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Abstract

We present the first verification of full functional correctness for
a range of linked data structure implementations, including muta-
ble lists, trees, graphs, and hash tables. Specifically, we present the
use of the Jahob verification system to verify formal specifications,
written in classical higher-order logic, that completely capture the
desired behavior of the Java data structure implementations (with
the exception of properties involving execution time and/or mem-
ory consumption). Given that the desired correctness properties in-
clude intractable constructs such as quantifiers, transitive closure,
and lambda abstraction, it is a challenge to successfully prove the
generated verification conditions.

Our Jahob verification system uses integrated reasoning to split
each verification condition into a conjunction of simpler subformu-
las, then apply a diverse collection of specialized decision proce-
dures, first-order theorem provers, and, in the worst case, interac-
tive theorem provers to prove each subformula. Techniques such as
replacing complex subformulas with stronger but simpler alterna-
tives, exploiting structure inherently present in the verification con-
ditions, and, when necessary, inserting verified lemmas and proof
hints into the imperative source code make it possible to seam-
lessly integrate all of the specialized decision procedures and theo-
rem provers into a single powerful integrated reasoning system. By
appropriately applying multiple proof techniques to discharge dif-
ferent subformulas, this reasoning system can effectively prove the
complex and challenging verification conditions that arise in this
context.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ing of Programs]: Specifying and Verifying and Reasoning about
Programs
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1. Introduction

Linked data structures such as lists, trees, graphs, and hash tables
are pervasive in modern software systems. But because of phenom-
ena such as aliasing and indirection, it has been a challenge to de-
velop automated reasoning systems that are capable of proving im-
portant correctness properties of such data structures.

1.1 Background

In principle, standard specification and verification approaches
should work for linked data structure implementations. But in prac-
tice, many of the desired correctness properties involve logical
constructs such transitive closure and quantifiers that are known
to be intractable for automated reasoning systems [36, 45]. Re-
searchers have therefore focused on more tractable goals: verify
some (but not all) of the desired correctness properties [6, 18, 28,
42,47, 49, 50, 74, 88, 89], work with programs that do not ma-
nipulate recursive linked data structures [29, 81], or use finiti-
zation to check correctness properties within a bounded analysis
scope [15,20,38,70,77,78]. While systems exist that can specify,
and in principle even potentially verify, the full range of desired
data structure correctness properties [3,7,53,82], to the best of our
knowledge no previous system has actually done so (see Section 8).

1.2 The Result

This paper presents our experience using integrated reasoning in
the Jahob verification system to verify a diverse set of challeng-
ing linked data structure implementations. Our proofs establish the
full functional correctness of the data structure implementations
— Jahob verifies formal specifications that completely capture
the desired behavior of the data structure implementations (with
the exception of properties involving execution time and/or mem-
ory consumption). The source code for the specifications, the data
structures, and the Jahob system itself are all publicly available at
http://javaverification.org [1]. To the best of our knowl-
edge, this is the first verification of full functional correctness for
our target class of linked data structures.

1.3 Basic Specification Approach

Our specifications use abstract sets and relations to characterize the
abstract state of the data structure. A verified abstraction function
establishes the correspondence between the concrete values that the
implementation manipulates when it executes and the abstract sets
and relations in the specification. Method preconditions and post-
conditions written in classical higher-order logic use these abstract
sets and relations to express externally observable properties of the
data structures. We find classical higher-order logic to be effective
for specifying data structures because it naturally supports a num-
ber of constructs:

e quantifiers for invariants in programs that manipulate an un-
bounded number of objects,



e a notation for sets and relations, which we use to concisely
specify data structure interfaces,

e transitive closure, which is essential for specifying important
properties of recursive data structures,

e the cardinality operator, which is suitable for specifying numer-
ical properties of data structures, and

e lambda abstraction, which can represent definitions of per-
object specification fields and is useful for parameterized short-
hands.

Sets and relations as specification variables enable developers to
soundly hide data structure implementation details and provide
intuitive method interfaces. Clients can use such interfaces to check
that the data structure is used correctly and to reason about the
effect of data structure operations.

1.4 Basic Verification Approach

Jahob proves the desired correctness properties by first generating
verification condition formulas, then proving these formulas. The
verification conditions are proof obligations that, together, ensure
that the program respects method preconditions, postconditions, in-
variants, and preconditions of operations such as array accesses and
pointer dereferences. The verification condition generator requires
loop invariants. These can be supplied by the developer or, in some
cases, by a shape analysis [88].

The verification condition formulas are expressed in an unde-
cidable fragment of higher-order logic and are therefore beyond
the reach of any automated decision procedure. Simple attempts
to improve the tractability by limiting the expressive power of the
logic fail because some of the correctness properties involve inher-
ently intractable constructs such as quantifiers, transitive closure,
and lambda abstraction.

1.5 Technical Insights

Upon examination, however, it becomes clear that while the verifi-
cation conditions as a whole can be quite complex, they can also be
represented as a conjunction of a large number of smaller subfor-
mulas, many of which are straightforward to prove. Moreover, the
remaining subformulas, while containing a diverse group of pow-
erful logical constructs, often have enough structure to enable the
successful application of specialized decision procedures or theo-
rem provers. Specifically, some subformulas can be proved with
sufficient quantifier instantiations, congruence closure algorithms,
and linear arithmetic solvers; precise reasoning about reachability
is sufficient to discharge others; still others require complex quanti-
fier reasoning but do not require arithmetic reasoning. In the worst
case, it is always possible to use interactive theorem provers to dis-
charge the remaining few complex subformulas.

Armed with this insight, we developed an integrated reason-
ing approach that enables the simultaneous application of a diverse
group of interoperating reasoning systems to prove each verifica-
tion condition. This approach is based on the following techniques:

e Splitting: Jahob splits verification conditions into equivalent
conjunctions of subformulas and processes each subformula
independently. It can therefore use different provers to estab-
lish different parts of proof obligations. Because it treats each
prover as a black box, it is easy to incorporate new provers into
the system. Moreover, each prover can run on a separate proces-
sor core, reducing the running time on modern workstations.

Formula Approximation: Jahob uses a variety of new and ex-
isting external decision procedures, Nelson-Oppen provers, and
first-order theorem provers, each with its own restrictions on the
set of formulas that it will accept as input. Several formula ap-
proximation techniques make it possible to successfully deploy
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Figure 1. Integrated Reasoning in the Jahob System

this diverse set of reasoning systems together within a single
unified reasoning framework. These approximation techniques
accept higher-order logic formulas and create equivalent or se-
mantically stronger formulas accepted by the specialized deci-
sion procedures and provers.

Our approximation techniques rewrite equalities over complex
types such as functions, apply beta reduction, and express set
operations using first-order quantification. They also soundly
approximate constructs not directly supported by a given spe-
cialized reasoning system, typically by replacing problematic
constructs with logically stronger and simpler approximations.

Decision procedures such as MONA [30] perform reasoning
under the assumption that the models of given formulas are
trees. The Jahob interfaces to such decision procedures rec-
ognize subformulas that express the relevant structure (such as
treeness or transitive closure). They then expose this structure
to the decision procedure by applying techniques such as field
constraint analysis [87] and encoding transitive closure using
second-order quantifiers.

Together, these techniques make it possible to productively ap-
ply arbitrary collections of specialized reasoning systems to
complex higher-order logic formulas. Our implemented Jahob
system, for example, contains a simple syntactic prover, inter-
faces to first-order provers (SPASS [84] and E [76]), an in-
terface to SMT provers (CVC3 [26] and Z3 [19]), an inter-
face to MONA [67], an interface to the BAPA decision pro-
cedure [44,46], and interfaces to interactive theorem provers
(Isabelle [63] and Coq [11]).

Proof Decomposition: Jahob allows the developer to insert
program-point-specific lemmas and proof hints into the imper-
ative source code. Jahob proves these lemmas (using the full
range of its reasoning techniques) then uses the lemmas as ad-
ditional assumptions in verification conditions. The developer
can also use interactive theorem provers to prove parts of ver-
ification conditions. These techniques enable the developer to
guide the proof of any verification conditions that are beyond
the reach of the fully automated techniques.

Figure 1 graphically presents the resulting integrated reasoning
architecture of the Jahob system. In practice, the syntactic prover
quickly disposes of many of the conjuncts in each verification
condition. A complex core of subformulas makes it through to
the more powerful automated reasoning systems. Each of these
reasoning systems proves the subset of subformulas for which it



is applicable; together, they prove the majority of the remaining
conjuncts. When the automation does not succeed (typically due
to conjuncts that contain large numbers of universally quantified
assumptions), we manually guide the proof process by inserting
verified lemmas and proof hints into the source code. Finally, we
use interactive theorem provers to prove verification conditions
that require complex inductive reasoning or nonlinear arithmetic,
relying on a body of previously proved lemmas and the ability to
fully control the proof process.

1.6 Consequences of Our Result

Full functional specifications decouple data structure interfaces (as
expressed in formal logic) from implementations. The verification
of these specifications fulfills, for the first time, the previously
unrealized ideal of abstract data types and modular reasoning for
data structures. We identify several ways in which this research
may influence future efforts.

e Verified Data Structure Libraries: In retrospect, it is clear
that data structures are a natural candidate for full functional
verification. Because data structures have been studied for
decades, there is a broad consensus on how they should behave.
It is therefore relatively straightforward to develop the required
complete formal specifications. Because the specification and
verification effort can be profitably amortized over many data
structure uses, data structures can support focused verification
efforts that would be impractical for single systems.

In the future, developers of data structure libraries may choose
to deliver formally specified and fully verified implementations.
Advantages of this development could include the elimination
of ambiguity from data structure interfaces and increased con-
fidence in the correctness of the implementation.

Integrated Reasoning Systems: In recent years researchers
have developed a range of decision procedures, theorem provers,
and other reasoning tools [11,16,19,26,27,30,46,47,55,63,65,
76, 84]. Techniques that enable these reasoning tools to seam-
lessly interoperate within a unified reasoning framework (such
as Nelson-Oppen combination [60] and our formula approx-
imation) greatly increase the value of each individual tool.
One potential result is a proliferation of specialized reason-
ing tools, a corresponding increase in the combined capabilities
of automated reasoning systems in general, a move away from
monolithic general-purpose reasoning systems, and an overall
improvement in our ability to effectively reason about complex
computer systems.

New Program Analysis Techniques: Pointers and indirection,
especially in the context of recursive data structures, are the
bane of program analysis. Their presence often complicates,
and sometimes even invalidates, many otherwise straightfor-
ward program analysis approaches.

The field has responded by developing a variety of pointer and
shape analyses [18, 28, 41, 50, 7275, 83, 86]. These analyses
reason directly about pointers across the entire analyzed range
of the program. Despite intensive research efforts and many
impressive technical results, scalability and/or precision issues
continue to limit the utility of even the most advanced analyses.

Upon reflection, it becomes clear that standard shape analysis
approaches are at variance with modern software engineering
practices. Decades ago all programmers used to reason directly
about the pointers in their data structures. But the concept of
abstract data types enabled a productive separation of reasoning
concerns. With abstract data types, only the implementor of the
data structure reasons directly about the pointers in the data
structure implementation. Implementors of code that uses the

data structure reason more productively at the more abstract
level of the data structure interface.

Until now, the informal and unverified nature of typical data
structure interfaces has prevented sound automated reasoning
systems from exploiting this kind of structure. But the avail-
ability of fully verified data structure implementations elimi-
nates this problem, paving the way for new analysis approaches
that use verified data structure specifications to reason soundly
about the program at the higher level of abstract sets of objects
and relations. We expect the resulting analyses 1) to be substan-
tially more scalable than existing analyses and 2) to extract sig-
nificantly more useful information. In particular, we have used
this approach successfully in the Hob system to obtain anal-
yses that deliver an unprecedented combination of scalability
and precision [42,49].

e Commuting Operations: If all operations in a computation
commute, it is possible to generate code that executes the com-
putation in parallel [69]. Applying this principle to computa-
tions that manipulate linked data structures can be challeng-
ing because commuting operations on linked data structures
often produce different but semantically equivalent data struc-
ture states. Verified specifications that use sets and relations
to soundly summarize the abstract state of the data structure
can often eliminate this problem — different but semantically
equivalent concrete data structure states (such as two lists that
store the same set of objects) often have identical abstract states.
If the abstract states also differ, it is often possible to use the
specification and verification system to precisely state the de-
sired equivalence condition, then prove that operations com-
mute relative to this condition. The correctness proofs also en-
sure that properly synchronized parallel computations correctly
preserve the data structure invariants (regardless of whether or
not the operations commute). The availability of verified spec-
ifications may therefore substantially extend our ability to rea-
son successfully about parallel computations that manipulate
linked data structures.

1.7 Limitations

We identify several limitations of our verification system. First,
we assume that each data structure operation executes atomically.
For this assumption to hold in concurrent settings, some form of
synchronization would be required. Our current system also does
not support dynamic class loading, exceptions, or dynamic dis-
patch. Techniques exist, however, that should make it possible to
extend our modular verification approach to support such con-
structs [8,17,32]. Two limitations could be eliminated by minor ex-
tensions. We currently model numbers as algebraic quantities with
unbounded precision and assume that object allocation always suc-
cessfully produces a new object. While these assumptions are often
used in the verification field and are typically consistent with the
execution of the program, they are at variance with the full seman-
tics of the underlying programming language. Finally, we make no
attempt to verify any property related to the running time or the
memory consumption of the data structure implementation. In par-
ticular, we do not attempt to verify the absence of infinite loops or
memory leaks.

2. Example

In this section we use a verified association list to demonstrate how
developers use Jahob to specify data structure implementations.
We also present a sized list example, which illustrates the coordi-
nated application of multiple theorem provers and decision proce-
dures to verify the specification of a single method.



2.1 Association List

Figure 2 presents selected portions of the AssocList class. This
class maintains a list of key-value pairs. When presented with
a given key it returns the corresponding value for that key. Ja-
hob works with Java programs augmented with specifications. The
specifications appear as special comments of the form /*: ... */
or //: ..., enabling the use of standard Java compilers and virtual
machines. The first comment in Figure 2 identifies the abstract state
content of the association list as a relation in the form of a set of
pairs of objects. '

Method interfaces. The put(kO,v0) method inserts the pair
(k0,v0) into the association list, returning the previous associa-
tion for kO (if such an association existed). The requires clause
indicates that it is the client’s responsibility to ensure that neither
kO nor vO is null. The modifies clause indicates that the method
observably changes nothing except the abstract state content of the
association list. The ensures clause of the specification states that
the abstract state content after the method executes is the abstract
state old content from before the method executes augmented with
the new association (k0,v0). Any previous association (kO,result)
is removed from the association list, with result returned as the
result of the put method. It returns null if no such previous associ-
ation existed.

The get(k0) method returns the value v associated with k0 if
such an association exists. Otherwise it returns null.

Concrete and abstract state. Figure 3 presents the definition of
the Node class, which contains the key, value, and next fields that
implement the linked list of key-value pairs in the association list.
The assertion claimedby AssocList specifies that only the methods
in the AssocList class can access these fields. Jahob enforces this
specification by a simple syntactic check.

The Node class also has a specification variable cnt, whose
purpose is to define the abstract state content of the association
list. There is one cnt variable for each Node object. Specification
variables exist only to support the specification and verification and
do not exist when the program runs.

Figure 4 presents the CntDef and CntNull invariants, which to-
gether define the value of the cnt specification variable for each
Node object . The CntDef invariant recursively defines the value
of cnt for an object x as the set of pairs stored in the part of the asso-
ciation list reachable from x by following next fields. The CntNull
invariant defines the base case of the recursion: cnt is empty for
the null object. Because cnt is a “ghost” specification variable, the
implementation uses specification assignments to explicitly update
cnt when changing the next, key, and/or value fields.

The specification variable content contains the set of key/value
pairs that comprise the abstract state of the association list. The def-
inition of content appears after the vardefs keyword and specifies
that content is the value of cnt for the first node in the list. In con-
trast to cnt (which is a ghost specification variable), content is a
defined specification variable: when one or more of the variables in
the definition of content change, Jahob computes the correspond-
ing changes to content automatically.

Figure 4 also illustrates how private defined specification vari-
ables such as edge can serve as useful shorthands. The edge vari-
able denotes either the first or the next field of the corresponding
object, making the Injlnv invariant easier to write.

Semantic domain. The syntax of Jahob invariants reflects the
underlying semantic domain in which the verification takes place.
The domain (denoted obj) contains the infinite set of all objects that

' Our examples use mathematical notation for concepts such as set union
(V) and universal quantification (V). Developers can use the ProofGeneral
editor mode to view these symbols in either ASCII or mathematical nota-
tion [5]

class AssocList {
//: public specvar content :: "(obj x obj) set”
public Object put(Object kO, Object v0)
/*: requires "kO # null A vO # null”
modifies content
ensures

" content = old content — {(kO, result)} U {(k0, vO)} A
(result = null — = (3 v. (kO, v) € old content)) A
(result # null — (kO, result) € old content)” */

public Object get(Object k0)
/*: requires "k0 # null”
ensures " (result = null — — (3 v. (kO, v) € content)) A
(result # null — (kO, result) € content)” */

}

Figure 2. Association List Operations

public /x: claimedby AssocList */ class Node {
public Object key; public Object value; public Node next;
//: public ghost specvar cnt :: "(obj % obj) set” ="{}"

Figure 3. Node Definition

private Node first ;
vardefs "content == first .. cnt”;
invariant CntDef:
"V x. x € Node A x € alloc A x # null —
x..cnt = {(x..key, x..value)} U x..next..cnt A
(V v. (x..key, v) ¢ x..next..cnt)”;
invariant CntNull:

"V x. x € Node A x € alloc A x = null — x..cnt = {}";
private static specvar edge :: "obj = obj = bool”;
vardefs "edge == (A x y. (x € Node A y = x..next) V

(x € AssocList A y = x..first))";
invariant Injlnv:

"V x1 x2y.y # null A edge x1 y A edge x2 y — x1=x2";

Figure 4. Abstraction Function and Invariants in AssocList

public Object get(Object k0)
/*: requires "k0 # null”
ensures " (result # null — (kO, result) € content) A
(result = null — =(3 v. (k0O, v) € content))” */

Node current = first ;

while//: inv”Vv. ((kO,v) €content) = ((kO,v) Ecurrent..cnt)”
(current = null) {
if (current.key == kO0) { return current.value; }
current = current.next;

return null;

}

Figure 5. Implementation of the get method

the program could use during any execution. Classes correspond to
sets of objects within this domain. The notation x € Node states
that the object x is an element of the Node class). Fields correspond
to functions from objects to values. The expression x..next denotes
the application of the next function to the x object. It is often
convenient for these functions to be total (i.e., always defined for
every object) — if the object is not a member of a given class, the
values of all of the fields from that class are simply null.

Verified method implementations. Figure 5 presents the imple-
mentation of the get(k0) method. This method searches the list to
find the Node containing the key kO, then returns the corresponding
value v (or null if no such value exists). The loop invariant states



class List {
private List next;
private Object data;
private static List root;
private static int size;

/x: private static ghost specvar nodes :: objset ="{}";
public static ghost specvar content :: objset ="{}";
invariant nodesDef:

"nodes = {n. n # null A (root,n) € {(u,v). u..next=v}*}";
invariant contentDef:" content= {x. In. x=n..data A n€nodes}"”;

invariant sizelnv: "size = cardinality content”;
invariant treelnv: "tree [List.next]”;
*/

public static void addNew(Object x)
/*: requires "comment ""xFresh” (x ¢ content)”
modifies content
ensures "content = old content U {x}" %/
{
List n1 = new List();
nl.next = root; nl.data = x;
root = nl; size = size + 1;
/*: nodes :="{nl} U nodes”;
content :="{x} U content”;
note " theinv sizelnv"” by sizelnv, xFresh x/

Figure 6. Sized List
$jahob List.java -method List.add -usedp spass mona bapa

Built-in checker proved 2 sequents during splitting.
SPASS proved 4 out of 8 sequents. Total time : 0.2 s
MONA proved 3 out of 4 sequents. Total time : O.

0.

2s
BAPA proved 1 out of 1 sequents. Total time : 0s

A total of 10 sequents out of 10 proved.
:List.add]
0=== Verification SUCCEEDED.

Figure 7. Command line and Jahob output in example that com-
bines multiple decision procedures to verify one method

that the pair (k0, v) is in the association list if and only if it is in the
part of the list remaining to be searched—in effect, that the search
does not skip the Node with key kO. Given the specification and
the invariants, Jahob is capable of verifying that this method both
correctly implements its specification and correctly preserves the
invariants.

In addition to the get method, the association list contains other
methods that check membership of keys in the association list, add
associations to the list, and remove associations from the list. The
basic concepts are the same: statically verified full functional spec-
ifications, loop invariants where appropriate, and explicit updates
of the appropriate specification variables.

2.2 Sized List

Figure 6 presents a simple example [40, Chapter 2] whose verifi-
cation requires the combination of three Jahob provers. The add
operation inserts a new element into the linked list. The invariants
of the linked list maintain the set of linked list nodes, the set of
objects stored in these nodes, and the size of the list. The sizelnv
invariant requires the size of the data structure to be equal to the
number of objects reachable from the root. Many natural logical
fragments in which this invariant is expressible (such as monadic
second-order logic with equicardinality constraints) are undecid-
able. However, thanks to the use of the nodes and content speci-
fication variables, the generated verification conditions can be split

into a conjunction of implications, each of which is provable using
one of the following three provers: 1) MONA [30], 2) the SPASS
first-order prover [84], and 3) the BAPA decision procedure for sets
with cardinality bounds [43,46]. Our formula approximation tech-
nique eliminates assumptions not meaningful for a given prover;
the values of the specification variables ensure that the resulting for-
mula contains enough information to be provable. Thanks to such
mechanisms, Jahob users can use specification variables and as-
sertions to simulate the effect of Nelson-Oppen combination for
complex logics to which the Nelson-Oppen procedure traditionally
has not been applied [40, Section 4.4.5].

Figure 7 presents the Jahob verification report for the add
method. This report indicates how many sequents (implications
that represent parts of verification conditions) were proved by each
theorem prover or decision procedure. The command line instructs
Jahob to use SPASS, MONA, and the BAPA decision procedure
(in that order) when attempting to discharge the proof obligations
that arise during the verification.

3. Jahob Specification Constructs

Developers specify Jahob programs using specification variable
declarations, method contracts, class invariants, and annotations
within method bodies.

3.1 Jahob Formulas

Many Jahob specification constructs contain formulas. The syn-
tax and semantics of Jahob formulas follow Isabelle/HOL [63].
Formulas are simply typed with ground types bool for boolean
values, int for integers, and obj for objects, as well as type con-
structors = for total functions, * for tuples, and set for sets. The
logic contains polymorphic equality, standard logical connectives
A, V, =, —, V¥, 3, as well as the \ binder, set comprehension {e.F'},
and standard operations on sets and integers. It supports selected
defined operations, most notably (u,v) € {(z,y).G}" for transi-
tive closure, tree[f1, . . ., fn] denoting that a data structure is a tree,
and cardinality for the cardinality of finite sets.

3.2 Specification Variables

In addition to concrete Java variables, Jahob supports specification
variables [24, Section 4], which do not exist during program exe-
cution but are useful to specify the behavior of methods without re-
vealing the underlying data structure representation. The developer
uses the specvar keyword to introduce a specification variable, in-
dicate its type and an optional initial value, whether the variable
is public or private, and whether it is a static or instance variable.
If a variable is not static, Jahob lifts the variable’s type from the
specified type ¢ to obj = ¢, converting it into a variable of function
type. There are two kinds of specification variables in Jahob: ghost
variables and defined variables. Ghost variables must be updated
explicitly (but Jahob ensures soundness in the presence of such up-
dates). Defined variables are simply ways to name the value of an
expression (which appears in the declaration of the variable). The
definitions of defined variables must be acyclic. For recursive def-
initions the developer can use transitive closure or a ghost variable
with a class invariant that encodes the desired recursive relation-
ship.

3.3 Method Contracts

A method contract in Jahob contains three parts: 1) a precondition,
written as a requires clause, stating the properties of the program
state and parameter value that must hold before a method is in-
voked; 2) a frame condition, written as a modifies clause, listing the
components of the state that the method may modify (the remain-
ing components remain unchanged); and 3) a postcondition, written



as an ensures clause, describing the state at the end of the method
(possibly defined relative to the parameters and state at the entry
of the method). Jahob uses method contracts for assume/guarantee
reasoning in the standard way. When analyzing a method m, Jahob
assumes m’s precondition and checks that m satisfies its postcon-
dition and the frame condition. Dually, when analyzing a call to
m, Jahob checks that the precondition of m holds and assumes
that the values of state components from the frame condition of m
change subject only to the postcondition of m, and that the state
components not in the frame condition of m remain unchanged.
Public methods omit changes to the private state of their enclosing
class and instead use public specification variables to describe how
they change the state. Methods typically do not specify changes to
newly allocated objects (the exception is that if a field f is changed
for allocated objects and is otherwise not mentioned in the modi-
fies clause, then the developer needs to add the special item NEW.f
into the modifies clause).

3.4 Class Invariants

A class invariant can be thought of as a boolean-valued specifica-
tion variable that Jahob implicitly conjoins with the preconditions
and postconditions of public methods. The developer can declare
an invariant as private or public (the default annotation is private).
Typically, a class invariant is private and is visible only inside the
implementation of the class. Jahob conjoins the private class in-
variants of a class C to the preconditions and postconditions of
methods declared in C. To ensure soundness in the presence of
callbacks, Jahob also conjoins each private class invariant of class
C' to each reentrant call to a method m declared in a different class
(1. This policy ensures that the invariant C' will hold if C'i.m (ei-
ther directly or indirectly) invokes a method in C'. To make the in-
variant F' with label [ hold less often than given by this policy, the
developer can write F' as b— I for some specification variable b.
To make F' hold more often, the developer can use assertions with
the shorthand (theinv () that expand into F.

3.5 Annotations Within Method Bodies

The developer can use several kinds of annotations inside a method
to refine expectations about the behavior of the code, to guide the
analysis by stating intermediate facts, or to debug the verification
process.

Loop invariants. The developer states a loop invariant of a while
loop immediately after the while keyword using the keyword in-
variant (or inv for short). Each loop invariant must hold before the
loop condition and be preserved by each iteration of the loop. The
developer can omit conditions that depend only on variables not
modified in the loop — Jahob uses a simple syntactic analysis to
conclude that the loop preserves such conditions.

Local specification variables. In addition to specification vari-
ables at the class level, the developer can introduce ghost or non-
ghost specification variables that are local to a particular method
and are stated syntactically as statements in the method body. Such
variables can be helpful to simplify proof obligations or to state
relationships between the values of variables at different program
points.

Non-deterministic change. A specification statement of the form
havocx suchThat G, where z is a variable and G is a formula,
changes the value of x subject only to the constraint G (for exam-
ple, the statement havoc x suchThat 0 < x sets = to an arbitrary
non-negative value). To ensure soundness, Jahob emits an assertion
that verifies that at least one such value of x exists. Consequently,
a havoc statement can also be used to “pick a witness” for an ex-
istentially quantified assumption 3z.G and to make this witness
available for subsequent specification. A specification assignment

of the form x := e (for x not occurring in e) is a special case of the
havoc statement whose condition is x = e (its feasibility condition
is trivial). Jahob also supports field specification assignments of
the form z.. f := e, which is a shorthand for f := f(z := e). Here
f(x := e) is the standard function update expression returning a
function identical to f except at = where it has value e.

Assert. An assert G annotation at program point p in the body of
the method requires the formula G to be true at the program point p.
Like standard Java assertions, Jahob assertions identify conditions
that should be true at a given program point. An important differ-
ence is that Jahob assertions are statically checked to hold for all
executions rather than dynamically checked for only the current ex-
ecution. In particular, Jahob assertions produce proof obligations
that Jahob statically verifies to guarantee that G will be true in all
program executions that satisfy the precondition of the method.

Assume. An assume G statement is dual to the assert statement.
Whereas an assert requires Jahob to demonstrate that G holds, an
assume statement allows Jahob to assume that G is true at a given
program point. The developer-supplied use of assume statements
may violate soundness and causes Jahob to emit a warning. The
intended use of assume is debugging, because it allows Jahob to
verify a method under the desired restricted conditions. For exam-
ple, a specification statement assume False at the beginning of a
branch of an if statement means that Jahob will effectively skip the
verification of that branch. More generally, assume statements al-
low the developer to focus the analysis on a particular scenario of
interest (e.g. a particular aliasing condition) and therefore under-
stand better why a proof attempt is failing.

Specifying lemmas. A note G statement is a sequential composi-
tion of assert G followed by assume G. It is always sound for the
developer to introduce a note statement because Jahob first checks
the condition G before assuming it. Therefore, note G is seman-
tically equivalent to assert GG, but instructs Jahob to use G as a
useful lemma in proving subsequent conditions. Such lemmas can
often overcome limitations of automated provers by providing key
intermediate steps in the proof.

Specifying which assumptions to use. note G and assert G state-
ments can optionally contain a clause “by l1,...,[,” to identify
the facts from which the formula G should follow. We found the
“by” construct particularly helpful for guiding first-order and SMT
provers to an appropriate set of facts to use when the number and
the complexity of the invariants becomes large [14]. The identifiers
l; can refer to the labels of facts introduced by previous note and
assume statements, preconditions, invariants, conditions encoding
a path in the program, or parts of formulas explicitly labelled using
the comment construct.

Case analysis and hypothetical reasoning. When establishing
note G, the developer can help the provers by doing a case analysis
on some condition F'. One way to achieve the case analysis is to
use a sequence

note l1:(F — G); notels:((—wF)— G); noteG by l1,l2

However, proving an implication such as ' — G may itself require
further note statements, which are valid only under the assump-
tion F. Jahob therefore supports hypothetical blocks of the form
assuming l1:F in (¢ note G). Within such a block, Jahob inserts
F as an assumption. The block can contain further proof statements
that derive consequences of F' and previously known facts. (The
block may not contain executable Java statements.) If the verifica-
tion of the block succeeds, Jahob inserts the formula F' — G after
the block. To ensure soundness, the assumption I’ does not persist
outside the block.

Proving universally quantified statements. To show that an as-
sertion V.G holds after a sequence of statements ¢, instead of us-



ing the sequence (c;note Vz.G), a Jahob developer can instead
use the statement (pickAny z in (c;note G)). With the pickAny
construct, the universally quantified variable = becomes visible in-
side the statements c as a specification variable with arbitrary value.
The developer can therefore state lemmas that involve x as a fixed
variable and therefore help in the proof of G. Note that z is not a
quantified variable in such verification conditions, which simplifies
the theorem proving task. Moreover (unlike the assuming block),
the statements ¢ may contain Java code (including loops). The use
of the pickAny construct may therefore make it possible to elim-
inate universal quantifiers from loop invariants (and the resulting
verification conditions).

4. Generating Verification Conditions

Jahob produces verification conditions by simplifying the Java
code and transforming it into extended guarded commands (Fig-
ure 8), then desugaring extended guarded commands into simple
guarded commands (Figure 9), and finally generating verification
conditions from simple guarded commands in a standard way (Fig-
ure 10).

4.1 Representation of Program Memory

The state of a Jahob program is given by a finite number of con-
crete and specification variables. The types of specification vari-
ables appear in their declarations. Jahob maps the types of con-
crete Java variables as follows. Static reference variables become
variables of type obj (obj is the type of all object identifiers). An
instance variable f in a class declaration class C {D f} becomes a
function f :: obj = obj mapping object identifiers to object iden-
tifiers. The Java expression x.f becomes fz, that is, the function f
applied to x. Jahob represents Java class information using a set
of objects for each class. For example, Jahob generates the axiom
Vz.x € C'— fz € D for the above field f. Note that the function
f is total. When « is null or of a class that does not include the
field f, Jahob assumes that fx = null. (Jahob correctly checks for
the absence of null dereferences by creating an explicit assertion
before each dereference.) Jahob represents an object-valued array
as a function of type obj = int = obj, which accepts an array
and an index and returns the value of the array at the index. Jahob
also introduces a function of type obj = int that indicates the ar-
ray size, and uses it to generate array bounds check assertions. The
type int represents the integer type, which Jahob models as the set
of unbounded mathematical integers.

4.2 From Java to Guarded Commands

Jahob’s transformation of Java into guarded commands resembles
a compilation process. Jahob simplifies executable statements into
three-address form to make the evaluation order in expressions ex-
plicit. It also inserts assertions that check for null dereferences, ar-
ray bounds violations, and type cast errors. It converts field and
array assignments into assignments of global variables whose right-
hand side contains function update expressions. Having taken the
side effects into account, it transforms Java expressions into math-
ematical expressions in higher-order logic.

Receiver parameters in specifications. Java makes most uses
of the receiver “this” parameter implicit, with the compiler us-
ing scoping rules to resolve the reference. Jahob applies similar
rules to disambiguate occurrences of variables in specification con-
structs. When a field f occurs in an expression that is not imme-
diately of the form x..f and when f is not qualified with a class
name, Jahob converts the occurrence of f into this..f. Jahob also
transforms each definition x=f of a non-static specification variable
x into the definition x = A this.f. If, after transformation, a class
invariant /nv in class C' contains an occurrence of this, Jahob trans-

forms Inv into the invariant Vthis.this € C' A this € alloc — Inv.
An invariant stated for a given object is therefore implicitly inter-
preted as being required for all allocated objects of the class, and
becomes a global invariant. This mechanism enables Jahob devel-
opers to not only concisely state invariants on a per-object basis but
also to use global invariants that state relationships between differ-
ent instances of the class.

4.3 From Extended to Simple Guarded Commands

We call the main internal representation of Jahob the “extended
guarded command language” because it contains guarded com-
mand statements, proof commands, and simple control structures.
Figure 8 presents the syntax of the extended guarded command
language. We next describe how Jahob transforms such guarded
commands into the simple guarded command language (for which
verification condition generation is standard as presented in Fig-
ure 10).

Translating state changing statements. Figure 11 describes the
translation of guarded commands that change the state. We can
represent assignments using havoc followed by an equality con-
straint, which reduces all state changes to havoc statements. Con-
ditional statements become non-deterministic choice with assume
statements, as in control-flow graph representations. The Jahob en-
coding of loops with loop invariants is analogous to the sound ver-
sion of the encoding in ESC/Java [25].

Encoding and semantics of proof constructs. One of our ob-
servations is that proof constructs have natural translations into
the guarded command language (as presented in Figure 12). This
translation can also be viewed as providing a semantics for our
proof constructs. With very modest requirements on the underlying
provers (completeness for propositional reasoning and the ability to
perform unification), the constructs pickAny, havoc, and note form
a complete proof system for first-order logic. We therefore believe
that the expressive power of these constructs and the simplicity of
their translation into guarded commands makes them an appealing
candidate for annotations in any software verification system.

4.4 Accounting for Variable Dependences

The semantics of extended guarded commands assumes a set D
of specification variable definitions (v, D) where v is a variable
and D, is a term representing the definition of v in terms of other
variables. If 4 is a list of variables we write deps(@) for the set
of all variables that depend on any of the variables in , that,
is, variables whose value may change if one of the variables i
changes. To define this set precisely, let FV(G) denote all free
variables in G, let the dependence relation be p = {(v1,v2) |
(v2, D2) € D Avi € FV(D2)} and let p* denote the transitive
closure of p. Then deps(ui,...,un) = Uj—i{v | (ui,v) €
p*}. We write defs(@) for the set of constraints expressing these
dependencies, with defs(@) = A{v = D, | v € deps(&) A
(v, Dy) € D}. To correctly take dependences into account during
verification condition generation, it suffices to treat in Figures 11
and 12 each command of the form havoc Z as the command
(havoc (%, deps(Z)) ; assume defs(Z)).

Eliminating unnecessary assumptions. To simplify the generated
verification conditions, some of the internally generated assume
statements indicate a variable that the statement is intended to
constrain. For example, an assumption generated from a variable
definition v = Dy is meant to constrain the variable v, as are
assumptions of the form v € C where C is a set of objects
of class C. Ignoring an assumption is always sound, and Jahob
does so whenever the postcondition does not contain a variable
that the assumption is intended to constrain. Moreover, in certain
cases Jahob reorders consecutive assume statements to increase
the number of assumptions that it can omit.



= assumel: F | assertl: F by h
|  havocZsuchThat F’

| x:=F

|  notel:Fbyh

| assuming F'in (cpure 3 note G)
|  pickAny Zin (c;note G)

| C1 [|C2 | C15C2

| if(F) c else ca

| loopinv(I) ¢1 while(F) c2

Figure 8. Extended guarded commands

cu=assumel: F | assert l: F by h | havocz | c1 [ c2 | c13¢2

Figure 9. Simple guarded commands

wlp((assume I: F'), G) = rllqg

wip((assert I: F by h),G) = FUEMAG

wlp((havoc %), G) = Vi.G

Wlp((C H 02) G) = Wlp(clvG) /\Wlp(CQ7G)
wip((c15¢2), G) = wip(c1,wlp(c2, G))

Figure 10. Weakest preconditions for simple guarded commands

for v fresh variable, [x := F] =assume (v = F)
havoc x ; assume (z = v)
[if(F') c1 else c2] = (assume F5¢1) ||
(assume —F ;5 ¢2)
[loop inv(I) c1 while(F) c2] =
assert I ; havoc 7;assume [
C13
(assume (—F) [ (assume F';
coyassert [ ;
assume false))

Figure 11. Translating executable constructs into simple com-
mands

[havoc & suchThat F|= assert 3Z.F';
havoc & ; assume F'
[note I:F by h]= assert l: F by h}
assume [: I’

[assuming F in (cpure 3 note G)[= (skip [|(assume F';
Cpure 3 assert G;
assume false)) ;

assume (F'— G)
[pickAny Z in (c; note G)]= (skip [ (havoc Z';
cjassert G
assume false)) ;
assume VZ.G

Figure 12. Translating proof constructs into simple commands

A-GINGy ~ A—Gi, A—Gs
A~ (Bt (A BY) G
A—=Vzr.G -~ A—>G[$ = xfresh]

Figure 13. Splitting rules converting a formula into implication list
(notation F’ ] denotes formula F' annotated with string c)

5. Proving Verification Conditions

Jahob generates a proof obligation for each method it verifies.
These verification conditions are expressed in a subset of the Is-
abelle/HOL notation. We next discuss how Jahob proves such ver-
ification conditions.

5.1 Splitting

Jahob follows the standard rules in Figure 10 to generate verifica-
tion conditions. Verification conditions generated using these rules
can typically be represented as a conjunction of a large number
of conjuncts. Figure 13 describes Jahob’s splitting process, which
produces a list of implications whose conjunction is equivalent to
the original formula. The individual implications correspond to dif-
ferent paths in the method, as well as different conjuncts of assert
statements, operation preconditions, invariants, postconditions, and
preconditions of invoked methods.

The splitting rules in Jahob preserve formula annotations,
which are used for assumption selection and in error messages
to indicate why a verification failed. Because Jahob splits only
the goal of an implication, the number of generated implications
is polynomial in the size of the original verification condition (the
verification condition itself can be exponential in the size of the
method). During splitting Jahob eliminates simple syntactically
valid implications, such as those whose goal occurs as one of the
assumptions.

5.2 Using Multiple Provers

A typical data structure operation generates a verification condition
that splitting separates into a few hundred implications, each of
which is a candidate for any of the provers in Figure 1. Each
implication generated from a verification condition must be valid
for the data structure operation to be correct. Each proof can be
performed entirely independently.

To prove an implication, Jahob may attempt to use any of the
available provers. In practice, a Jahob user specifies, for a given
verification task, a sequence of provers and their parameters on the
command line. Jahob tries the provers in sequence, so the user lists
the provers starting from the ones that are most likely to succeed or,
if possible, fail quickly when they do not succeed. Often different
provers are appropriate for different proof obligations in the same
method. For such cases Jahob provides a facility to spawn provers
in parallel and succeed as soon as at least one of them succeeds.
On multi-core machines the resulting parallel execution can reduce
the overall proof time. On single-core machines it may enable an
appropriate prover to quickly prove the fact without waiting for any
inappropriate provers to finish.

5.3 Formula Approximation

Efficient provers are often specialized for a particular class of
formulas. One of the distinguishing characteristics of Jahob is its
ability to integrate such specialized provers into a system that uses
an expressive fragment of higher-order logic. This integration is
based on the concept of formula approximation, which maps an
arbitrary formula into semantically stronger but simpler formulas in
an appropriate subset of higher-order logic. Because the resulting
formulas are stronger, the approach is sound.

Figure 14 presents the general idea of approximation: for atomic
formulas representable in the target logic subset, the approxima-
tion produces the appropriate translation; for logical operations it
proceeds recursively; for unsupported atomic formulas it produces
true or false depending on the polarity of the formula. To improve
the precision of this recursive approximation step, Jahob first ap-
plies rewrite rules that substitute definitions of values, perform beta
reduction, and flatten expressions. The details of rewriting and ap-
proximation depend on the individual prover interface.



a: {0,1} x F—C
o (fu A fa) = o (fr) NP (f2)
) = a’(f1) VaP(fa)
a?(~f) = ~a(f)
a?(Vx.f) = Vz.aP(f); oP(3x.f) = Jx.aP(f)
) = e, for f directly representable in C as e
) = false, for f not representable in C'
) = true, for f not representable in C'

Figure 14. General formula approximation scheme

6. Provers Deployed in Jahob

We next describe how we integrated several provers into Jahob.

6.1 Syntactic Prover

Before invoking external provers, Jahob first tests whether the for-
mula is trivially valid. Specifically, it checks for the presence of
appropriately placed propositional constants false and true. It also
checks whether or not the conclusion of an implication appears in
the assumption (modulo simple syntactic transformations that pre-
serve validity). In practice these techniques discharge many verifi-
cation condition conjuncts. The first source of such conjuncts is
checks such as null dereferences which occur (implicitly) many
times in the source code. The second source is sequences of method
calls, specifically when class invariants that hold after one method
call need to be shown to hold for subsequent calls. For complex
formulas the syntactic prover is very useful because more sophisti-
cated provers often perform transformations that destroy the struc-
ture of the formula, converting it into a form for which the proof
attempt fails.

6.2 First-order Provers

Decades of research into first-order theorem proving by resolu-
tion have produced carefully engineered systems capable of prov-
ing non-trivial first-order formulas [76, 80, 84]. Jahob leverages
this development by translating higher-order logic into first-order
logic [14]. This translation is very effective for formulas without
transitive closure and arithmetic. Such formulas may contain set ex-
pressions, but those expressions are typically quantifier-free, which
enables their translation into quantified first-order formulas. Using
ghost variables and recursive axioms we are also able to use first-
order provers to prove strong properties about reachability in data
structures [14]. Our translation uses an incomplete set of axioms
for ordering and addition to provide partial support for linear arith-
metic. We found this axiomatization effective for reasoning about
data structures such as hash tables.

6.3 SMT Provers

Provers based on Nelson-Oppen combination of decision proce-
dures enhanced with quantifier instantiation have been among the
core technologies of past verification systems [60]. Jahob incor-
porates state-of-the art solvers in this family using the SMT-LIB
standard format [67]. Overall, the approximation for this format is
similar to the approximation for first-order provers, but uses the
SMT-LIB representation of linear arithmetic. We have primarily
used two SMT provers in Jahob: CVC3 [26] and Z3 [19].

6.4 MONA

MONA is a decision procedure for monadic second-order logic
over strings and trees [30]. Its expressive power stems from its abil-
ity to quantify over sets of objects. Quantification over sets can in

turn encode transitive closure, which is extremely useful for rea-
soning about recursive data structures. Jahob contains a flexible
interface that enables the use of MONA even for some non-tree data
structures [87]. When proving an implication A1, ..., A, — G this
interface identifies assumptions of the form tree[f1, ..., fr], then
interprets the formula assuming that f1, ..., f, form the tree back-
bone of the data structure. Furthermore, it identifies assumptions
A; of the form Vay.f(x)=y — H(x,y) (for f ¢ {f1,...,fa})
and soundly approximates a goal of the form G(f(t)) with the
stronger goal Vu.H (t,u) — G(u). This enables the approximation
to maintain information about non-tree fields and provides certain
completeness guarantees [87, Theorems 2 and 3].

6.5 BAPA

Jahob also implements decision procedures for sets with symbolic
cardinality bounds [43, 46]. This decision procedure can prove a
class of verification conditions that use set algebra, symbolic car-
dinality constraints, and linear arithmetic (i.e., quantifier-free Pres-
burger arithmetic). Such verification conditions arise when check-
ing invariants on the size of allocated structures, as in the sized list
example of Section 2.2 and other examples such as tracking the
number of objects that a method allocates [46]. Previous theorem
provers have limited effectiveness for such formulas because set al-
gebra and linear arithmetic interact in non-trivial way through the
cardinality operator.

6.6 Isabelle and Coq

Jahob provides interfaces to the Isabelle [63] and Coq [11] interac-
tive theorem provers. Jahob can invoke Isabelle automatically on a
given proof obligation using the general-purpose theorem proving
tactic in Isabelle. In some cases (e.g., for relatively small proof obli-
gations that involve complex set expressions) this approach suc-
ceeds even when other approaches fail. In general, Isabelle requires
interaction, so the user can prove the implication interactively and
save it into a file. Jahob loads this file in future verification attempts
and treats such proven lemmas as true.

7. Verified Data Structures
We have specified and verified the following data structures:

e Association List: The association list data structure discussed
in Section 2.

Space Subdivision Tree: A three-dimensional space subdivi-
sion tree. Each internal node in the tree stores the pointers to its
subtrees in an eight-element array.

Spanning Tree: A spanning tree for a graph. Verified properties
include that the produced data structure is, in fact, a tree and that
this tree includes all nodes reachable from the root of the graph.

Hash Table: A hash table implementing a map from objects to
objects, implemented as an array of linked lists storing keys and
values.

¢ Binary Search Tree: A binary search tree implementing a set,

with tree operations verified to preserve tree shape, ordering,
and changes to tree content.

Priority Queue: A priority queue stored as a complete binary
tree in a dense array, with parent and child relationships com-
puted by arithmetic operations on array indices. Among the ver-
ified properties is that the findMax method returns the smallest
element in the queue, a property that requires verifying that all
operations preserve the heap ordering invariant.

e Array List: A list stored in an array implementing a map
from integers to objects, optimized for storing maps from
a dense subset of the integers starting at 0 (modelled after



Syntactic Isabelle Interactive Total
Data Structure Prover MONA 73 SPASS E CVC3  Script Proof Time
Association List 227 120 (8.9s) 12.0s
Space Subdivision Tree 392 269 (46.9s) 9 (2.5s) 1 70.9s
Spanning Tree 368 80 (142.6s) 22 (2.0s) 172.2s
Hash Table 570 222 (58.3) 1(0.5) 6 73.6s
Binary Search Tree 469 665 (6232.1s) 170 (7.5s) 10 (0.5s) 6265.0s
Priority Queue 311 179 (4.9) 4 12.9s
Array List 400 306 (60.8s) 16 (66.7s) 2(9.9s) 161.1s
Circular List 26 100 (183.6s) 184.4s
Singly-Linked List 74 94 (5.9s) 6.9s
Cursor List 193 218 (27.6s) 17 (2.3s) 41.2s

Figure 15. Number of Proved Sequents and Verification Times for Verified Data Structures

java.util.ArrayList). Method contracts in the list describe
operations using an abstract relation {(0,vo), ..., (k,vk)},
where k + 1 is the number of stored elements.

Circular List: A circular doubly-linked list implementing a set
interface.

Singly-Linked List: A null-terminated singly-linked list imple-
menting a set interface.

Cursor List: A list with a cursor that can be used to iterate
over the elements in the list and, optionally, remove elements
during the iteration. Method contracts include changes to the
list content and to the position of the iterator.

Together, these data structures comprise a representative subset of
the data structures found in a typical program.

7.1 Verification Statistics

Figure 15 contains, for each data structure, a line summarizing
the verification process for that data structure. Each line contains
a breakdown of the number of sequents proved by each theorem
prover or decision procedure when verifying the corresponding
data structure. The theorem provers or decision procedures are ap-
plied in the order in which they appear in the table. A blank entry
indicates that the corresponding theorem prover or decision proce-
dure was not used during the verification. Figure 15 also presents,
for each theorem prover or decision procedure, the time it took try-
ing to prove the sequents it attempted to prove. Consider, for ex-
ample, the SPASS entry for the Association List. This entry is 120
(8.9s), indicating that, for the Association List data structure, the
SPASS theorem prover took 8.9 seconds trying to prove sequents,
and succeeded in proving 120 of them (the 8.9 seconds includes
time spent on unsuccessful proof attempts for sequents that were
later proved by another prover). The final column presents the total
verification time, which includes the time spent in the verification
condition generator, splitter, syntactic prover, and any applied deci-
sion procedures or theorem provers. Most of the data structures ver-
ify within several minutes. The outlier is the binary search tree with
a total verification time of an hour and forty-five minutes (primarily
due to the amount of time spent in the MONA decision procedure).

7.2 Discussion

Figure 15 illustrates how Jahob effectively combines the capabili-
ties of multiple theorem provers and decision procedures to verify
sophisticated data structure correctness properties. It also illustrates
how the different capabilities of these theorem provers and decision
procedures are necessary to obtain the correctness proofs. For ex-
ample, although the vast majority of the sequents are proved by
fully automated means, the occasional use of interactive proofs is
critical for enabling the verification of our set of data structures.

In our experience specifying and verifying a new data structure
requires insight into why the data structure implementation is cor-
rect combined with familiarity with the verification system. At this
point we are able to implement, specify, and fully verify a new, rel-
atively simple data structure (such as a list implementation of a set)
in several hours. More complicated data structures (such as a space
subdivision tree) can take days or even, in extreme cases, a week or
more.

Our current design emphasizes the simplicity of the underlying
semantic model. Almost all required correctness properties there-
fore appear explicitly in both the specifications and the generated
verification conditions. Different designs are possible. For exam-
ple, Jahob could support a system of defaults that would enable
developers to work with simpler specifications. Similarly, an en-
hanced (but more complex) verification condition generator could
use simple checks to eliminate many properties before verifica-
tion condition generation. We anticipate that an optimal distribu-
tion of the verification responsibility across the different compo-
nents of the verification system will become clearer as researchers
gain more experience with the problem.

8. Related Work

We discuss the Hob analysis system and related work in shape anal-
ysis, software verification systems, interactive theorem provers, and
finitization and automated testing.

Hob. The Hob system supports verified data structure interfaces
that use sets of objects to summarize the state of the data structure
and the effect of data structure operations [42,49]. Because the Hob
specification language is based on sets, it is powerful enough to
specify full functional correctness only for data structures that ex-
port a set interface. For data structures with richer interfaces (such
as hash tables and search trees) it can specify and verify some, but
not all, correctness properties. Like Jahob, Hob integrates a variety
of reasoning techniques to successfully discharge generated verifi-
cation conditions, including the use of arbitrarily precise reasoning
techniques within data structure implementations.

Hob emphasizes the use of the verified specifications in the anal-
ysis of data structure clients. We have successfully used Hob to
develop new analyses with an unprecedented combination of scal-
ability and precision. Indeed, our results show that Hob is capable
of specifying and verifying deep properties that capture important
concepts from the underlying domain of the program. These prop-
erties are directly meaningful not just to the developers of the pro-
gram, but (perhaps more importantly) also to its users. To the best
of our knowledge, Hob is the first system capable of specifying and
verifying these kinds of outward-looking, application- and domain-
oriented correctness properties.



Shape analysis. The goal of shape analysis is typically to ver-
ify only data structure shape properties (and not full functional
correctness properties such as the change of data structure con-
tent) [18,28,28,41,50, 74]. Parameterized shape analyses such as
TVLA have been extended to prove properties beyond shape, such
as ordering of list elements [52] and the correctness of a binary
search tree with a set interface [68] (using manually devised and un-
verified rules for updating instrumentation predicates). Approaches
to automating separation logic have similarly focused primarily
on shape properties as opposed to full correctness properties [10].
These approaches have recently been extended to verify bag and
size properties (although the system does not support arrays or
loops) [62]. Advanced type systems similarly use recursive data
structure specifications with fold and unfold as proof rules [22,89].
Although these type systems could, in principle, be extended to
prove specifications that use relations as specification variables, we
are not aware of any system that has done so.

Decision procedures based on finite quantifier instantiation [55]
are effective for reasoning about local properties of data struc-
tures but are not complete for reachability properties. However,
decision procedures that support reachability exist that can ver-
ify programs that manipulate only linked lists [47]. In some cases,
it is also possible to express reachability properties in first-order
logic [14,41,48,51,55,61]. Approaches based on MONA [58, 87]
guarantee completeness for reachability properties. By themselves,
these approaches are not sufficient for the verification of many im-
portant data structure properties. Our experience indicates, how-
ever, that they become very useful in combination with other tech-
niques. The applicability of decision procedures such as MONA
can be extended using structure simulation [37], provided that cer-
tain conditions are met. A Jahob user can use a tree declaration
over manually updated ghost fields to obtain some of the benefits
of structure simulation. Automated first-order or SMT provers can
inductively prove the conditions required for the soundness of this
approach as a part of the standard verification process, without re-
quiring any special support or methodology.

Software model checkers based on predicate abstraction use the-
orem provers to over-approximate reachable program states [6,31].
A recent combination with shape analysis can verify shape prop-
erties, yielding performance better than when using shape analysis
alone [12]. Jahob contains an implementation of an alternative ap-
proach, symbolic shape analysis [66,87, 88], which generalizes the
predicate abstraction domain to perform shape analysis. We have
not used symbolic shape analysis for the examples in this paper.
However, we have applied symbolic shape analysis to somewhat
simpler data structures, including lists, trees, and arrays [88]. The
analysis successfully inferred loop invariants and proved the full
functional correctness of operations that insert elements into data
structures that implement a set interface.

Shape analyses occupy an uneasy position in a world with veri-
fied data structure specifications. Analyses involving data structure
clients are invariably better off working with the higher-level ab-
stractions present in the specifications rather than directly with the
pointers in the implementations. Although shape analyses can be
useful for automating parts of the analysis of data structure imple-
mentations (indeed, we have used this technology for this purpose
ourselves), their value is undercut by the fact that less automated
techniques are perfectly adequate for this purpose.

Software verification tools. Software verification tools that
can prove properties of linked data structures include Spec# [8],
ESC/Modula-3 [21], ESC/Java [24], ESC/Java2 [17], Krakatoa
[23, 53], KIV [7], KeY [3], and LOOP [82]. To the best of our
knowledge, none of these systems have been used to verify the full
functional correctness of a collection of linked data structures. For
example, the LOOP system has been used to prove the correctness

of the Java Vector class implementation [33,34], which is not a re-
cursive linked data structure. LOOP, K1V, Jive, and Krakatoa have
been used to verify smartcard applications (an electronic purse and
the Mondex case study [29, 79, 81]), which do not contain com-
plex linked data structures. KeY has also been used to prove the
correctness of an insertion operation into a TreeMap [71]. While
these efforts suggest that the verification of linked data structures
is possible in principle, the scope of these previous results does not
establish the extent to which this verification is feasible in practice
using these systems.

Jahob’s integrated reasoning approach (specifically the integra-
tion of a wide range of theorem provers and decision procedures
via a new combination technique in conjunction with features that
enable the developer to guide the verification process when nec-
essary) makes it feasible to verify a range of linked data structure
implementations. Moreover, previous systems do not, to the best of
our knowledge, use decision procedures (such as MONA [30]) that
enable complete reasoning over list and tree data structures, nor do
they use decision procedures (such as the BAPA decision proce-
dure [43,46]) to reason about sets with cardinality constraints.

Proof methods based on natural deduction combined with auto-
mated provers have recently been shown to be effective for obtain-
ing complex proofs in interactive provers [4, 85]. Although Jahob
supports the use of interactive provers, its proof commands pro-
vide an alternative way of decomposing proof obligations without
ever leaving the world of the original Java program. The fact that
these proof constructs naturally translate into guarded commands
suggests that they are intuitive for the verification of imperative
programs. For example, the havoc...suchThat statement works
both as a proof construct of systems such as Isabelle, and as a spec-
ification statement in wide-spectrum languages [59].

Interactive theorem proving systems. The notation for formu-
las in Jahob is based on Isabelle/HOL [63]. Provers such as Is-
abelle/HOL support inductively defined data types and have been
used to verify the correctness of purely functional data structures
such as a binary search tree with a map interface [39], an AVL tree
with a set interface [64], and garbage collection algorithms [56].
In the Verisoft project researchers have developed Isabelle proofs
of correctness for doubly-linked list implementations [2]. It is nat-
ural to consider combinations of automated techniques to increase
the granularity of interactive proof steps in interactive provers. This
kind of integration is used in PVS [65], Boyer-Moore provers [16],
and higher-order logic systems [35, 54]. There are recent and on-
going efforts to integrate Isabelle with monadic second-order logic
over strings [9] and with first-order provers [57]. We believe that
the Jahob approach is useful for proof obligations that arise in data
structure verification (and potentially for other kinds of proof obli-
gations as well), whether these proof obligations arise within the
context of a program verification system or entirely within an inter-
active theorem prover.

Finitization and automated testing. Jahob and other systems
based on theorem proving verify that data structures are correct
for all executions. In contrast, testing and software model checking
approaches based on finitization [13,15,20,38,70,77,78] check the
correctness of only finitely many executions (and not the correct-
ness of the remaining infinitely many executions). Systems such as
Bogor [70] and JACK [13] integrate several techniques for check-
ing finite models of software systems. We consider such approaches
to be complementary to ours. With the current state of verifica-
tion technology, a cost-effective approach to develop correct data
structures might be to first develop the implementation and perform
manual testing, then develop specifications and check them using
finite state exploration techniques, and finally use a system such as
Jahob to prove the implementations correct.



9. Conclusion

This paper demonstrates the use of integrated reasoning to obtain
the first verification of full functional correctness for a substantial
collection of linked data structures. We have already verified many
of the data structures that programmers use in practice. In the near
future it is not unreasonable to expect to see data structure libraries
shipped only after full functional specification and verification.

Full functional verification has long been viewed as an impracti-
cal or even unrealizable goal. The results in this paper demonstrate,
for the first time, that this goal is within practical reach for linked
data structure implementations. These results are especially com-
pelling given the widespread reuse of data structure libraries and
the central role that linked data structures play in computer sci-
ence.
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