EXAMPLE 2

Transition Matrices

We want to apply this method of computing A* to the analysis of a certain type of
physical system that can be described by means of the following kind of mathemat-
ical model. Suppose that the sequence

x07xl7x2!""xk7"' (4)

of n-vectors is defined by its initial vector xo and an n x n transition matrix A in
the following manner:

Xpr1 = AXg foreachk > 0. (5)

We envision a physical system—such as a population with n specified subpopula-
tions—that evolve through a sequence of successive states described by the vectors
in (4). Then our goal is to calculate the kth state vector x;. But using (5) repeatedly,
we find that

X1 = Axg, X2 =Ax; =AXp, X3=Ax; =A%,
and in general that
x; = Afxq. (6)
Thus our task amounts to calculating the k power A* of the transition matrix A.

Consider a metropolitan area with a constant total population of 1 million individu-
als. This area consists of a city and its suburbs, and we want to analyze the changing
urban and suburban populations. Let C; denote the city population and S the sub-
urban population after k years. Suppose that each year 15% of the people in the city
move to the suburbs, whereas 10% of the people in the suburbs move to the city.
Then it follows that

Ciy1 = 0.85C; 4+ 0.105,

Q)
Sk+1 = 0.15C) + 0.90S;
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for each k > 0. (For instance, next year’s city population Cy; will equal 85% of
this year’s city population C; plus 10% of this year’s suburban population Si.) Thus

the metropolitan area’s population vector x; = [ C S ]T satisfies
Xi+1 = Ax;  and hence x; = A¥xg )

(for each k > 0) with transition matrix

A_[085 010
=l015 090 |

The characteristic equation of the transition matrix A is
17 9 3 1
(m-9) (%)~ () () =*
(17 —200)(9 — 10A) =3 =0;
200A% — 3502 + 150 = 0;
422 —Tr+3=0;
A=—1D@Er-3)=0.
Thus the eigenvalues of A are A; = 1 and A; = 0.75. For A; = 1, the system

A-2ADv=20is
=015 O010f[x]|_|oO
015 =010y O}

so an associated eigenvectoris v; = [2 3 ]T. For X, = 0.75, the system (A —

ADV =0 s )
0.10 0.10[x]_To
1015 015 ||y | |0

so an associated eigenvectoris v, = [ -1 1 ]T. It follows that A = PDP~!, where

20 andl):l?,
31 0o 3

-1_ 1 1 1

Now suppose that our goal is to determine the long-term distribution of popu-
lation between the city and its suburbs. Note first that ( %)k is “negligible” when k is
sufficiently large; for instance, (3)** ~ 0.00001. It follows that if k > 40, then the
formula A* = PD*P~! yields

e[ e g o4 4]
2 8 )

]
[ 2]=33 3] 2
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Hence it follows that, if k is sufficiently large, then

2 2(|C
il 2]

-~ s8] (%]

because Co+Sy = 1 (million), the constant total population of the metropolitan area.
Thus, our analysis shows that, irrespective of the initial distribution of population
between the city and its suburbs, the long-term distribution consists of 40% in the
city and 60% in the suburbs. |

Remark The result in Example 2—that the long-term situation is independent of
the initial situation—is characteristic of a general class of common problems. Note
that the transition matrix A in (8) has the property that the sum of the elements in
each column is 1. An n x n matrix with nonnegative entries having this property is
called a stochastic matrix. It can be proved that, if A is a stochastic matrix having
only positive entries, then A; = 1is one eigenvalue of A and |A;| < 1 for the others.
(See Problems 39 and 40.) Moreover, as k —> 00, the matrix A* approaches the
constant matrix

[vi v - wi],
each of whose identical columns is the eigenvector of A associated with A; = 1 that

has the sum of its elements equal to 1. The 2 x 2 stochastic matrix A of Example 1
illustrates this general result, with A; = 1, A2 = %, and vy = (%, %). [ ]

Predator-Prey Models

Next, we consider a predator-prey population consisting of the foxes and rabbits
living in a certain forest. Initially, there are Fy foxes and Ry rabbits; after k months,
there are F; foxes and Ry rabbits. We assume that the transition from each month
to the next is described by the equations

Fiy1 = 0.4F; + 0.3R;

(10)
Ryyy=—rk + 1.2Ry,

where the constant 7 > 0 is the “capture rate” representing the average number of
rabbits consumed monthly by each fox. Thus

Xry1 = Axxy andhence X = A¥xq, a1

where

xk=[£z] and A=[(i‘: (1);] (12)




EXAMPLE 3
Stable Limiting Population
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The term 0.4 F; in the first equation in (10) indicates that, without rabbits to
eat, only 40% of the foxes would survive each month, while the term 0.3 Ry repre-
sents the growth in the fox population due to the available food supply of rabbits.
The term 1.2R; in the second equation indicates that, in the absence of any foxes,
the rabbit population would increase by 20% each month. We want to investigate
the long-term behavior of the fox and rabbit populations for different values of the
capture rate r of rabbits by foxes.

The characteristic equation of the transition matrix A in (12) is

(04 —-2)(12=2)+03)r=0
(4 — 10A)(12 — 10)) + 30r = 0;
100A% — 160X + (48 + 30r) =

The quadratic formula then yields the equation

1
A= [160 +/(160)2 — (400)(48 + 30r)]

——0(8:{:«/T6——3_0—r),

13)

which gives the eigenvalues of A in terms of the capture rate r. Examples 3, 4, and
5 illustrate three possibilities (for different values of r) for what may happen to the
fox and rabbit populations as k increases:

e F, and R; may approach constant nonzero values. This is the case of stable
limiting populations that coexist in equilibrium with one another.

+ Fp and R, may both approach zero. This is the case of mutual extinction of
the two species.

s F; and R, may both increase without bound. This is the case of a population
explosion.

If r = 0.4, then Equation (13) gives the eigenvalues A} = 1 and A; = 0.6. For
A1 = 1, the system (A — ADDv = 0is

(55 S151-18]

T For A, = 0.6, the system (A —

I
]H

T Tt follows that A = PDP~!, where

so an associated eigenvector is v; = [ 1 2

ADv=0is
-02 03| =x
-04 06 ||y

so an associated eigenvector is vp = [

13 1 o0 G a2 -3
P—[z 2]' D—[o 0.6]’ and P —“Z[—z 1]'

k]
3
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We are now ready to calculate A*. If k is sufficiently large that (0.6)F ~ 0 (for
instance, (0.6)% =~ 0.000003), then the formula A* = PD*P~! yields

k_ (1 3 2 -3
A—[z 2 0 (06)" D)2
1 37[1 o0 2
110 © -2
0]l 2
0]]-2
-2 3
—4 6
Hence it follows that if & is sufficiently large, then

2 3 1 [3Ry—2F,
= Afxo = [4 6][ ]—2[6R0—4F0]

~s
~

N»—-
)
o

M—-
N =
-—w

FNTN

—that is,

F 1
[Rk ] =q [2] , where a = }(3Ry—2F). (14)

Assuming that the initial populations are such that @ > 0 (that is, 3Ry > 2F),

(14) implies that, as k increases, the fox and rabbit populations approach a stable

situation in which there are twice as many rabbits as foxes. For instance, if Fy =
= 100, then when k is sufficiently large, there will be 25 foxes and 50 rabbits.

|

DOWILRR:Y If » = (.5, then Equation (13) gives the eigenvalues A; = 0.9 and A, = 0.7. For
Mutual Extinction A, = 0.9, the system (A — AI)v = 0is

|55 o3]5]=[o]

. . . T
so an associated eigenvectoris vy = [3 5

ADv=0is
—0.3 0.3 x
—-0.5 0.5 y

so an associated eigenvector is v, = [ 1

31 _[o09 o L a1
P—[s 1]’ D—[o 0.7]’ and P —_5[—5 3]'

] For A, = 0.7, the system (A —
T, It follows that A = PDP~!, with

o



EXAMPLE 5
Population Explosion
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Now both (0.9)* and (0.7)* approach O as k increases without bound (k — +00).
Hence if k is sufficiently large, then the formula A* = PD*P~! yields

_[3 17[ @9 o 1 -1
Ak“[s 1][ 0 (0.7)’<](‘%)[—5 3]

(24908 8908 41=[8 8],
[&]-x[R]=[s Sl[R]-=[c] o

Thus F and R, both approach zero as k — +00, so both the foxes and the rabbits
die out—mutual extinction occurs. |

 —

o=

SO

If r = 0.325, then Equation (13) gives the eigenvalues A; = 1.05 and A, = 0.55.
For A, = 1.05, the system (A — ADv =0 s

—-0.650 030 |{x|{_10

-0.325 0151y | {10
Each equation is a multiple of —13x 4+ 6y = 0, so an associated eigenvector is
vi=[6 13 ]T. For A; = 0.55, the system (A — ADv =0 is

—0.150 030 || x| _10
—-0325 0651y | (O]

s0 an associated eigenvectoris v, = [2 1 ]T. It follows that A = PDP~! with

62 105 0 G o[ 1 =2
P*[13 1]' D‘[ 0 0.55]’ and P = 2‘0[—13 6]'

Note that (0.55)* approaches zero but that (1.05)* increases without bound as
k — +oo0. It follows that if k is sufficiently large, then the formula A* = PD*P~!

yields
6 27[ (1.05* 0 1 1 -2
13 1 0o ©s5¢ W] 13 6
6 211 @05 o 1 -2
W13 1 0 0] -13 6

6)(1.05% 0 1 =2
(13)(1.05*¢ o] —-13 6’

Ak

&

=1

I~

2

<
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and therefore

b 0 nek] 6 —12
Ak~ —1(1.05) [13 o6 |- (16)

Hence, if k is sufficiently large, then

6 —12 F
_ Aky 1 k [}

o [ 6Fy— 12R,

and so
Fe | k, | 6 1
R |~ (1.05)"y 131 where y = 5;(2Ro — Fp). a7n

If y > O (thatis, if 2Ry > Fp), then the factor (1.05)* in (17) implies that the
fox and rabbit populations both increase at a rate of 5% per month, and thus each
increases without bound as k — +00. Moreover, when k is sufficiently large, the
two populations maintain a constant ratio of 6 foxes for every 13 rabbits. It is also
of interest to note that the monthly “population muitiplier” is the larger eigenvalue
A1 = 1.05 and that the limiting ratio of populations is determined by the associated

eigenvector vy = [6 13 ]T. [

In summary, let us compare the results in Examples 3, 4, and 5. The critical
capture rate r = 0.4 of Example 3 represents a monthly consumption of 0.4 rabbits
per fox, resulting in stable limiting populations of both species. But if the foxes
are greedier and consume more than 0.4 rabbits per fox monthly, then the result is
extinction of both species (as in Example 4). If the rabbits become more skilled at
evading foxes, so that less than 0.4 rabbits per fox are consumed each month, then
both populations grow without bound, as in Example 5.



