 2000.

S. McPeak and G. C. Necula. Data structure specifications via local equality
axioms. In Computer-Aided Verification (CAV ’05), LNCS 3576, pages
476–490, 2005.

Anders Møller and Michael I. Schwartzbach. The pointer assertion logic
engine. In Programming Language Design and Implementation (PLDI
’01), pages 221–231, 2001.

Muh. Available at http://muh.sourceforge.net/.

G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems
(TOPLAS), 2(1):245–257, 1979.

Greg Nelson. Verifying reachability invariants of linked structures. In
Principles of Programming Languages (POPL ’83), pages 38–47, 1983.

Z. Rakamarić, J. Bingham, and A. J. Hu. An inference-rule-based decision
procedure for verification of heap-manipulating programs with mutable
data and cyclic data structures. In Verification, Model Checking, and Ab-
stract Interpretation (VMCAI ’06), LNCS 4349, pages 106–121, 2007.

S. Ranise and C. G. Zarba. A theory of singly-linked lists and its extensible
decision procedure. In Software Engineering and Formal Methods
(SEFM ’06), pages 206–215, 2006.

J. C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Logic in Computer Science (LICS ’02), pages 55–74, 2002.

Satisfiability Modulo Theories Library (SMT-LIB). Available at
http://goedel.cs.uiowa.edu/smtlib/.

G. Yorsh, A. M. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A
logic of reachable patterns in linked data-structures. In Foundations
of Software Science and Computation Structures (FoSSaCS ’06), LNCS
3921, pages 94–110, 2006.

182

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

