TEI P5:
Guidelines for Electronic Text
Encoding and Interchange

by the TEI Consortium

Originally edited by C.M. Sperberg-McQueen and Lou
Burnard for the ACH-ALLC-ACL Text Encoding Initiative
Now entirely revised and expanded under the supervision

of the Technical Council of the TEI Consortium

edited by Lou Burnard and Syd Bauman
1.3.0. Last updated on February 1st 20009.

Oxford — Providence — Charlottesville — Nancy
2008

The TEI Guidelines

ii

The TEI Guidelines

edited by Lou Burnard and Syd Bauman

2008

The TEI Guidelines

1.3.0. Last updated on February 1st 2009.

Copyright 2009 TEI Consortium.

This is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This material is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchantability or fitness for a particular
purpose. See the GNU General Public License for more details.

A copy of the GNU General Public License is stored on the TEI web site along with
this file; you can also contact the Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307, USA, for a copy.

For information about the TEI, including contact details, consult the TEI web site
at http://www.tei-c.org/.

ii

http://www.tei-c.org/P5/

edited by Lou Burnard and Syd Bauman

Contents

i Releases of the TEI Guidelines XV
ii Dedication xvii
iii Preface and Acknowledgments xix
iv About These Guidelines xxiii
iv.1 Structure and Notational Conventions of this Document XXiv

iv.1.1 Design Principles XXV

iv1.2 Intended Use Xxvi

iv2 Historical Background Lo L XXix

iv.3 Future Developments XXX

v A Gentle Introduction to XML xxxi
v.l What's special about XML? xxxii

v.1.1 Descriptivemarkup L Xxxii

v.1.2 Typesofdocument xxxii

v.1.3 Dataindependence xxxiii

v.2 Textualstructures. xxxiii

v.3 XMLstructures e XXXiv

v3.1 Elements XXXiV

v.3.2 Content models: anexample L L. XXXIV

v.3.3 Validating a document's structure XXXVi

v.3.4 Anexampleschema Xxxvii

v.4 Complicating theissue L L o xl

v.5 Attributes L xlii

v.5.1 Declaringattributes L L Lo xlii

v.5.2 Identifiers and indicators Lo oo o xliv

v.6 Other components of an XML document xlv

v.6.1 Character References xlv

v.6.2 Processinginstructions oo oo xlvi

V6.3 Namespaces v v vt e e e e e e e xlvii

v.7 Puttingitalltogether L xlix

v.7.1 Associating entity definitions with a document instance 1

v.7.2 Associating a document instance with its schema 1

v.7.3 Assembling multiple resources into a single document li

v.7.4 Stylesheet association and processing L. li

vi Languages and Character Sets liii
vi.l Languageidentification o oo L liv

vi.2 Charactersand Character Sets Ivi

vi.2.1 Historical considerations 00 L Ivi

vi.2.2 Terminologyand key concepts L ... lvii

vi.2.3 Abstract characters, glyphs and encoding scheme design lviii

vi2.4 Entryofcharacters. lix

vi.2.5 Outputofcharacters. Ix

vi2.6 Unicodeand XML e Ix

iii

The TEI Guidelines

vi.2.7 Special aspects of Unicode character definitions Ixiii
vi.2.8 Character entities in non-validated documents Ixiv
vi.2.9 Issues arising from the internal representations of Unicode Ixv

1 The TEI Infrastructure 1
1.1 TEIModules e 2
1.2 DefiningaTEISchema 3
1.2.1 A Simple Customization 3
1.2.2 A Larger Customization 4
1.3 The TEIClass System/. o ittt e e e e e e e 5
1.3.1 Attribute Classes. 5
1.3.2 ModelClasses i 9
1.4 Macros| o e e 12
1.4.1 Standard ContentModels L 12
1.4.2 Datatype Macros e 12
1.5 The TEI Infrastructure Module 14
2 The TEI Header 17
2.1 Organizationofthe TEIHeader 18
2.1.1 The TEI Header and its Components 18
2.1.2 Typesof Contentin the TEI Header 19
2.1.3 Model Classesinthe TEIHeader 20
2.2 TheFile Description| e 21
2.2.1 TheTitleStatement 22
222 TheEdition Statement 24
22.3 TypeandExtentofFile 25
2.2.4 Publication, Distribution, etc. 26
2.2.5 TheSeries Statement e 28
2.2.6 TheNotes Statement e 29
2.2.7 TheSource Description e 30
2.2.8 Computer Files Derived from Other Computer Files 32
2.3 The Encoding Description| L 32
2.3.1 The Project Description e 33
232 'The Sampling Declaration, 33
2.3.3 The Editorial Practices Declaration 34
234 The Tagging Declaration 36
2.3.5 The Reference System Declaration| 40
2.3.6 The Classification Declaration 42
2.3.7 The Application Information Element 44
2.3.8 Module-Specific Declarations|. 45
2.4 'The Profile Description o e 45
2.4.1 Creation| e 46
242 Language Usage e 46
2.4.3 The Text Classification 47
2.5 The Revision Description L 49
2.6 Minimal and Recommended Headers 50
2.7 Note for Library Cataloguers 53
2.8 The TEIHeader Module 54

iv

edited by Lou Burnard and Syd Bauman

3 Elements Available in All TEI Documents
3.1 Paragraphs
3.2 Treatment of Punctuation

3.3.1
3.3.2
3.3.3
334
3.35

34.1
3.4.2
3.4.3

3.5.1
3.5.2
3.5.3
3.5.4
3.5.5

3.7 Lists

Terms, Glosses, Equivalents, and Descriptions
Some Further Examples
3.4 Simple Editorial Changes .

Apparent Errors| . . .

Regularization and Normalization
Additions, Deletions, and Omissionso
3.5 Names, Numbers, Dates, Abbreviations, and Addresses

Referring Strings . .
Addresses|

Numbers and Measures o v v v vt e e e e e e e e

Dates and Times . . .

Abbreviations and Their Expansions
3.6 Simple Links and Cross-References

3.8 Notes, Annotation,and Indexing L L L L L
Notes and Simple Annotation

3.8.1
3.8.2

Index Entries

3.9 Graphics and other non-textual components 0oL
3.10 Reference Systems
3.10.1 Using the xml:id and n Attributes.
3.10.2 Creating New Reference Systems

3.10.3

Milestone Elements| .

3.10.4 Declaring Reference Systems
3.11 Bibliographic Citations and References
3.11.1 Elements of Bibliographic References
3.11.2 Components of Bibliographic References

3.11.3 Bibliographic Pointers

3.11.4 Relationship to Other Bibliographic Schemes

3.12 Passages of Verse or Drama

3.12.1
3.12.2

Core Tags for Verse .
Core Tags for Drama

3.13 Overviewofthe Core Module e

4 Default Text Structure

4.1 DivisionsoftheBody. L L o
4.1.1 Un-numbered Divisions e e
4.1.2 Numbered Divisions e e
4.1.3 Numbered or Un-numbered?
4.1.4 Partial and Composite Divisions

4.2 Elements Common to All Divisions
42.1 Headingsand Trailers

55
56
57
58
59
60
63
67
70
72
73
74
75
78
78
82
83
86
87
89
91
95
95
96
101
103
103
105
106
109
111
112
115
126
126
128
128
131
134

135
137
137
138
139
142
144
145

The TEI Guidelines

4.2.2
4.2.3
4.2.4

4.3

4.3.1
4.3.2

4.4
4.5
4.6
4.7
4.8

5 Representation of Non-standard Characters and Glyphs
Is Your Journey Really Necessary?
5.2 Markup Constructs for Representation of Characters and Glyphs

5.1

Openers and Closers

Content of Textual Divisions
Grouped and Floating Texts

Floating Texts
Virtual Divisions
Front Matter
Title Pages

BackMatter
Module for Default Text Structure

Arguments, Epigraphs, and Postscripts . .
Grouped Texts

5.2.1 Character Properties
5.3 Annotating Characters
54 Adding New Characters,
5.5 How to Use Code Points from the Private Use Area
5.6 Module Character and Glyph Documentation

6 Verse
6.1 Structural Divisions of Verse Texts
6.2 Componentsofthe VerseLine
6.3 Rhymeand Metrical Analysis’ L o

6.3.1 Sample Metrical Analyses L Lo Lo

6.3.2 Segment-Level versus Line-level Tagging

6.3.3 Metrical Analysis of Stanzaic Verse
6.4 Rhyme
6.5 Metrical Notation Declaration
6.6 Encoding Procedures for Other Verse Features
6.7 Modulefor Verse

7 Performance Texts

7.1 Frontand Back Matter
7.1.1 TheSetElement
7.1.2 Prologues and Epilogues
7.1.3 Records of Performances
714 CastLists

7.2 The Body of a Performance Text
7.2.1 Major Structural Divisions
7.2.2 Speeches and Speakers
7.2.3 Stage Directions|
7.24 SpeechContents
7.2.5 Embedded Structures
7.2.6 Simultaneous Action

7.3 Other Types of Performance Text
7.3.1 Technical Information.

vi

146
148
150
150
151
158
160
160
163
165
167

169
169
170
173
176
179
180
181

183
183
187
189
190
192
193
194
196
198
198

199
199
200
201
203
204
208
208
209
212
215
217
221
222
224

edited by Lou Burnard and Syd Bauman

7.4 Module for Performance Texts

8 Transcriptions of Speech

8.1 General Considerations and Overview
8.2 Documenting the Source of Transcribed Speech
8.3 Elements Unique to Spoken Texts
8.3.1 Utterances e
832 Pausing e
8.3.3 Vocal, Kinesic, Incident e
834 Writing e
8.3.5 Temporal Information L
8.3.6 Shifts
8.4 Elements Defined Elsewhere| L
8.4.1 Segmentation
8.4.2 Synchronizationand Overlap
8.4.3 Regularization of Word Forms
844 Prosody
8.4.5 Speech Management
84.6 AnalyticCoding

8.5 Module for Transcribed Speech

9 Dictionaries

9.1 Dictionary Body and Overall Structure
9.2 The Structure of Dictionary Entries
9.2.1 Hierarchical Levels
9.2.2 Groupsand Constituents|
9.3 Top-level Constituents of Entries
9.3.1 Information on Written and Spoken Forms
9.3.2 Grammatical Information L Lo
9.3.3 SenseInformation|. L
9.3.4 Etymological Information L L L Lo
9.3.5 Other Information
9.3.6 Related Entries
9.4 Headword and Pronunciation References
9.5 Typographic and Lexical Information in Dictionary Data
9.5.1 Editorial View
9.52 Lexical View L
9.5.3 Retaining Both Views|
9.6 Unstructured Entries
9.7 'The Dictionary Module

10 Manuscript Description
10.1 Overview

10.2 The Manuscript Description Element

10.3 Phrase-level Elements
10.3.1 Origination
10.3.2 Material
10.3.3 Watermarks and Stamps

vii

224

225
225
227
230
232
234
234
235
236
236
239
239
240
245
245
247
248
249

251
252
254
254
256
259
259
263
264
268
269
276
277
280
281
284
285
289
290

291
291
291
295
296
296
296

The TEI Guidelines

10.3.4 Dimensions

10.3.5 References to Locations within a Manuscript

10.3.6 Names of Persons, Places, and Organizations

10.3.7 Catchwords, Signatures, Secundo Folio .
10.3.8 Heraldry
10.4 The Manuscript Identifier
10.5 The Manuscript Heading
10.6 Intellectual Content

10.6.1 The <msltem> and <msltemStruct> Elements

10.6.2 Authorsand Titles

10.6.3 Rubrics, Incipits, Explicits, and Other Quotations from the Text

10.6.4 Filiation
10.6.5 Text Classification
10.6.6 Languages and Writing Systems
10.7 Physical Description
10.7.1 Object Description

10.7.2 Writing, Decoration, and Other Notations

10.7.3 Bindings, Seals, and Additional Material
10.7.4 History
10.7.5 Additional information
10.7.6 Manuscript Parts
10.7.7 Module for Manuscription Description

11 Representation of Primary Sources
11.1 Digital Facsimiles
11.2 Scope of Transcriptions
11.3 Altered, Corrected, and Erroneous Texts . .
11.3.1 Core elements for Transcriptional Work
11.3.2 Abbreviation and Expansion
11.3.3 Correction and Conjecture
11.3.4 Additions and Deletions
11.3.5 Substitutions

11.3.6 Cancellation of Deletions and Other Markings
11.3.7 Text Omitted from or Supplied in the Transcription

11.4 Hands and Responsibility
11.4.1 DocumentHands

11.4.2 Hand, Responsibility, and Certainty Attributes

11.5 Damage and Conjecture
11.5.1 Damage, Illegibility, and Supplied Text .

11.5.2 Use of the <gap>, , <damage>, <unclear>, and <supplied> Elements in Combi-

nation

11.6 AspectsofLayout
11.6.1 Space.
11.6.2 Lines
11.7 Headers, Footers, and Similar Matter

11.8 Other Primary Source Features not Covered in these Guidelines

11.9 Module for Transcription of Primary Sources

viii

297
299
302
303
304
304
308
309
310
312
313
314
314
315
316
317
321
326
328
329
333
333

335
335
345
345
346
346
350
355
359
361
362
363
363
365
367
367

370
371
371
372
373
374
374

edited by Lou Burnard and Syd Bauman

12 Critical Apparatus

12.1 The Apparatus Entry, Readings, and Witnesses

12.1.1 The Apparatus Entry
12.1.2 Readings

12.1.3 Indicating Subvariation in Apparatus Entries

12.1.4 Witness Information

12.1.5 Fragmentary Witnesses oo
12.2 Linking the Apparatustothe Text
12.2.1 The Location-referenced Method
12.2.2 The Double End-Point Attachment Method
12.2.3 The Parallel Segmentation Method
12.3 Using Apparatus Elements in Transcriptions
12.4 Module for Critical Apparatus e

13 Names, Dates, People, and Places
13.1 Attribute Classes Defined

bythisModule

13.1.1 Linking Names and their Referents

13.1.2 Dating Attributes .
132 Names.
13.2.1 Personal Names . .

13.2.2 Organizational Names|.

13.2.3 Place Names

13.3 Biographical and Prosopographical Data

13.3.1 Basic Principles| . .
13.3.2 'The Person Element
13.3.3 Organizational Data
1334 Places
13.3.5 Names and Nyms| .
13.3.6 Dates and Times| . .

13.4 Module for Namesand Dates e

14 Tables, Formulz, and Graphics
14.1 Tables
14.1.1 TEI Tables
14.1.2 Other Table Schemas

14.2 Formulee and Mathematical Expressions
14.3 Specific Elements for GraphicImages
14.4 Overview of Basic Graphics Concepts

14.5 Graphic Image Formats

14.5.1 Vector Graphic Formats L
14.5.2 Raster Graphic Formats
14.5.3 Photographic and Motion Video Formats
14.6 Module for Tables, Formule, and Graphics

15 Language Corpora

15.1 Varieties of Composite Text

15.2 Contextual Information
15.2.1 The Text Description

ix

375
375
376
376
379
382
386
387
388
389
391
393
394

395
395
395
397
399
399
405
407
410
410
411
420
422
432
435
439

441
441
442
445
446
449
453
454
454
454
455
456

457
458
460
461

The TEI Guidelines

15.2.2 The Participant Description
15.2.3 The Setting Description L o
15.3 Associating Contextual Information witha Text
15.3.1 Combining Corpus and Text Headers
1532 Declarable Elements o

15.3.3 Summary . . .

15.4 Linguistic Annotationof Corpora

154.1 Levelsof Analysis
15.5 Recommendations for the Encoding of Large Corpora
15.6 Module for Language Corpora i e

16 Linking, Segmentation, and Alignment

16.1 Links

16.1.1 Pointersand Links L
16.1.2 Using Pointersand Links

16.1.3 Groups of Links

16.1.4 Intermediate Pointers e

16.2 Pointing Mechanisms

16.2.1 Pointing Elsewhere L. L

16.2.2 Pointing Locally

16.2.3 W3Celement() Scheme e
16.2.4 TEI XPointer Schemes
16.2.5 Canonical References
16.3 Blocks, Segments, and Anchors Lo oo
16.4 Correspondence and Alignment oL

16.4.1 Correspondence

16.4.2 Alignment of Parallel Texts|
16.4.3 A Three-way Alignment

16.5 Synchronization . .

16.5.1 Aligning SynchronousEvents/.
16.5.2 Placing Synchronous Eventsin Time
16.6 Identical Elements and Virtual Copies|.

16.7 Aggregation
16.8 Alternation
16.9 Stand-off Markup . .

16.9.1 Introduction . .

16.9.2 OverviewofXInclude L
16.9.3 Doing Stand-oft Markupin TEI

16.9.4 Well-formedness
16.9.5 Including Text or

and Validity of Stand-off Markup
XML Fragments

16.10 Connecting Analytic and Textual Markup
16.11 Module for Linking, Segmentation, and Alignment

17 Simple Analytic Mechanisms

17.1 Linguistic Segment Categories| o oo
17.2 Global Attributes for Simple Analyses
17.3 Spans and Interpretations e

17.4 Linguistic Annotation

463
464
466
466
467
470
471
471
471
472

473
474
474
475
479
480
481
481
483
484
485
488
491
496
496
498
500
504
504
507
508
510
515
520
520
521
522
524
525
526
526

527
527
533
533
537

edited by Lou Burnard and Syd Bauman

17.5 Module for Analysis and Interpretation

18 Feature Structures

18.1 OrganizationofthisChapter

18.2 Elementary Feature Structures and the Binary Feature Value
18.3 Other Atomic Feature Values
18.4 Feature and Feature-Value Libraries

18.5 Feature Structures as Complex Feature Values

18.6 Re-entrant Feature Structures
18.7 Collections as Complex Feature Values
18.8 Feature Value Expressions

18.8.1 Alternation . . .
18.8.2 Negation

18.8.3 Collectionof Values e

18.9 Default Values

18.10 Linking Text and Analysis
18.11 Feature System Declaration

18.11.1 Linking a TEI Text to Feature System Declarations
18.11.2 The Overall Structure of a Feature System Declaration
18.11.3 Feature Declarations

18.11.4 Feature Structure Constraints
18.11.5 A Complete Example L L
18.12 Formal Definition and Implementation

19 Graphs, Networks, and Trees
19.1 Graphs and Digraphs .

19.1.1 Transition Networks e

19.1.2 Family Trees . . .

19.1.3 Historical Interpretation

19.2 Trees
19.3 Another Tree Notation

19.4 Representing Textual Transmission
19.5 Module for Graphs, Networks, and Trees

20 Non-hierarchical Structures

20.1 Multiple Encodings of the Same Information

20.2 Boundary Marking with Empty Elements

20.3 Fragmentation and Reconstitution of Virtual Elements

20.4 Stand-off Markup . . .

20.5 Non-XML-based Approaches

21 Certainty and Responsibility
21.1 Levels of Certainty . .

21.1.1 Using Notes to Record Uncertainty

21.1.2 Structured Indications of Uncertainty
21.2 Attribution of Responsibility o o

21.3 The Certainty Module

xi

541

543
543
543
545
548
550
552
553
555
555
558
559
559
560
563
564
566
567
571
573
577

579
579
584
587
590
593
598
606
608

611
612
613
617
621
622

625
625
626
626
631
631

The TEI Guidelines

22 Documentation Elements 633
22.1 Phrase Level Documentary Elements 634

22.1.1 PhraseLevel Terms e 634

22.1.2 Element and Attribute Descriptions 635

222 Modulesand Schemas| L 636

22.3 Specification Elements L 638

224 Common Elements 639

22.4.1 Description of Components|. 639

22.4.2 Exemplification of Components L L. 640

22.4.3 Classification of Components L. 641

22.44 Element Specifications| L 641

22.4.5 Attribute List Specification| 642

2246 ElementClasses 645

22.4.7 Pattern Documentation L L Lo 648

225 BuildingaSchema 648

22.6 Combining TEI and Non-TEIModules 650

22.7 Module for Documention Elements L. 651

23 Using the TEI 653
23.1 Obtainingthe TEI Schemas 653

23.2 Personalization and Customization 653

23.2.1 Kindsof Modification 655

23.2.2 Modification and Namespaceso e 662

23.2.3 Documenting the Modification L L Lo 663

23.2.4 Examples of Modification L 664

233 Conformance e e e e e e 665

23.3.1 Well-formedness criterion| e 665

23.3.2 Validation Constraint e 666

23.3.3 Conformance to the TEI Abstract Model 666

23.3.4 Useofthe TEI Namespace 667

23.3.5 Documentation Constraint L 668

23.3.6 Varieties of TEI Conformance 668

23.4 Implementation of an ODD System 670

23.4.1 MakingaUnifiedODD L 670

23.42 Generating Schemas L e 674

23.4.3 Names and Documentation in Generated Schemas 678

2344 Makinga RELAXNGSchema 679

2345 MakingaDTD 684

23.4.6 Generating Documentation oL 685

23.4.7 Using TEI Parameterized Schema Fragments 685

A Model Classes 691
B Attribute Classes 711
C Elements 745
D Attributes 1241

xii

edited by Lou Burnard and Syd Bauman

E Datatypes and Other Macros 1247
F Bibliography 1267
Works cited in examples in the Guidelines|. 1267

Works cited elsewhere in the text of the Guidelines 1279
Readinglist e 1282
Theory of Markupand XML L 1283

TEL . 1288

G Prefatory Notes 1293
Prefatory Note (March 2002) 1293
Introductory Note (November 2001).o it it 1294
Introductory Note (June2001) 1294
Introductory Note (May 1999) i i i 1296
Typographic correctionsmade L L Lo 1296
Specificchangesinthe DTD|. 1296
Outstanding errors 1297

Preface (April 1994) e 1298
Acknowledgments 1299

TEI Working Committees (1990-1993) i 1299

Advisory Board 1301

Steering Committee Membership L Lo L Lo 1302

H Colophon 1303

xiii

The TEI Guidelines

Xiv

pud @

Releases of the TEI Guidelines

P1 1990, C.M. Sperberg-McQueen and Lou Burnard
P2 1992, C.M. Sperberg-McQueen and Lou Burnard
P3 1994, C.M. Sperberg-McQueen and Lou Burnard
P4 2001, Lou Burnard, Syd Bauman, and Steven DeRose

P5 2007, Lou Burnard and Syd Bauman

i. Releases of the TEI Guidelines

xvi

Dedication

In memoriam

Donald E. Walker

22 November 1928 - 26 November 1993
Antonio Zampolli

1937 - 22 August 2003

xvii

ii. Dedication

xviii

Preface and Acknowledgments

This publication constitutes the fifth distinct version of the Guidelines for Electronic Text Encoding and Inter-
change, and the first complete revision since the appearance of P3 in 1994. It includes substantial amounts of
new material and a major revision of the underlying technical infrastructure. With this version, the Guidelines
enter a new stage in their development as a community-maintained open source project. This edition is the
first version to have benefitted from the close overview and oversight of an elected TEI Technical Council. The
editors are therefore particularly pleased to acknowledge with gratitude the hard work and dedication put into
this project by the Council over the last five years.

The Chair of the TEI Board sits on the Technical Council, and the Board also nominates one other member
to the Council. The other Council members are all elected by the Consortium membership, and serve periods of
up to two years at a time. The Board nominates the Chair of the Technical Council from among its members.
The names and affiliations of all Council members who served during the production of this edition of the
Guidelines are listed below.

Chair

e 2002-3: John Unsworth (University of Virginia)
e 2003-7: Christian Wittern (Kyoto University)

Board Members

¢ 2002-7: Sebastian Rahtz (University of Oxford)

o 2004-5: Julia Flanders (Brown University)

o 2006: Matthew Zimmerman (New York University)
 2007: Daniel O'Donnell (University of Lethbridge)

Elected Members
¢ 2003-6: Alejandro Bia (University of Alicante)
* 2004-6; 2006-7: David Birnbaum (University of Pittsburgh)
« 2007: Tone Merete Bruvik (University of Bergen)
« 2007: Arianna Ciula (King's College London)
* 2005-7: James Cummings (University of Oxford)
« 2002-7: Matthew Driscoll (University of Copenhagen)
e 2002-4: David Durand (Ingenta plc)

Xix

iii. Preface and Acknowledgments

o 2002-4: Tomas Erjavec (Jozef Stefan Institute, Ljubljana)

e 2002: Fotis Jannidis (University of Munich)

 2006: Amit Kumar (University of Illinois at Urbana-Champaign)

e 2002: Martin Mueller (Northwestern University)

« 2006-7: Dorothy Porter (University of Kentucky)

o+ 2002-3: Merillee Proffitt (Research Libraries Group)

e 2002: Peter Robinson (De Montfort University)

* 2002: Geoftrey Rockwell (Macmaster University)

e 2002-7: Laurent Romary (University of Nancy; Max Planck Digital Library)
e 2003-7: Susan Schreibman (University of Maryland)

e 2004-5: Natasha Smith (University of North Carolina at Chapel Hill)

¢ 2006-7: Conal Tuohy (Victoria University of Wellington)

e 2004-5: Edward Vanhoutte (Royal Academy of Dutch Language and Literature)
¢ 2005-7: John Walsh (Indiana University)

o 2002-5: Perry Willett (Indiana University)

The bulk of the Council's work has been carried out by email and by regular telephone conference. In
addition, the Council has held six two-day face-to-face meetings. During production of P5, these meetings
were generously hosted by the following institutions:

King's College, London (2002)

Oxford University Computing Services (2003)

Royal Academy of Dutch Language and Literature, Ghent (2004)
AFNOR: Association frangaise de normalisation, Paris (2005)

Institute for Research in Humanities, Kyoto University (2006)
Berlin-Brandenburgische Akademie der Wissenschaften, Berlin (2007)

During the production of TEI P5, the Council chartered a number of smaller workgroups and similar
activities, each of which made significant contribution to the intellectual content of the work. Active members
of these are listed below:

Character Set Workgroup Active between July 2001 and January 2005, this group revised and developed the
recommendations now forming chapters vi Languages and Character Sets and 5. Representation of Non-
standard Characters and Glyphs. It was chaired by Christian Wittern, and its membership included:
Deborah Anderson (Berkeley); Michael Beddow (independent scholar); David Birnbaum (Pittsburgh
University); Martin Duerst (W3C/Keio University); Patrick Durusau (Society of Biblical Literature);
Tomohiko Morioka (Kyoto University); and Espen Ore (National Library of Norway).

Meta Taskforce Active between February 2003 and February 2005, this group developed the material now
forming 22. Documentation Elements. It was chaired by Sebastian Rahtz, and its membership included:
Alejandro Bia; David G. Durand; Laurent Romary; Norman Walsh (Sun Microsystems); and Christian
Wittern.

Workgroup on Stand-Off Markup, XLink and XPointer Active between February 2002 and January 2006,
this group reviewed and expanded the material now largely forming part of|16. Linking, Segmentation,
and Alignment. It was chaired by David G. Durand, and its membership included: Jean Carletta
(Edinburgh University); Chris Caton (University of Oxford); Jessica P. Hekman (Ingenta plc); Nancy
M. Ide (Vassar College); and Fabio Vitali (University of Bologna).

Manuscript Description Task Force Active between February 2003 and December 2005, this group reviewed
and finalised the material now forming 10. Manuscript Description. It was chaired by Matthew Driscoll
and comprised David Birnbaum and Merrillee Proffitt, in addition to the TEI Editors.

Names and Places Activity Active between January 2006 and May 2007, this group formulated the new
material now forming part of 13. Names, Dates, People, and Places. It was chaired by Matthew
Driscoll. and its membership included Gabriel Bodard (King's College London); Arianna Ciula; James
Cummings; Tom Elliott (University of North Carolina at Chapel Hill); @yvind Eide (University of
Oslo); Leif Isaksen (Oxford Archaeology plc); Richard Light (private consultant); Tadeusz Piotrowski
(Opole University); Sebastian Rahtz; and Tatiana Timcenko (Vilnius University).

Joint TEI/ISO Activity on Feature Structures Active between January 2003 and August 2007, this group
reviewed the material now presented in 18. Feature Structures and revised it for inclusion in ISO
Standard 24610. It was chaired by Kiyong Lee (Korea University), and its active membership included
the following: Harry Bunt (Tilburg); Lionel Clément (INRIA); Eric de la Clergerie (INRIA); Thierry
Declerck (Saarbriicken); Patrick Drouin (University of Montréal); Lee Gillam (Surrey University); and
Koiti Hasida (ICOT).

The TEI Editors, Lou Burnard (University of Oxford) and Syd Bauman (Brown University) serve ex officio
on the Council and, as far as possible, on all Council workgroups.

The council also oversees an Internationalization and Localization project, led by Sebastian Rahtz and with
funding from the ALLC. This activity, ongoing since October 2005, is engaged in translating key parts of the
P5 source into a variety of languages.

Production of the translations currently included in P5 has been co-ordinated by the following:

Chinese Marcus Bingenheimer (Chung-hwa Institute of Buddhist Studies, Taipei) and Weining Hwang
(Wiirzburg University)

French Pierre-Yves Duchemin (ENSSIB); Jean-Luc Benoit (ATILF); Anila Angjeli (BnF); Joélle Bellec Martini
(BnF); Marie-France Claerebout (Aldine); Magali Le Coént (BIUSJ); Florence Clavaud (EnC); Cécile
Pierre (BIUS]).

German Werner Wegstein (Wiirzburg University)
Japanese Ohya Kazushi (Tsurumi University)
Spanish Carmen Arronis Llopis (University of Alicante) and Alejandro Bia (Miguel Hernandez University)

Italian Marco Venuti (University of Venice) and Letizia Cirillo (University of Bologna)

Xxi

iii. Preface and Acknowledgments

xXxii

About These Guidelines

These Guidelines have been developed and are maintained by the Text Encoding Initiative Consortium (TEI);
see iv.2 Historical Background. They are addressed to anyone who works with any kind of textual resource in
digital form.

They make recommendations about suitable ways of representing those features of textual resources which
need to be identified explicitly in order to facilitate processing by computer programs. In particular, they specify
a set of markers (or tags) which may be inserted in the electronic representation of the text, in order to mark the
text structure and other features of interest. Many, or most, computer programs depend on the presence of such
explicit markers for their functionality, since without them a digitized text appears to be nothing but a sequence
of undifferentiated bits. The success of the World Wide Web, for example, is partly a consequence of its use of
such markup to indicate such features as headings and lists on individual pages, and to indicate links between
pages. The process of inserting such explicit markers for implicit textual features is often called ‘markup;, or
equivalently within this work ‘encoding’; the term ‘tagging’ is also used informally. We use the term encoding
scheme or markup language to denote the complete set of rules associated with the use of markup in a given
context; we use the term markup vocabulary for the specific set of markers or named distinctions employed by
a given encoding scheme. Thus, this work both describes the TEI encoding scheme, and documents the TEI
markup vocabulary.

The TEI encoding scheme is of particular usefulness in facilitating the loss-free interchange of data
amongst individuals and research groups using different programs, computer systems, or application software.
Since they contain an inventory of the features most often deployed for computer-based text processing, the
Guidelines are also useful as a starting point for those designing new systems and creating new materials, even
where interchange of information is not a primary objective.

These Guidelines apply to texts in any natural language, of any date, in any literary genre or text type,
without restriction on form or content. They treat both continuous materials (‘running text’) and discontinuous
materials such as dictionaries and linguistic corpora. Though principally directed to the needs of the scholarly
research community, the Guidelines are not restricted to esoteric academic applications. They are also useful
for librarians maintaining and documenting electronic materials, and for publishers and others creating or
distributing electronic texts. Although they focus on problems of representing in electronic form texts which
already exist in traditional media, these Guidelines are also applicable to textual material which is ‘born digital.
We believe them to be adequate to the widest variety of currently existing practices in using digital textual data,
but by no means limited to them.

The rules and recommendations made in these Guidelines are expressed in terms of what is currently the
most widely-used markup language for digital resources of all kinds: the Extensible Markup Language (XML),
as defined by the World Wide Web Consortium's XML Recommendation. However, the TEI encoding scheme
itself does not depend on this language; it was originally formulated in terms of a predecessor of XML (the ISO

xxiii

iv. About These Guidelines

Standard Generalized Markup Language), and may in future years be re-expressed in other such frameworks as
the field of markup develops and matures. For more information on markup languages see chapter v A Gentle
Introduction to XML; for more information on the associated character encoding issues see chapter vi Languages
and Character Sets.

This document provides the authoritative and complete statement of the requirements and usage of the
TEI encoding scheme. As such, although it includes numerous small examples, it must be stressed that this
work is intended to be a reference manual rather than a tutorial guide.

The remainder of this chapter comprises three sections. The first gives an overview of the structure
and notational conventions used throughout these Guidelines. The second enumerates the design principles
underlying the TEI scheme and the application environments in which it may be found useful. Finally, the
third section gives a brief account of the origins and development of the Text Encoding Initiative itself.

Structure and Notational Conventions of this Document

The remaining two sections of the front matter to the Guidelines provide background tutorial material for those
unfamiliar with basic markup technologies. Following the present introductory section, we present a detailed
introduction to XML itself, intended to cover in a relatively painless manner as much as the novice user of
the TEI scheme needs to know about markup languages in general and XML in particular. This is followed by
a discussion of the general principles underlying current practice in the representation of different languages
and writing systems in digital form. This chapter is largely intended for the user unfamiliar with the Unicode
encoding systems, though the expert may also find its historical overview of interest.

The body of this edition of the Guidelines proper contains 23 chapters arranged in increasing order of
specialist interest. The first five chapters discuss in depth matters likely to be of importance to anyone intending
to apply the TEI scheme to virtually any kind of text. The next seven focus on particular kinds of text: verse,
drama, spoken text, dictionaries, and manuscript materials. The next nine chapters deal with a wide range
of topics, one or more of which are likely to be of interest in specialist applications of various kinds. The
last two chapters deal with the XML encoding used to represent the TEI scheme itself, and provide technical
information about its implementation. The last chapter also defines the notion of TEI conformance and its
implications for interchange of materials produced according to these Guidelines.

As noted above, this is a reference work, and is not intended to be read through from beginning to end.
However, the reader wishing to understand the full potential of the TEI scheme will need a thorough grasp of
the material covered by the first four chapters and the last two. Beyond that, the reader is recommended to
select according to their specific interests: one of the strengths of the TEI architecture is its modular nature.

As far as possible, extensive cross referencing is provided wherever related topics are dealt with; these
are particularly effective in the online version of the Guidelines. In addition, a series of technical appendixes
provide detailed formal definitions for every element, every class, and every macro discussed in the body of the
work; these are also cross linked as appropriate. Finally, a detailed bibliography is provided, which identifies the
source of many examples cited in the text as well as documenting works referred to, and listing other relevant
publications.

As an aid to the reader, most chapters of these Guidelines follow the same basic organization. The chapter
begins with an overview of the subjects treated within it, linked to the following subsections. Within each
section where new elements are described, a summary table is first given, which provides their names and
a brief description of their intended usage. This is then followed where appropriate by further discussion
of each element, including wherever possible usage examples taken somewhat eclectically from a variety of
real sources. These examples are not intended to be exhaustive, but rather to suggest typical ways in which
the elements concerned may usefully be applied. Where appropriate, a link to a statement of the source for
most examples is provided in the online version. Within the examples, use of whitespace such as newlines or
indentation is simply intended to aid legibility, and is not prescriptive or normative.

XXiv

iv.1. Structure and Notational Conventions of this Document

Wherever TEI elements or classes are mentioned in the text, they are linked in the online version to the
relevant reference specification for the element or class concerned. Element names are always given in the
form <name>, where ‘name’ is the generic identifier of the element; empty elements such as <pb> or <anchor>
include a closing slash to distinguish them wherever they are discussed. References to attributes take the form
attname, where ‘attname’ is the name of the attribute. References to classes are also presented as links, for
example model.divLike for a model class, and att.global for an attribute class.

iv.1.1 Design Principles

Because of its roots in the humanities research community, the TEI scheme is driven by its original goal
of serving the needs of research, and is therefore committed to providing a maximum of comprehensibility,
flexibility, and extensibility. More specific design goals of the TEI have been that the Guidelines should:

+ provide a standard format for data interchange
« provide guidance for the encoding of texts in this format
« support the encoding of all kinds of features of all kinds of texts studied by researchers

» be application independent
This has led to a number of important design decisions, such as:
o the choice of XML and Unicode

« the provision of a large predefined tag set
« encodings for different views of text
o alternative encodings for the same textual features

« mechanisms for user-defined modification of the scheme

We discuss some of these goals in more detail below.

The goal of creating a common interchange format which is application independent requires the definition
of a specific markup syntax as well as the definition of a large set of elements or concepts. The syntax
of the recommendations made in this document conforms to the World Wide Web Consortium's XML
Recommendation (Bray et al. (eds.) (2006)) but their definition is as far as possible independent of any
particular schema language.

The goal of providing guidance for text encoding suggests that recommendations be made as to what textual
features should be recorded in various situations. However, when selecting certain features for encoding in
preference to others, these Guidelines have tended to prefer generic solutions to specific ones, and to avoid areas
where no consensus exists, while attempting to accommodate as many diverse views as feasible. Consequently,
the TEI Guidelines make (with relatively rare exceptions) no suggestions or restrictions as to the relative
importance of textual features. The philosophy of the Guidelines is ‘if you want to encode this feature, do
it this way’ — but very few features are mandatory. In the same spirit, while the Guidelines very rarely require
you to encode any particular feature, they do require you to be honest about which features you have encoded,
that is, to respect the meanings and usage rules they recommend for specific elements and attributes proposed.

The requirement to support all kinds of materials likely to be of interest in research has largely conditioned
the development of the TEI into a very flexible and modular system. The development of other XML
vocabularies or standards is typically motivated by the desire to create a single fully specified encoding scheme
for use in a well-defined application domain. By contrast, the TEI is intended for use in a large number of rather
ill-defined and often overlapping domains. It achieves its generality by means of the modular architecture
described in |I. The TEI Infrastructure which enables each user to create a schema appropriate to their needs
without compromising the interoperability of their data.

The Guidelines have been written largely with a focus on text capture (i.e. the representation in electronic
form of an already existing copy text in another medium) rather than text creation (where no such copy text

XXV

iv. About These Guidelines

exists). Hence the frequent use of terms like ‘transcription;, ‘original; ‘copy text, etc. However, the Guidelines
are equally applicable to text creation.

Concerning text capture the TEI Guidelines do not specify a particular approach to the problem of fidelity
to the source text and recoverability of the original; such a choice is the responsibility of the text encoder.
The current version of these Guidelines, however, provides a more fully elaborated set of tags for markup of
rhetorical, linguistic, and simple typographic characteristics of the text than for detailed markup of page layout
or for fine distinctions among type fonts or manuscript hands. It should be noted also that, with the present
version of the Guidelines, it is no longer necessarily the case that an unmediated version of the source text can
be recovered from an encoded text simply by removing the markup.

In these Guidelines, no hard and fast distinction is drawn between ‘objective’ and ‘subjective’ information
or between ‘representation’ and ‘interpretation. These distinctions, though widely made and often useful in
narrow, well-defined contexts, are perhaps best interpreted as distinctions between issues on which there is a
scholarly consensus and issues where no such consensus exists. Such consensus has been, and no doubt will
be, subject to change. The TEI Guidelines do not make suggestions or restrictions as to which of these features
should be encoded. The use of the terms descriptive and interpretive about different types of encoding in the
Guidelines is not intended to support any particular view on these theoretical issues. Historically, it reflects a
purely practical division of responsibility amongst the original working committees (see further iv.2 Historical
Background).

In general, the accuracy and the reliability of the encoding and the appropriateness of the interpretation is
for the individual user of the text to determine. The Guidelines provide a means of documenting the encoding
in such a way that a user of the text can know the reasoning behind that encoding, and the general interpretive
decisions on which it is based. The TEI header may be used to document and justify many such aspects of the
encoding, but the choice of TEI elements for a particular feature is in itself a statement about the interpretation
reached by the encoder.

In many situations more than one view of a text is needed since no absolute recommendation to embody
one specific view of text can apply to all texts and all approaches to them. Within limits, the syntax of XML
ensures that some encodings can be ignored for some purposes. To enable encoding multiple views, these
Guidelines not only treat a variety of textual features, but sometimes provide several alternative encodings
for what appear to be identical textual phenomena. These Guidelines offer the possibility of encoding many
different views of the text, simultaneously if necessary. Where different views of the formal structure of a text
are required, as opposed to different annotations on a single structural view, however, the formal syntax of
XML (which requires a single hierarchical view of text structure) poses some problems; recommendations
concerning ways of overcoming or circumventing that restriction are discussed in chapter 20. Non-hierarchical
Structures.

In brief, the TEI Guidelines define a general-purpose encoding scheme which makes it possible to encode
different views of text, possibly intended for different applications, serving the majority of scholarly purposes
of text studies in the humanities. Because no predefined encoding scheme can possibly serve all research
purposes, the TEI scheme is designed to facilitate both selection from a wide range of predefined markup
choices, and the addition of new (non-TEI) markup options. By providing a formally verifiable means of
extending the TEI recommendations, the TEI makes it simple for such user-identified modifications to be
incorporated into future releases of the Guidelines as they evolve. The underlying mechanisms which support
these aspects of the scheme are introduced in chapter|1. The TEI Infrastructure, and detailed discussions of their
use provided in chapter 23. Using the TEIL

iv.1.2 Intended Use

We envisage three primary functions for these Guidelines:
+ guidance for individual or local practice in text creation and data capture;

Xxvi

iv.1. Structure and Notational Conventions of this Document

« support of data interchange;

« support of application-independent local processing.
These three functions are so thoroughly interwoven in practice that it is hardly possible to address any
one without addressing the others. However, the distinction provides a useful framework for discussing the
possible role of the Guidelines in work with electronic texts.

Use in Text Capture and Text Creation

The description of textual features found in the chapters which follow should provide a useful checklist from
which scholars planning to create electronic texts should select the subset of features suitable for their project.

Problems specific to text creation or text ‘capture’ have not been considered explicitly in this document.
These Guidelines are not concerned with the process by which a digital text comes into being: it can be typed
by hand, scanned from a printed book or typescript, read from a typesetter's tape, or acquired from another
researcher who may have used another markup scheme (or no explicit markup at all).

We include here only some general points which are often raised about markup and the process of data
capture.

XML can appear distressingly verbose, particularly when (as in these Guidelines) the names of tags and
attributes are chosen for clarity and not for brevity. Editor macros and keyboard shortcuts can allow a typist
to enter frequently used tags with single keystrokes. It is often possible to transform word-processed or
scanned text automatically. Markup-aware software can help with maintaining the hierarchical structure of
the document, and display the document with visual formatting rather than raw tags.

The techniques described in chapter 23.2. Personalization and Customization may be used to develop simpler
data capture TEI-conformant schemas, for example with limited numbers of elements, or with shorter names
for the tags being used most often. Documents created with such schemas may then be automatically converted
to a more elaborated TEI form.

Use for Interchange

The TEI format may simply be used as an interchange format, permitting projects to share resources even when
their local encoding schemes differ. If there are n different encoding formats, to provide mappings between
each possible pair of formats requires n*(n-1) translations; with an interchange format, only 2n such mappings
are needed. However, for such translations to be carried out without loss of information, the interchange format
chosen must be as expressive (in a formal sense) as any of the target formats; this is a further reason for the
TEI's provision of both highly abstract or generic encodings and highly specific ones.

To translate between any pair of encoding schemes implies:

1. identifying the sets of textual features distinguished by the two schemes;
2. determining where the two sets of features correspond;
3. creating a suitable set of mappings.
For example, to translate from encoding scheme X into the TEI scheme:
1. Make a list of all the textual features distinguished in X.

2. Identify the corresponding feature in the TEI scheme. There are three possibilities for each feature:

(a) the feature exists in both X and the TEI scheme;
(b) X has a feature which is absent from the TEI scheme;

(c) X has a feature which corresponds with more than one feature in the TEI scheme.

XXVvii

iv. About These Guidelines

The first case is a trivial renaming. The second will require an extension to the TEI scheme, as described
in chapter 23.2. Personalization and Customization. The third is more problematic, but not impossible,
provided that a consistent choice can be made (and documented) amongst the alternatives.

The ease with which this translation can be defined will of course depend on the clarity with which scheme
X represents the features it encodes.

Translating from the TEI into scheme X follows the same pattern, except that if a TEI feature has no
equivalent in X, and X cannot be extended, information must be lost in translation.

The rules defining conformance to the Guidelines are given in some detail in chapter 23.3. Conformance.
The basic principles informing those rules may be summarized as follows:

1. The TEI abstract model (that is, the set of categorical distinctions which it defines) must be respected.
The correspondence between a tag X and the semantic function assigned to it by these Guidelines may
not be changed; such changes are known as tag abuse and strongly deprecated.

2. A TEI document must be expressed as a valid XML-conformant document which uses the TEI names-
pace appropriately. If, for example, the document encodes features not provided by the Guidelines,
such extensions may not be associated with the TEI namespace.

3. It mustbe possible to validate a TEI document against a schema derived from these Guidelines, possibly
with extensions provided in the recommended manner.

Use for Local Processing
Machine-readable text can be manipulated in many ways; some users:
o edit texts (e.g. word processors, syntax-directed editors)
« edit, display, and link texts in hypertext systems
 format and print texts using desktop publishing systems, or batch-oriented formatting programs
o load texts into free-text retrieval databases or conventional databases
+ unload texts from databases as search results or for export to other software
o search texts for words or phrases
« perform content analysis on texts
« collate texts for critical editions
o scan texts for automatic indexing or similar purposes
o parse texts linguistically
o analyze texts stylistically
 scan verse texts metrically
o link text and images

These applications cover a wide range of likely uses but are by no means exhaustive. The aim has been to
make the TEI Guidelines useful for encoding the same texts for different purposes. We have avoided anything
which would restrict the use of the text for other applications. We have also tried not to omit anything essential
to any single application.

Because the TEI format is expressed using XML, almost any modern text processing system is able to
process it, and new TEI-aware software systems are able to build on a solid base of existing software libraries.

xxviii

iv.2. Historical Background

iv.2 Historical Background

The Text Encoding Initiative grew out of a planning conference sponsored by the Association for Computers
and the Humanities (ACH) and funded by the U.S. National Endowment for the Humanities (NEH), which
was held at Vassar College in November 1987. At this conference some thirty representatives of text archives,
scholarly societies, and research projects met to discuss the feasibility of a standard encoding scheme and to
make recommendations for its scope, structure, content, and drafting. During the conference, the Association
for Computational Linguistics and the Association for Literary and Linguistic Computing agreed to join ACH
as sponsors of a project to develop the Guidelines. The outcome of the conference was a set of principles (the
‘Poughkeepsie Principles, Burnard (1988)), which determined the further course of the project.

The Text Encoding Initiative project began in June 1988 with funding from the NEH, soon followed by
further funding from the Commission of the European Communities, the Andrew W. Mellon Foundation,
and the Social Science and Humanities Research Council of Canada. Four working committees, composed
of distinguished scholars and researchers from both Europe and North America, were named to deal with
problems of text documentation, text representation, text analysis and interpretation, and metalanguage and
syntax issues. Each committee was charged with the task of identifying ‘significant particularities’ in a range of
texts, and two editors appointed to harmonise the resulting recommendations.

A first draft version (P1, with the ‘P here and subsequently standing for ‘Proposal’) of the Guidelines was
distributed in July 1990 under the title Guidelines for the Encoding and Interchange of Machine-Readable Texts.
Extensive public comment and further work on areas not covered in this version resulted in the drafting of a
revised version, TEI P2, distribution of which began in April 1992. This version included substantial amounts
of new material, resulting from work carried out by several specialist working groups, set up in 1990 and 1991
to propose extensions and revisions to the text of P1. The overall organization, both of the draft itself and of
the scheme it describes, was entirely revised and reorganized in response to public comment on the first draft.

In June 1993 an Advisory Board met to review the current state of the TEI Guidelines, and recommended
the formal publication of the work done to that time. That version of the TEI Guidelines, TEI P3, consolidated
the work published as parts of TEI P2, along with some additional new material and was finally published in
May of 1994 without the label draft, thus marking the conclusion of the initial development work.

In February of 1998 the World Wide Web Consortium issued a final Recommendation for the Extensible
Markup Language, XML.! Following the rapid take-up of this new standard metalanguage, it became evident
that the TEI Guidelines (which had been published originally as an SGML application) needed to be re-
expressed in this new formalism if they were to survive. The TEI editors, with abundant assistance from others
who had developed and used TEIL, developed an update plan, and made tentative decisions on relevant syntactic
issues.

In January of 1999, the University of Virginia and the University of Bergen formally proposed the creation
of an international membership organization, to be known as the TEI Consortium, which would maintain,
develop, and promote the TEIL Shortly thereafter, two further institutions with longstanding ties to the
TEI (Brown University and Oxford University) joined them in formulating an Agreement to Establish a
Consortium for the Maintenance of the Text Encoding Initiative (An Agreement to Establish a Consortium
for the Maintenance of the Text Encoding Initiative (March 1999)), on which basis the TEI Consortium was
eventually established and incorporated as a not-for-profit legal entity at the end of the year 2000. The first
members of the new TEI Board took office during January of 2001.

The TEI Consortium was established in order to maintain a permanent home for the TEI as a democrat-
ically constituted, academically and economically independent, self-sustaining, non-profit organization. In
addition, the TEI Consortium was intended to foster a broad-based user community with sustained involve-
ment in the future development and widespread use of the TEI Guidelines (Burnard (2000)).

IXML was originally developed as a way of publishing on the World Wide Web richly encoded documents such as those for which the TEI was
designed. Several TEI participants contributed heavily to the development of XML, most notably XML's senior co-editor C. M. Sperberg-McQueen,
who served as the North American editor for the TEI Guidelines from their inception until 1999.

XXix

iv. About These Guidelines

iv.3

To oversee and manage the revision process in collaboration with the TEI Editors, the TEI Board formed
a Technical Council, with a membership elected from the TEI user community. The Council met for the first
time in January 2002 at King's College London. Its first task was to oversee production of an XML version of
the TEI Guidelines, updating P3 to enable users to work with the emerging XML toolset. This, the P4 version
of the Guidelines, was published in June 2002. It was essentially an XML version of P3, making no substantive
changes to the constraints expressed in the schemas apart from those necessitated by the shift to XML, and
changing only corrigible errors identified in the prose of the P3 Guidelines. However, given that P3 had by this
time been in steady use since 1994, it was clear that a substantial revision of its content was necessary, and work
began immediately on the P5 version of the Guidelines. This was planned as a thorough overhaul, involving a
public call for features and new development in a number of important areas not previously addressed including
character encoding, graphics, manuscript description, biographical and geographical data, and the encoding
language in which the TEI Guidelines themselves are written.

The members of the TEI Council and its associated workgroups are listed in iii Preface and Acknowledgments.
In preparing this edition, they have been attentive to the requirements and practice of the widest possible
range of TEI users, who are now to be found in many different research communities across the world, and
have been largely instrumental in transforming the TEI from a grant-supported international research project
into a self-sustaining community-based effort. One effect of the incorporation of the TEI has been the legal
requirement to hold an annual meeting of the Consortium members; these meetings have emerged as an
invaluable opportunity to sustain and reinforce that sense of community.

The present work is therefore the result of a sustained period of consultation, drafting, and revision, with
input from many different experts. Whatever merits it may have are to be attributed to them; the Editors accept
responsibility only for the errors remaining.

Future Developments

The encoding recommended by this document may be used without fear that future versions of the TEI scheme
will be inconsistent with it in fundamental ways. The TEI will be sensitive, in revising these Guidelines, to the
possible problems which revision might pose for those who are already using this version of the Guidelines.

With TEIP5, a version numbering system is introduced: the version number has two parts, a major number
and a minor, for example 1.0. The TEI undertakes that no change will be made to the formal expression of these
Guidelines (that is, a TEI schema, as defined in 23.3. Conformance) such that documents conformant to a given
major numbered release cease to be compatible with a subsequent release of the same major number. Moreover,
as far as possible, new minor releases will be made only for the purpose of adding new compatible features, or
of correcting errors in existing features.

The Guidelines are currently maintained as an open source (GNU General Public License) project, on
the Sourceforge site http://tei.sf.net/ from which released and development versions may be freely
downloaded; notice of errors detected and enhancements requested may also be submitted at this site.

http://tei.sf.net/

A\

A Gentle Introduction to XML

The encoding scheme defined by these Guidelines is formulated as an application of the Extensible Markup
Language (XML) (Bray et al. (eds.) (2006)). XML is widely used for the definition of device-independent,
system-independent methods of storing and processing texts in electronic form. It is now also the interchange
and communication format used by many applications on the World Wide Web. In the present chapter we
informally introduce some of its basic concepts and attempt to explain to the reader encountering them for the
first time how and why they are used in the TEI scheme. More detailed technical accounts of TEI practice in
this respect are provided in chapters 23. Using the TEI, 1. The TEI Infrastructure, and 22. Documentation Elements
of these Guidelines.

Strictly speaking, XML is a metalanguage, that is, a language used to describe other languages, in this
case, markup languages. Historically, the word markup has been used to describe annotation or other marks
within a text intended to instruct a compositor or typist how a particular passage should be printed or laid
out. Examples include wavy underlining to indicate boldface, special symbols for passages to be omitted or
printed in a particular font, and so forth. As the formatting and printing of texts was automated, the term
was extended to cover all sorts of special codes inserted into electronic texts to govern formatting, printing, or
other processing.

Generalizing from that sense, we define markup, or (synonymously) encoding, as any means of making
explicit an interpretation of a text. Of course, all printed texts are implicitly encoded (or marked up) in this
sense: punctuation marks, capitalization, disposition of letters around the page, even the spaces between words
all might be regarded as a kind of markup, the purpose of which is to help the human reader determine where
one word ends and another begins, or how to identify gross structural features such as headings or simple
syntactic units such as dependent clauses or sentences. Encoding a text for computer processing is, in principle,
like transcribing a manuscript from scriptio continual; it is a process of making explicit what is conjectural or
implicit, a process of directing the user as to how the content of the text should be (or has been) interpreted.

By markup language we mean a set of markup conventions used together for encoding texts. A markup
language must specify how markup is to be distinguished from text, what markup is allowed, what markup is
required, and what the markup means. XML provides the means for doing the first three; documentation such
as these Guidelines is required for the last.

The present chapter attempts to give an informal introduction to those parts of XML of which a proper
understanding is necessary to make best use of these Guidelines. The interested reader should also consult one
or more of the many excellent introductory textbooks and web sites now available on the subject.?

!In the ‘continuous writing’ characteristic of manuscripts from the early classical period, words are written continuously with no intervening spaces
or punctuation.

2New textbooks about XML appear at regular intervals and to select any one of them would be invidious. A useful list of pointers to introductory
web sites is available from http://www.xml.org/xml/resources focus beginnerguide.shtml; recommended online courses include http://www.
w3schools.com/xml/default.asp and http://www.ibm.com/developerworks/edu/x-dw-xmlintro-i.html,

XxxXi

http://www.xml.org/xml/resources_focus_beginnerguide.shtml
http://www.w3schools.com/xml/default.asp
http://www.w3schools.com/xml/default.asp
http://www.ibm.com/developerworks/edu/x-dw-xmlintro-i.html

v. A Gentle Introduction to XML

v.1

What's special about XML?

Three characteristics of XML distinguish it from other markup languages:
1. its emphasis on descriptive rather than procedural markup;
2. its notion of documents as instances of a document type;
3. its independence of any one hardware or software system.

These three aspects are discussed briefly below, and then in more depth in the remainder of this chapter.

XML is frequently compared with HTML, the language in which web pages have generally been written,
which shares some of the above characteristics. Compared with HTML, however, XML has some other
important features:

« XML is extensible: it does not consist of a fixed set of tags;
« XML documents must be well-formed according to a defined syntax;
o an XML document can be formally validated against a schema of some kind;

o XML is more interested in the meaning of data than in its presentation.

Descriptive markup

In a descriptive markup system, the markup codes used do little more than categorize parts of a document.
Markup codes such as <para> or \end{list} simply identify a portion of a document and assert of it that ‘the
following item is a paragraph; or ‘this is the end of the most recently begun list, etc. By contrast, a procedural
markup system defines what processing is to be carried out at particular points in a document: ‘call procedure
PARA with parameters 42, b, and x here’ or ‘move the left margin 2 quads left, move the right margin 2 quads
right, skip down one line, and go to the new left margin, etc. In XML, the instructions needed to process a
document for some particular purpose (for example, to format it) are sharply distinguished from the markup
used to describe it.

Usually, the markup or other information needed to process a document will be maintained separately
from the document itself, typically in a distinct document called a stylesheet, though it may do much more
than simply define the rendition or visual appearance of a document.

When descriptive markup is used, the same document can readily be processed in many different ways,
using only those parts of it which are considered relevant. For example, a content analysis program might
disregard entirely the footnotes embedded in an annotated text, while a formatting program might extract and
collect them all together for printing at the end of each chapter. Different kinds of processing can be carried
out with the same part of a file. For example, one program might extract names of persons and places from
a document to create an index or database, while another, operating on the same text, but using a different
stylesheet, might print names of persons and places in a distinctive typeface.

v.1.2 Types of document

A second key aspect of XML is its notion of a document type: documents are regarded as having types, just as
other objects processed by computers do. The type of a document is formally defined by its constituent parts
and their structure. The definition of a ‘report, for example, might be that it consisted of a ‘title’ and possibly an
‘author’, followed by an ‘abstract’ and a sequence of one or more ‘paragraphs. Anything lacking a title, according
to this formal definition, would not formally be a report, and neither would a sequence of paragraphs followed
by an abstract, whatever other report-like characteristics these might have for the human reader.

3We do not here discuss in any detail the ways that a stylesheet can be used or defined, nor do we discuss the popular W3C Stylesheet Languages
XSLT and CSS. See further Berglund (ed.) (2006), Clark (ed.) (1999), and Lie and Bos (eds.) (1999).

XXXii

v.2. Textual structures

If documents are of known types, a special-purpose program (called a parser), once provided with an
unambiguous definition of a document type, can check that any document claiming to be of that type does
in fact conform to the specification. A parser can check that all elements specified for a particular document
type are present and no others, that they are combined in appropriate ways, correctly ordered, and so forth.
More significantly, different documents of the same type can be processed in a uniform way. Programs can be
written which take advantage of the knowledge encapsulated in the document type information, and which
can thus behave in a more ‘intelligent’ fashion.

v.1.3 Data independence

v.2

A basic design goal of XML is to ensure that documents encoded according to its provisions can move from
one hardware and software environment to another without loss of information. The two features discussed so
far both address this requirement at an abstract level; the third feature addresses it at the level of the strings of
data characters that make up a document. All XML documents, whatever languages or writing systems they
employ, use the same underlying character encoding (that is, the same method of representing as binary data
those graphic forms making up a particular writing system).* This encoding is defined by an international
standard,® which is implemented by a universal character set maintained by an industry group called the
Unicode Consortium, and known as Unicode.® Unicode provides a standardised way of representing any of
the many thousands of discrete symbols making up the world's writing systems, past and present.

Most modern computing systems now support Unicode directly; for those which do not, XML provides a
mechanism for the indirect representation of single characters by means of their character number, known as
character references; see further v.6.1 Character References.

Textual structures

A text is not an undifferentiated sequence of words, much less of bytes. For different purposes, it may be
divided into many different units, of different types or sizes. A prose text such as this one might be divided into
sections, chapters, paragraphs, and sentences. A verse text might be divided into cantos, stanzas, and lines.
Once printed, sequences of prose and verse might be divided into volumes, gatherings, and pages.

Structural units of this kind are most often used to identify specific locations or refer to points within a
text (‘the third sentence of the second paragraph in chapter ten’; ‘canto 10, line 1234’; ‘page 412’ etc.) but they
may also be used to subdivide a text into meaningful fragments for analytic purposes (‘is the average sentence
length of section 2 different from that of section 52‘how many paragraphs separate each occurrence of the
word nature? how many pages?’). Other structural units are more clearly analytic, in that they characterize a
section of a text. A dramatic text might regard each speech by a different character as a unit of one kind, and
stage directions or pieces of action as units of another kind. Such an analysis is less useful for locating parts
of the text (‘the 93rd speech by Horatio in Act 2°) than for facilitating comparisons between the words used by
one character and those of another, or those used by the same character at different points of the play.

In a prose text one might similarly wish to regard as units of different types passages in direct or indirect
speech, passages employing different stylistic registers (narrative, polemic, commentary, argument, etc.),
passages of different authorship and so forth. And for certain types of analysis (most notably textual criticism)
the physical appearance of one particular printed or manuscript source may be of importance: paradoxically,
one may wish to use descriptive markup to describe presentational features such as typeface, line breaks, use
of whitespace and so forth.

These textual structures overlap with one other in complex and unpredictable ways. Particularly when
dealing with texts as instantiated by paper technology, the reader needs to be aware of both the physical

4See Extensible Markup Language (XML) 1.0, available from http://www.w3.0rg/TR/REC- xml, Section 2.2 Characters.
SISO/IEC 10646-1993 Information Technology — Universal Multiple-Octet Coded Character Set (UCS)
6Seelhttp://www.unicode.org/

xxxiii

http://www.w3.org/TR/REC-xml
http://www.unicode.org/

v. A Gentle Introduction to XML

organization of the book and the logical structure of the work it contains. Many great works (Sterne's Tristram
Shandy for example) cannot be fully appreciated without an awareness of the interplay between narrative units
(such as chapters or paragraphs) and presentational ones (such as page divisions). For many types of research,
the interplay among different levels of analysis is crucial: the extent to which syntactic structure and narrative
structure mesh, or fail to mesh, for example, or the extent to which phonological structures reflect morphology.

v.3 XML structures

This section describes the simple and consistent mechanism for the markup or identification of textual structure
provided by XML. It also describes the methods XML provides for the expression of rules defining how units
of textual structure can meaningfully be combined in a text.

v.3.1 Elements

The technical term used in XML for a textual unit, viewed as a structural component, is element. Different types
of elements are given different names, but XML provides no way of expressing the meaning of a particular type
of element, other than its relationship to other element types. That is, all one can say about an element called
(say) <blort> is that instances of it may (or may not) occur within elements of type <farble>, and that it may
(or may not) be decomposed into elements of type <blortette>. It should be stressed that XML is entirely
unconcerned with the semantics of textual elements, because these are considered to be application dependent.
It is up to the creators of XML vocabularies (such as these Guidelines) to choose intelligible element names and
to define their intended use in text markup. That is the chief purpose of documents such as the TEI Guidelines.
From the need to choose element names indicative of function comes the technical term for the name of an
element type, which is generic identifier, or GI.

Within a marked-up text (a document instance), each element must be explicitly marked or tagged in some
way. This is done by inserting a tag at the beginning of the element (a start-tag) and another at its end (an end-
tag). The start- and end-tag pair are used to bracket off element occurrences within the running text, in rather
the same way as different types of parentheses or quotation marks are used in conventional punctuation. For
example, a quotation element in a text might be tagged as follows:

. Rosalind's
remarks <quote>This is the silliest stuff that ere I heard
of!</quote> clearly indicate ...

As this example shows, a start-tag takes the form <quote>, where the opening angle bracket indicates the
start of the start-tag, ‘quote’ is the generic identifier of the element that is being delimited, and the closing angle
bracket indicates the end of the start-tag. An end-tag takes an identical form, except that the opening angle
bracket is followed by a solidus (slash) character, so that the corresponding end-tag is </quote>.” The material
between the start-tag and the end-tag (the string of words “This is the silliest stuft that ere I heard of” in the
example above) is known as the content of the element. Sometimes there may be nothing between the start
and the end-tag; in this case the two may optionally be merged together into a single composite tag with the
solidus at the end, like this: <quote/>.

v.3.2 Content models: an example

An element may be empty, that is, it may have no content at all, or it may contain just a sequence of characters
with no other elements. Often, however, elements of one type will be embedded (contained entirely) within
elements of a different type.

7Because the opening angle bracket has this special function in an XML document, special steps must be taken to use that character for other
purposes (for example, as the mathematical less-than operator); see further section v.6.1 Character References.

XXXiV

v.3. XML structures

To illustrate this, we will consider a very simple structural model. Let us assume that we wish to identify
within an anthology only poems, their headings, and the stanzas and lines of which they are composed. In
XML terms, our document type is the anthology, and it consists of a series of poems. Each poem has embedded
within it one element, a heading, and several occurrences of another, a stanza, each stanza having embedded
within it a number of line elements. Fully marked up, a text conforming to this model might appear as follows:®

<anthology>

<poem>

<heading>The SICK ROSE</heading>
<stanza>

<line>0 Rose thou art sick.</line>
<line>The invisible worm,</line>
<line>That flies in the night</line>
<line>In the howling storm:</line>
</stanza>

<stanza>

<line>Has found out thy bed</line>
<line>0f crimson joy:</line>
<line>And his dark secret love</line>
<line>Does thy life destroy.</line>
</stanza>

</poem>

<!-- more poems go here -->
</anthology>

It should be stressed that this example does not use the names proposed for corresponding elements
elsewhere in these Guidelines: the above is thus not a valid TEI document.? It will, however, serve as an
introduction to the basic notions of XML. Whitespace and line breaks have been added to the example for the
sake of visual clarity only; they have no particular significance in the XML encoding itself. Also, the line

<!-- more poems go here -->

is an XML comment and is not treated as part of the text.
As it stands, the above example is what is known as a well-formed XML document because it obeys the
following simple rules:

1. thereisasingle element enclosing the whole document: this is known as the root element (<anthology>
in our case);

2. each element is completely contained by the root element, or by an element that is so contained;
elements do not partially overlap one another;

3. atag explicitly marks the start and end of each element.

A well-formed XML document can be processed in a number of useful ways. A simple indexing program
could extract only the relevant text elements in order to make a list of headings, first lines, or words used in the
poem text; a simple formatting program could insert blank lines between stanzas, perhaps indenting the first
line of each, or inserting a stanza number. Different parts of each poem could be typeset in different ways. A

8The example is taken from William Blake's Songs of innocence and experience (1794).
9The element names here have been chosen for clarity of exposition; there is, however, a TEI element corresponding to each, so that this example
may be regarded as TEI conformable in the sense that this term is defined in|23.3. Conformance,

v. A Gentle Introduction to XML

more ambitious analytic program could relate the use of punctuation marks to stanzaic and metrical divisions.'°

Scholars wishing to see the implications of changing the stanza or line divisions chosen by the editor of this
poem can do so simply by altering the position of the tags. And of course, the text as presented above can be
transported from one computer to another and processed by any program (or person) capable of making sense
of the tags embedded within it with no need for the sort of transformations and translations needed for files
which have been saved in one or other of the proprietary formats preferred by most word-processing programs.

As we noted above, one of the attractions of XML is that it enables us to make up our own names for the
elements rather than requiring us always to use names predefined by other agencies. Clearly, however, if we
wish to exchange our poems with others, or to include poems others have marked up in our anthology, we will
need to know a bit more about the names used for the tags. The means that XML provides for this is called a
namespace. In our simple example, the tags just contain a simple name. As we shall see, it is also possible to
use tags that include a qualified name, that is, a name with an optional prefix identifying the set of names to
which it belongs. For example, we have defined an element <line> for the purpose of marking lines of verse.
Another person might, however, define an element called <line> for the purpose of marking typographic lines,
or drawn lines. Because of these different meanings, if we wish to share data it will be necessary to distinguish
the two ‘line’ components in our marked-up texts. This is achieved by including a namespace prefix within the
markup, for example like this:

<my:line>This is one of my lines</my:line>
<t-- .. -->

<yr:line>This is one of your lines</yr:line>

This feature is particularly important if we have different definitions of what a ‘lin€’ is, of course, but there
are many occasions when it is useful to distinguish groups of tags belonging to different ‘markup vocabularies’;
we discuss this further below (v.6.3 Namespaces). One particularly useful namespace prefix is predefined for
XML: it is xml and we will see examples of its use below.

Namespaces allow us to represent the fact that a name belongs to a group of names, but don't allow us
to do much more by way of checking the integrity or accuracy of our tagging. Simple well-formedness alone
is not enough for the full range of what might be useful in marking up a document. It might well be useful
if, in the process of preparing our digital anthology, a computer system could check some basic rules about
how stanzas, lines, and headings can sensibly co-occur in a document. It would be even more useful if the
system could check that stanzas are always tagged <stanza> and not occasionally <canto> or <Stanza>. An
XML document in which such rules have been checked is technically known as a valid document, and the
ability to perform such validation is one of the key advantages of using XML. To carry this out, some way of
formally stating the criteria for successful validation is necessary: in XML this formal statement is provided by
an additional document known as a schema.!!

v.3.3 Validating a document's structure

The design of a schema may be as lax or as restrictive as the occasion warrants. A balance must be struck
between the convenience of following simple rules and the complexity of handling real texts. This is particularly
the case when the rules being defined relate to texts that already exist: the designer may have only the haziest of
notions as to an ancient text's original purpose or meaning and hence find it very difficult to specify consistent
rules about its structure. On the other hand, where a new text is being prepared to an exact specification, for
entry into a textual database of some kind for example, the more precisely stated the rules, the better they

10Note that this simple example has not addressed the problem of marking elements such as sentences explicitly; the implications of this are discussed
in section v.4 Complicating the issue,

The older terms Document Type Declaration and Document Type Definition, both abbreviated as DTD, may also be encountered. Throughout
these Guidelines we use the term schema for any kind of formal document grammar.

XXXVi

v.3. XML structures

can be enforced. Even in the case where an existing text is being marked up, it may be beneficial to define
a restrictive set of rules relating to one particular view or hypothesis about the text — if only as a means of
testing the usefulness of that view or hypothesis. A schema designed for use by a small project or team is
likely to take a different position on such issues than one intended for use by a large and possibly fragmented
community. It is important to remember that every schema results from an interpretation of a text. There is
no single schema encompassing the absolute truth about any text, although it may be convenient to privilege
some schemas above others for particular types of analysis.

XML is widely used in environments where uniformity of document structure is a major desideratum. In
the production of technical documentation, for example, it is of major importance that sections and subsections
should be properly nested, that cross-references should be properly resolved and so forth. In such situations,
documents are seen as raw material to match against predefined sets of rules. As discussed above, however, the
use of simple rules can also greatly simplify the task of tagging accurately elements of less rigidly constrained
texts. By making these rules explicit, the scholar reduces his or her own burdens in marking up and verifying
the electronic text, while also being forced to make explicit an interpretation of the structure and significant
particularities of the text being encoded.

v.3.4 Anexample schema

A schema can be expressed in a number of different ways; frequently-encountered methods include the
Document Type Definition (DTD) language which XML inherited from SGML; the XML Schema language
(http://www.w3.0rg/XML/Schema) defined by the W3C; and the RELAX NG language (http://relaxng.
org/) originally developed within the OASIS Technical Committee and now an ISO standard'?. In this
chapter, and throughout these Guidelines, we give examples using the ‘compact syntax’ of RELAX NG, but the
specifications within these Guidelines are expressed in a way that is largely independent of the specific language
in which a schema generated from them is expressed.® Although we will use the RELAX NG compact syntax
for illustration in what follows, the reader should bear in mind that analogous concepts are expressed differently
in other schema languages.
The following schema might be used to validate our example poem:

anthology p = element anthology { poem p+ }
poem p = element poem { heading p?, stanza p+ }
stanza p = element stanza {line p+}

heading p = element heading { text }

line p = element line { text }

start = anthology p

Note that this is not the only way in which a RELAX NG schema might be written;'* we have adopted this
idiom, however, because it matches that used throughout the rest of the Guidelines.

A RELAX NG schema expresses rules about the possible structure of a document in terms of patterns;
that is, it defines a number of named patterns, each of which acts as a kind of template against which an input
document can be matched. The meaning of a pattern is expressed in a schema by reference to other patterns,
or to a small number of built-in fundamental concepts, as we shall see. In the example above, the word to the
left of the equals sign is the pattern's name, and the material following it declares a meaning for the pattern.
Patterns may also be of particular types; the ones that interest us here are called element patterns and attribute
patterns. In this example we see definitions for five element patterns. Note that we have used similar names

121SO/IEC FDIS 19757-2 Document Schema Definition Language (DSDL) -- Part 2: Regular-grammar-based validation -- RELAX NG

138ee further 22. Documentation Elements and|23.4. Implementation of an ODD System! In practice, the only part of a TEI element specification not
expressed using TEI-defined syntax is the content model for an element, which is expressed using the RELAX NG schema language for reasons of
processing convenience. RELAX NG uses its own XML vocabulary to define content models, which is adopted by the TEI for the same purpose.

For a good tutorial introduction to RELAX NG, seevan der Vlist (2004),

XXXVii

http://www.w3.org/XML/Schema
http://relaxng.org/
http://relaxng.org/

v. A Gentle Introduction to XML

for the pattern and the element which the pattern describes: so, for example, the line anthology p = element
anthology {poem p+} defines an element pattern called anthology p, the value of which defines an element
called anthology. These naming conventions are arbitrary; we could use the same name for the pattern as
for the element, since the two are syntactically quite distinct. The name, or generic identifier, of the element
follows the word ‘element; and the content model for the element is given within the curly braces following
that. Each of these parts is discussed further below.

The last line of the schema above tells a RELAX NG validator which element (or elements) in a document
can be used as the root element: in our case only <anthology>. This enables the validator to detect whether a
particular document is well-formed but incomplete; it also simplifies the processing task by providing an ‘entry
point.

Generic identifier

Following the word ‘element’ each pattern declaration gives the generic identifier (often abbreviated to GI) of
the element being defined, for example poem, heading, etc. A GI may contain letters, digits, hyphens, underscore
characters, or full stops, but must begin with a letter.!> Uppercase and lowercase letters are quite distinct:
an element with the GI <foo> is not the same as an element with the GI <Foo>; the root element of a TEI-
conformant document is <TEI>, not<tei>.

Content model

The second part of each declaration, enclosed in curly braces, is called the content model of the element being
defined, because it specifies what may legitimately be contained within it. In RELAX NG, the content model
is defined in terms of other patterns, either by embedding them, or (as in our examples above) by naming or
referring to them. The RELAX NG compact syntax also uses a small number of reserved words to identify
other possible contents for an element, of which by far the most commonly encountered is text, as in this
example: it means that the element being defined may contain any valid character data, but no elements. If
an XML document is thought of as a structure like a family tree, with a single ancestor at the top (in our
case, this would be <anthology>), then almost always, following the branches of the tree downwards (for
example, from <anthology> to <poem> to <stanza> to <line> and <heading>) will lead eventually to text.
In our example, <heading> and <line> are so defined, since their content models say text only and name no
embedded elements.

Occurrence indicators

The declaration for <stanza> in the example above states that a stanza consists of one or more lines. It uses
an occurrence indicator (the plus sign) to indicate how many times something matching the pattern line_p
may be repeated. There are three occurrence indicators: the plus sign, the question mark, and the asterisk or
star. The plus sign means that the pattern can match one or more times; the question mark means that it may
match at most once but is not mandatory; the star means that the pattern concerned is not mandatory, but
may match more than once. Thus, if the content model for <stanza> were {line_p*}, stanzas with no lines
would be possible as well as those with more than one line. If it were {line_p?}, again empty stanzas would be
countenanced, but no stanza could have more than a single line. The declaration for <poem> in the example
above thus states that a <poem> cannot have more than one heading, but may have none, and that it must have
at least one <stanza> and may have several.

Connectors

The content model {heading_p?, stanza_p+} contains more than one component, and thus needs addition-
ally to specify the order in which these patterns (<heading p> and <stanza_p>) may appear. This ordering

15Tn XML, a single colon may also appear in a GI, where it has a special significance related to the use of namespaces, as further discussed in section
v.6.3 Namespaces, The characters defined by Unicode as combining characters and as extenders are also permitted, as are logograms such as Chinese
characters.

Xxxviii

v.3. XML structures

is determined by the connector (the comma) used between its components. The comma connector indicates
that the patterns concerned must appear in the sequence given. Another commonly encountered connector is
the vertical bar, representing alternation. If the comma in this example were replaced by a vertical bar, then a
<poem> would consist of either a heading or just stanzas — but not both!

Groups

In our example so far, the components of each content model have been either single patterns or text. It is
quite permissible, however, to define content models in which the components are lists of patterns, combined by
connectors. Such lists may also be modified by occurrence indicators and themselves combined by connectors.
To demonstrate these facilities, let us expand our example to include non-stanzaic types of verse. For the sake
of demonstration, we will categorize poems as one of the following: stanzaic, couplets, or blank (or stichic). A
blank-verse poem consists simply of lines (we ignore the possibility of verse paragraphs for the moment),!% so
no additional elements need be defined for it. A couplet is defined as a <firstLine> followed by a <secondLine>.

couplet p = element couplet {firstLine p, secondLine p}

The patterns firstLine_p and secondLine_p define elements <firstLine> and <secondLine> (which are
distinguished to enable studies of rhyme scheme, for example!”); these will have exactly the same content
model as the existing <line> element. We will therefore add the following two lines to our example schema:

firstLine p = element firstLine {text}
secondLine p = element secondLine {text}

Next, we can change the declaration for the <poem> element to include all three possibilities:

poem p = element poem
{ heading p?, (stanza p+ | couplet p+ | line p+) }

That is, a poem consists of an optional heading, followed by one or several stanzas, or one or several
couplets, or one or several lines. Note the difference between this declaration and the following:

poem p = element poem
{heading p?, (stanza p | couplet p | line p)+ }

The second version, by applying the occurrence indicator to the group rather than to each element within
it, would allow a single poem to contain a mixture of stanzas, couplets, and lines.

A group of this kind can contain text as well as named elements: this combination, known as mixed
content, allows for elements in which the sub-components appear with intervening stretches of character data.
For example, if we wished to mark place names wherever they appear inside our verse lines, then, assuming we
have also added a pattern for the <name> element, we could change the definition for <line> to

161t will not have escaped the astute reader that the fact that verse paragraphs need not start on a line boundary seriously complicates the issue; see
further section v.4 Complicating the issue.

7This is however a rather artificial example; XPath, for example, provides ways of distinguishing elements in an XML structure by their position
without the need to give them distinct names.

XXXIiX

v. A Gentle Introduction to XML

v

line p = element
line { (text | name p)* }

Some XML schema languages place no constraints on the way that mixed content models may be defined,
but in the XML DTD language, when text appears with other elements in a content model: it must always
appear as the first option in an alternation; it may appear once only, and in the outermost model group; and if
the group containing it is repeated, the star operator must be used. Although these constraints do not apply to
(for example) schemas expressed in the RELAX NG language, all TEI content models currently obey them.

Quite complex models can easily be built up in this way, to match the structural complexity of many types
of text. As a further example, consider the case of stanzaic verse in which a refrain or chorus appears. Like a
stanza, a refrain consists of repetitions of the line element. A refrain can appear at the start of a poem only, or
as an optional addition following each stanza. This could be expressed by a pattern such as the following:

refrain p = element refrain {line p+}
poem p = element poem {heading p?, (line p+ | (refrain p?, (stanza p,
refrain_p?)+)) }

That is, a poem consists of an optional heading, followed by either a sequence of lines or an unnamed
group, which starts with an optional refrain and is followed by one or more occurrences of another group, each
member of which is composed of a stanza followed by an optional refrain. A sequence such as refrain - stanza -
stanza - refrain follows this pattern, as does the sequence stanza - refrain - stanza - refrain. The sequence refrain
- refrain - stanza - stanza does not, however, and neither does the sequence stanza - refrain - refrain - stanza.
Among other conditions made explicit by this content model are the requirements that at least one stanza must
appear in a poem, if it is not composed simply of lines, and that if there is both a heading and a stanza they
must appear in that order.

Note that the apparent complexity of this model derives from the constraints expressed informally above.
A simpler model, such as

poem_p =
element poem {heading p?, (line p | refrain p | stanza p)+ }

would not enforce any of them, and would therefore permit such anomalies as a poem consisting only of
refrains, or an arbitrary mixture of lines and refrains.

Complicating the issue

In the simple cases described so far, we have assumed that one can identify the immediate constituents of every
element in a textual structure. A poem consists of stanzas, and an anthology consists of poems. Stanzas do not
float around unattached to poems or combined into some other unrelated element; a poem cannot contain an
anthology. All the elements of a given document type may be arranged into a hierarchic structure like a family
tree, with a single ancestor at one end and many children (mostly the elements containing simple text) at the
other. For example, we could represent an anthology containing two poems, the first of which contains two
four-line stanzas and the second a single stanza, by a tree structure like the following figure:

This graphic representation of the structure of an XML document is close to the abstract model implicit in
most XML processing systems. Most such systems now use a standardized way of accessing parts of an XML

xl

v.4. Complicating the issue

—{ poeml1

athology |

» poem2

document called XPath.!® XPath gives us a non-graphical way of referring to any part of an XML document:
for example, we might refer to the last line of Blake's poem as /anthology/poem[1]/stanza[2]/1ine[4]. The
square brackets here indicate a numerical selection: we are talking about the fourth line in the second stanza
of the first poem in the anthology. If we left out all the square-bracketted selections, the corresponding XPath
expression would refer to all lines contained by stanzas contained by poems contained by anthologies. An
XPath expression can refer to any collection of elements: for example, the expression /anthology/poem refers
to all poems in an anthology and the expression /anthology/poem/heading refers to all their headings.

The solidus within an XPath expression behaves in much the same way as the solidus or backslash in a
filename specification: it indicates that the item to the left directly contains the item to the right of it. In
XPath it is also possible to indicate that any number of other items may intervene by repeating the solidus.
For example, the XPath expression /anthology/poem//line[1] will refer to the first line of each poem in the
anthology, irrespective of whether it is in a stanza.

Clearly, there are many such trees that might be drawn to describe the structure of this or other anthologies.
Some of them might be representable as further subdivisions of this tree: for example, we might subdivide
the lines into individual words, since in our simple example no word crosses a line boundary. Surprisingly
perhaps, this grossly simplified view of what text is (memorably termed an ordered hierarchy of content objects
(OHCO) view of text by Renear et al.'?) turns out to be very effective for a large number of purposes. It is not,
however, adequate for the full complexity of real textual structures, for which more complex mechanisms need
to be employed. There are many other trees that might be drawn which do not fit within the anthology model
which we have presented so far. We might, for example, be interested in syntactic structures or other linguistic
constructs, which rarely respect the formal boundaries of verse. Or, to take a simpler example, we might want
to represent the pagination of different editions of the same text.

8The official specification is at Clark and DeRose (eds.) (1999); many introductory tutorials are available in the XML references cited above
and elsewhere on the Web: good beginners' tutorials include http://www.w3schools. com/xpath/default.asp and http://www.zvon.org/xx1/
XPathTutorial/, the latter being available in several languages.

19See Renear et al. (1996),

xli

http://www.w3schools.com/xpath/default.asp
http://www.zvon.org/xxl/XPathTutorial/
http://www.zvon.org/xxl/XPathTutorial/

v. A Gentle Introduction to XML

In the OHCO model of text, representation of cases where different elements overlap so that several
different trees may be identified in the same document is generally problematic. All the elements marked
up in a document, no matter what namespace they belong to, must fit within a single hierarchy. To represent
overlapping structures, therefore, a single hierarchy must be chosen, and the points at which other hierarchies
intersect with it marked. For example, we might choose the verse structure as our primary hierarchy, and then
mark the pagination by means of empty elements inserted at the boundary points between one page and the
next. Or we could represent alternative hierarchies by means of the pointing and linking mechanisms described
in chapter|16. Linking, Segmentation, and Alignment of the Guidelines. These mechanisms all depend on the use
of attributes, which may be used both to identify particular elements within a document and to point to, link,
or align them into arbitrary structures.

v.5 Attributes

In the XML context, the word attribute, like some other words, has a specific technical sense. It is used to
describe information that is in some sense descriptive of a specific element occurrence but not regarded as
part of its content. For example, you might wish to add a status attribute to occurrences of some elements
in a document to indicate their degree of reliability, or to add an identifier attribute so that you could refer
to particular element occurrences from elsewhere within a document. Attributes are useful in precisely such
circumstances.

Although different elements may have attributes with the same name (for example, in the TEI scheme,
every element is defined as having an attribute named n), they are always regarded as different, and may have
different values assigned to them. If an element has been defined as having attributes, the attribute values are
supplied in the document instance as attribute-value pairs inside the start-tag for the element occurrence. An
end-tag cannot contain an attribute-value specification, since it would be redundant.

The order in which attribute-value pairs are supplied inside a tag has no significance; they must, however,
be separated by at least one whitespace (blank, newline, or tab) character. The value part must always be given
inside matching quotation marks, either single or double?’.

For example:

<poem xml:id="P1" status="draft"> ... </poem>

Here attribute values are being specified for two attributes previously declared for the <poem> element:
xml:id and status. For the instance of a <poem> in this example, represented here by an ellipsis, the xml:id
attribute has the value P1 and the status attribute has the value draft. An XML processor can use the values
of the attributes in any way it chooses; for example, a <poem> in which the status attribute has the value draft
might be formatted differently from one in which the same attribute has the value revised; another processor
might use the same attribute to determine whether or not poem elements are to be processed at all. The xml:id
attribute is a slightly special case in that, by convention, it is always used to supply a unique value to identify
a particular element occurrence, which may be used for cross-reference purposes, as discussed further below
(v.5.2 Identifiers and indicators).

v.5.1 Declaring attributes

Attributes are declared in a schema in the same way as elements. As well as specifying an attribute's name and
the element to which it is to be attached, it is possible to specify (within limits) what kind of value is acceptable
for an attribute.

201n the unlikely event that both kinds of quotation marks are needed within the quoted string, either or both can also be presented in escaped form,
using the predefined character entities &apos ; or "

xlii

v.5. Attributes

In the compact syntax of RELAX NG, an attribute is defined by means of an attribute pattern, like the
following:

att.status = attribute status {"draft" | "revised" | "published"}

This defines a new pattern, called att.status, whose value is an attribute pattern defining an attribute
named status. Attribute names are subject to the same restrictions as other names in XML; they need not be
unique across the whole schema, however, but only within the list of attributes for a given element.

A pattern defining the possible values for this attribute is given within the curly braces, in just the same
way as a content model is given for an element pattern. In this case, the attribute's value must be one of the
strings presented explicitly above.

The attribute pattern definition must be included or referenced within the definition for every element
to which the attribute is attached. We therefore modify the definition for the poem_p pattern given above as
follows:

poem p = element poem {att.status?, heading p?, stanza p+}

In RELAX NG, an element pattern simply includes any attribute patterns applicable to it along with its
other constituents, as shown above. Attribute patterns can also be grouped and alternated in the same way as
element patterns, though this particular feature is not widely used in the TEI scheme, since it is not available
to the same extent in all schema languages. Because a question mark follows the reference to the att.status
pattern in our example, a document in which the status attribute is not specified will still be valid; without this
occurrence indicator the status attribute would be required.

Instead of supplying a list of explicit values, an attribute pattern can specify that the attribute must have a
value of a particular type, for example a text string, a numeric value, a normalized date, etc. This is accomplished
by supplying a pattern that refers to a datatype. In the example above, because a list of acceptable values is
predefined, a parser can check that no <poem> is defined for which the status attribute does not have one of
draft, revised, or published as its value. By contrast, with a definition such as

att.status =
attribute status {text}

a parser would accept almost any unbroken string of characters (status="awful", status="awe-ful", or
status="12345678") as valid for this attribute. Sometimes, of course, the set of possible values cannot be
predefined. Where it can, as in this case, it is generally better to do so.

Schema languages vary widely in the extent to which they support validation of attribute values. Some
languages predefine a small set of possibilities. Others allow the schema designer to use values from a
predefined ‘library’ of possible datatypes, or to add their own definitions, possibly of great complexity. A
‘datatype’ might be something fairly general (any positive integer), something very specific or idiosyncratic (any
four-character string ending with "T"), or somewhere between the two. In the RELAX NG schemas used by
the TEI, general patterns have been defined for about half a dozen datatypes (using the W3C Schema Datatype
Library, http://www.w3.0rg/TR/xmlschema- 2/, and discussed further in 1.4.2. Datatype Macros). In addition
to the two possibilities already mentioned — plain text or an explicit list of possible strings — other datatypes
likely to be encountered include the following:

boolean values must be either true or false

xliii

http://www.w3.org/TR/xmlschema-2/

v. A Gentle Introduction to XML

numeric values must represent a numeric quantity of some kind
date values must represent a possible date and time in some calendar

Two further datatypes of particular usefulness in managing XML documents are commonly known as ID
— for identifier — and URI — for Universal Resource Indicator, or pointer for short. These are discussed in the
next section.

v.5.2 Identifiers and indicators

It is often necessary to refer to an occurrence of one textual element from within another, an obvious example
being phrases such as ‘see note 6" or ‘as discussed in chapter 5. When a text is being produced the actual
numbers associated with the notes or chapters may not be certain. If we are using descriptive markup, such
things as page or chapter numbers, being entirely matters of presentation, will not in any case be present in the
marked-up text: they will be assigned by whatever processor is operating on the text (and may indeed differ
in different applications). XML therefore predefines an attribute that may be used to provide any element
occurrence with a special identifier, a kind of label, which may be used to refer to it from anywhere else: since
it is defined in the XML namespace, the name of this attribute is xml:id and it is used throughout the TEI
schema. Because it is intended to act as an identifier, its values must be unique within a given document. The
cross-reference itself will be supplied by an element bearing an attribute of a specific kind, which must also be
declared in the schema.

Suppose, for example, we wish to include a reference within the notes on one poem that refers to another
poem. We will first need to provide some way of attaching a label to each poem: this is easily done using the
xml:id attribute. Note that not every poem need carry an xml:id attribute and the parser may safely ignore the
lack of one in those that do not. Only poems to which we intend to refer need use this attribute; for each such
poem we should now include in its start-tag some unique identifier, for example:

<poem xml:id="Rose"> ... </poem>
<poem xml:id="P40"> ... </poem>
<poem> ... </poem>

Next we need to define a new element for the cross-reference itself. This will not have any content - it is
only a pointer - but it has an attribute, the value of which will be the identifier of the element pointed at. This
is achieved by the following definition:

poemRef p = element poemRef {attribute target {anyURI}, empty}

The <poemRef> element has no content, but a single attribute called target. The value of this attribute must
be a pointer or web reference of type anyURI;2! furthermore, because there is no indication of optionality on the
attribute pattern, it must be supplied on each occurrence — a <poemRef> with no referent is an impossibility.

With these declarations in force, we can now encode a reference to the poem whose xml:id attribute
specifies that its identifier is Rose as follows:

Blake's poem on the sick rose
<poemRef target='#Rose'/> ...

2'The word ‘anyURT is a predefined name, used in schema languages to mean that any Uniform Resource Identifier (URI) may be supplied here.
The accepted syntax for URISs is an Internet Standard, defined in http://tools.ietf.org/html/rfc3986. anyURI is one of the datatypes defined by
the W3C Schema datatype library.

xliv

http://tools.ietf.org/html/rfc3986

v.6. Other components of an XML document

v.6

v.6.1

A processor may take any number of actions when it encounters a link encoded in this way: a formatter
might construct an exact page and line reference for the location of the poem in the current document and
insert it, or just quote the poem's title or first lines. A hypertext style processor might use this element as a
signal to activate a link to the poem being referred to, for example by displaying it in a new window. Note,
however, that the purpose of the XML markup is simply to indicate that a cross-reference exists: it does not
necessarily determine what the processor is to do with it.

The target of a URI can be located anywhere: it may not necessarily be part of the same document, nor
even located on the same computer system. Equally, it can be a resource of any kind, not necessarily an
XML document or document fragment. It is thus a very convenient way of including references to non-XML
data such as image files within a document. If, for example, we wished to include an illustration containing a
reproduction of Blake's original in our anthology, the most appropriate method would probably be to define a
new element called (for the sake of argument) <graphic> with a target attribute of datatype URI:

graphic_p = element graphic {att.url, empty} att.url =
attribute url {anyURI}

With these additions to the schema, we can now represent the location of the illustration within our text
like this:

<poem><graphic
url="http://en.wikisource.org/wiki/Image:Blake sick rose.jpg"/>
</poem>

By providing alocation from which a reproduction of the required image can be downloaded, this encoding
makes it possible for appropriate software able to display the image as well as record its existence.

Attributes form part of the structure of an XML document in the same way as elements, and can therefore
be accessed using XPath. For example, to refer to all the poems in our anthology whose status attribute has the
value draft, we might use an XPath such as /anthology/poem[@status="draft']. To find the headings of all
such poems, we would use the XPath /anthology/poem[@status='draft']/heading.

Other components of an XML document

In addition to the elements and attributes so far discussed, an XML document can contain a few other formally
distinct things. An XML document may contain references to predefined strings of data that a validator
must resolve before attempting to validate the document's structure; these are called entity references. They
may be useful as a means of providing ‘boilerplate’ text or representing character data which cannot easily
be keyboarded. An XML document may also contain arbitrary signals or flags for use when the document
is processed in a particular way by some class of processor (a common example in document production is
the need to force a formatter to start a new page at some specific point in a document); such flags are called
processing instructions. And, as noted earlier, an XML document may also contain instances of elements taken
from some other namespace. We discuss each of these three cases in the rest of this section.

Character References

As mentioned above, all XML documents use the same internal character encoding. Since not all computer
systems currently support this encoding directly, a special syntax is defined that can be used to represent
individual characters from the Unicode character set in a portable way by providing their numeric value, in
decimal or hexadecimal notation.

xlv

v. A Gentle Introduction to XML

For example, the character é is represented within an XML document as the Unicode character with
hexadecimal value 00E9. If such a document is being prepared on (or exported to) a system using a different
character set in which this character is not available, it may instead be represented by the character reference
é (the x indicating that what follows is a hexadecimal value) or é (its decimal equivalent).
References of this type do not need to be predefined, since the underlying character encoding for XML is
always the same.

To aid legibility, however, it is also possible to use a mnemonic name (such as eacute) for such character
references, provided that each such name is mapped to the required Unicode value by means of a construct
known as an entity declaration. A reference to a named character entity always takes the form of an ampersand,
followed by the name, followed by a semicolon. For example an XML document containing the string “T&C
might be encoded as T& C.

There is a small set of such character entity references that do not have to be declared because they form
part of the definition of XML. These include the names used for characters such as the ampersand (amp) and the
open angle bracket or less-than sign (1t), which could not easily otherwise be included in an XML document
without ambiguity. Other predeclared entity names are those for quotation marks (quot and apos for double
and single respectively), and for completeness the closing angle bracket or greater-than sign (gt).

For all other named character entities, a set of entity declarations must be provided to an XML processor
before the document referring to them can be validated. The declaration itself uses a non-XML syntax inherited
from SGML; for example, to define an entity named eacute with the replacement value é, the declaration could
have any of the following forms:

<!ENTITY eacute
lléll>

or, using hexadecimal notation:

<!ENTITY
eacute "é">

or, using decimal notation:

<!ENTITY eacute "é">

Entities of this kind are useful also for string substitution purposes, where the same text needs to be repeated
uniformly throughout a text. For example, if a declaration such as

<!ENTITY TEI "Text Encoding Initiative">

is included with a document, then references such as &TEI; may be used within it, each of which will be
expanded in the same way and replaced by the string “Text Encoding Initiative’ before the text is validated.

v.6.2 Processing instructions

Although one of the aims of using XML is to remove any information specific to the processing of a document
from the document itself, it is occasionally very convenient to be able to include such information — if only
so that it can be clearly distinguished from the structure of the document. As suggested above, one common
example is the need, when processing an XML document for printed output, to include a suggestion that the

xlvi

v.6. Other components of an XML document

formatting processor might use to determine where to begin a new page of output. Page-breaking decisions are
usually best made by the formatting engine alone, but there will always be occasions when it may be necessary
to override these. An XML processing instruction inserted into the document is one very simple and effective
way of doing this without interfering with other aspects of the markup.

Here is an example XML processing instruction:

<?tex \newpage 7>

It begins with <? and ends with ?>. In between are two space-separated strings: by convention, the first
is the name of some processor (tex in the above example) and the second is some data intended for the use
of that processor (in this case, the instruction to start a new page). The only constraint placed by XML on the
strings is that the first one must be a valid XML name; the other can be any arbitrary sequence of characters,
not including the closing character-sequence ?>.

A construct which looks like a processing instruction (but is not) is the XML declaration which can be
supplied at the beginning of an XML document, for example:

<?xml
version="1.0" encoding="1is0-8859-1"?7>

The XML declaration specifies the version number of the XML Recommendation applicable to the
document it introduces (in this case, version 1.0), and optionally also the character encoding used to represent
the Unicode characters within it. By default an XML document uses the character encoding UTF-8 or UTE-16;
in this case, the 16-bit characters of Unicode have been mapped to the 8-bit character set known as ISO 8859-1;
any characters present in the document but not available in the target character set will therefore need to be
represented as character references (v.6.1 Character References). The XML declaration is purely documentary,
but if it is wrong many XML-aware processors will be unable to process the associated text.

v.6.3 Namespaces

A valid XML document necessarily specifies the schema in which its constituent elements are defined.
However, a well-formed XML document is not required to specify its schema (indeed, it may not even have a
schema). It would still be useful to indicate that the element names used in it have some defined provenance.
Furthermore, it might be desirable to include in a document elements that are defined (possibly differently) in
different schemas. A cabinet-maker's schema might well define an element called <table> with very different
characteristics from those of a documentalist's.

The concept of namespace was introduced into the XML language as a means of addressing these and
related problems. If the markup of an XML document is thought of as an expression in some language, then a
namespace may be thought of as analogous to the lexicon of that language. Just as a document can contain
words taken from different languages, so a well-formed XML document can include elements taken from
different namespaces. A namespace resembles a schema in that we may say that a given set of elements ‘belongs
to’ a given namespace, or are ‘defined by’ a given schema. However, a schema is a set of element definitions,
whereas a namespace is really only a property of a collection of elements: the only tangible form it takes in an
XML document is its distinctive prefix and the identifying name associated with it.

Suppose for example that we wish to extend our anthology to include a complex diagram. We might start
by considering whether or not to extend our simple schema to include XML markup for such features as arcs,
polygons, and other graphical elements. XML can be used to represent any kind of structure, not simply text,
and there are clear advantages to having our text and our diagrams all expressed in the same way.

xlvii

v. A Gentle Introduction to XML

Fortunately we do not need to invent a schema for the representation of graphical components such as
diagrams; it already exists in the shape of the Scalable Vector Graphics (SVG) language defined by the W3C.2
SVG is a widely used and rich XML vocabulary for representing all kinds of two-dimensional graphics; it is also
well supported by existing software. Using an SVG-aware drawing package, we can easily draw our diagram
and save it in XML format for inclusion within our anthology. When we do so, we need to indicate that this part
of the document contains elements taken from the SVG namespace, if only to ensure that processing software
does not confuse our <line> element with the SVG <line>, which means something quite different.

An XML document need not specify any namespace: it is then said to use the ‘null’ namespace. Alterna-
tively, the root element of a document may supply a default namespace, understood to apply to all elements
which have no namespace prefix. This is the function of the xmlns attribute which provides a unique name for
the default namespace, in the form of a URL:

<anthology xmlns="http://www.example.net/anthology/ns">
</anthology>

In exactly the same way, on the root element for each part of our document which uses the SVG language,
we might introduce the SVG namespace name:

<anthology xmlns="http://www.example.net/anthology/ns">
<svg xmlns="http://www.w3.0rg/2000/svg">

</svg>

</anthology>

Although a namespace name usually uses the URI (Uniform Resource Identifier) syntax, it is not treated as
an online address and an XML processor regards it just as a string, providing a longer name for the namespace.

The xmlns attribute can also be used to associate a short prefix name with the namespace it defines. This
is very useful if we want to mingle elements from different namespaces within the same document, since the
prefix can be attached to any element, overriding the implicit namespace for itself (but not its children):

<anthology xmlns="http://www.example.net/anthology/ns"
xmlns:svg="http://www.w3.0rg/2000/svg">

<!-- anthology markup elements here -->
<svQg:svg>

<!-- SVG markup elements here -->

</svg:svg>

<!-- more anthology markup elements here -->
</anthology>

There is no limit on the number of namespaces that a document can use. Provided that each is uniquely
identified, an XML processor can identify those that are relevant, and validate them appropriately. To extend
our example further, we might decide to add a linguistic analysis to each of the poems, using a set of elements
such as <aux>, <adj>, etc., derived from some pre-existing XML vocabulary for linguistic analysis.

<anthology xmlns="http://www.example.net/anthology/ns"
xmlns:gram="http://www.gram.org"
xmlns:svg="http://www.w3.0rg/2000/svg">

22The W3C Recommendation is defined athttp://www.w3.0rg/Graphics/SVG/,

xlviii

http://www.w3.org/Graphics/SVG/

v.7. Putting it all together

v.7

<!-- anthology markup elements here -->
<svg:svg>

<!-- SVG markup elements here -->
</svg:svg>

<line>

<gram:itj>0</gram:itj>
<gram:nom>Rose</gram:nom>
<gram:pron>thou</gram:pron>
<gram:aux>art</gram:aux >
<gram:adj>sick</gram:adj>
</line>

</anthology>

Marked Sections

We mentioned above that the syntax of XML requires the encoder to take special action if characters with a
syntactic meaning in XML (such as the left angle bracket or ampersand) are to be used in a document to stand
for themselves, rather than to signal the start of a tag or an entity reference respectively. The predefined entities
&, <, and > provide one method of dealing with this problem, if the number of occurrences of such
things is small. Other methods may be considered when the number is large, as in an XML document like the
present Guidelines, which contains hundreds of examples of XML markup. One is to label the XML examples
as belonging to a different namespace from that of the document itself, which is the approach taken in the
present Guidelines. Another and simpler approach is provided by one of the features inherited by XML from
its parent SGML: the ‘marked section.

A marked section is a block of text within an XML document introduced by the characters <! [CDATA[
and terminated by the characters 11>. Between these rather strange brackets, markup recognition is turned
off, and any tags or entity references encountered are therefore treated as if they were plain text. For example,
when we come to write the users' manual for our anthology, we may find ourselves often producing text like
the following:

Here is an example of the use of the <gi>line</gi> element:
<! [CDATA[<line>....</line>]1>

Putting it all together
In this chapter we have discussed most of the components of an XML document and its associated schema. We
have described informally how an XML document is represented, and also introduced one way of representing
the rules a RELAX NG validator might use to validate it. In a working system, the following issues will also
need to be addressed:
o how does a processor determine the schema (or schemas) that should be used to validate a given XML
document instance?

« if a document contains entity references that must be processed before the document can be validated,
where are those entities defined?

o an XML document instance may be stored in a number of different operating system files; how should
they be assembled together?

« how does a processor determine which stylesheets it should use when processing an XML document, or
how to interpret any processing instructions it contains?

» how does a processor enforce more exact validation than simple datatypes permit (for example of element
content)?

xlix

v. A Gentle Introduction to XML

Different schema languages and different XML processing systems take very different positions on all of
these topics, since none of them is explicitly addressed in the XML specification itself. Consequently, the best
answer is likely to be specific to a particular software environment and schema language. Since this chapter
is concerned with XML considered independently of its processing environment, we only address them in
summary detail here.

v.7.1 Associating entity definitions with a document instance

Inv.6.1 Character References we introduced the syntax used for the definition of named character entities such as
eacute, which XML inherited from SGML. Different schema languages vary in the ways they make a collection
of such definitions available to an XML processor, but fortunately there is one method that all current schema
languages support.

As well as, and following, the XML declaration (v.6.2 Processing instructions), an XML document instance
may be prefixed with a special DOCTYPE statement. This declarative statement has been inherited by XML from
SGML; in its full form it provides a large number of facilities, but we are here concerned only with the small
subset of those facilities recognized by all schema languages.

Here is an example DOCTYPE statement which we might consider prefixing to the final version of our
anthology:

<!DOCTYPE anthology [

<!ENTITY mdash "ߞ">

<!ENTITY legalese "This document is available under a Creative Commons
Share and Enjoy Licence">

1>

Any XML processor encountering this statement will use it to add the two named entities it defines to those
already predefined for XML. Before the document instance itself is validated, any references to these entities
will be expanded to the character string given. Thus, wherever in the document instance the string &legalese;
appears, it will be replaced by the formulation above. This makes life a little easier for those keyboarding our
anthology.?® The word anthology following the string DOCTYPE in this example is, of course, the name of
the root element of the document to which this declaration is prefixed; however, only an XML DTD processor
will take note of this fact.

v.7.2 Associating a document instance with its schema

Different schema languages adopt entirely different attitudes to this question. A document instance may be
valid according to many different schemas, each appropriate to a different processing task. In RELAX NG
therefore no facility for associating a particular schema with a particular instance exists: the task is regarded
as a specific case of the more general issues addressed by the general architectural framework within which
RELAX NG is defined: the ISO draft standard for Document Schema Definition Languages (DSDL).2*

In W3C Schema and in the DTD schema language inherited by XML from SGML, however, a document
instance can point directly to the resource or resources that may be used to validate it. In W3C Schema
Language, this is usually done by means of an attribute on the root element of the document instance; for
XML DTDs the DOCTYPE statement introduced in v.7.1 Associating entity definitions with a document instance is
used for this purpose.

23 And, indeed, for those responsible for deciding the licencing conditions if they change their minds later.

24DSDL is a project of ISO/IEC JTC 1/SC 34 WG 1, the object of which is to ‘bring together different validation-related tasks and expressions to form
a single extensible framework that allows technologies to work in series or in parallel to produce a single or a set of validation results. The extensibility
of DSDL accommodates validation technologies not yet designed or specified’ (http://dsdl.org).

http://dsdl.org

v.7. Putting it all together

Fortunately, any modern XML processing software tool will provide clear ways of carrying out this task
appropriate to the particular language chosen. In the interests of maximizing portability of document instances,
they should contain as little processing-specific information as possible.

v.7.3 Assembling multiple resources into a single document

As we have already indicated, a single XML document may be made up of several different operating system
files that need to be pulled together by a processor before the whole document can be validated. The XML
DTD language defines a special kind of entity (a system entity) that can be used to embed references to whole
files into a document for this purpose, in much the same way as the character or string entities discussed in
v.6.1 Character References. Neither RELAX NG nor W3C Schema directly supports this mechanism, however,
and we do not discuss it further here.

An alternative way of achieving the same effect is to use a special kind of pointer element to refer to
the resources that need to be assembled, in exactly the same way as we proposed for the illustration in our
anthology. The W3C Recommendation XML Inclusions (XInclude)* defines a generic mechanism for this
purpose, which is supported by an increasing number of XML processors.

v.7.4 Stylesheet association and processing

As mentioned above, the processing of an XML document will usually involve the use of one or more
stylesheets, often but not exclusively to provide specific details of how the document should be displayed or
rendered. In general, there is no reason to associate a document instance with any specific stylesheet and the
schema languages we have discussed so far do not therefore make any special provision for such association.
The association is made when the stylesheet processor is invoked, and is thus entirely application-specific.
However, since one very common application for XML documents is to serve them as browsable documents
over the Web, the W3C has defined a procedure and a syntax for associating a document instance with its
stylesheet (see |http://www.w3.0rg/TR/xml-stylesheet/). This Recommendation allows a document to
supply alink to a default stylesheet and also to categorize the stylesheet according to its MIME type, for example
to indicate whether the stylesheet is written in CSS or XSLT, using a specialized form of processing instruction.
Assuming therefore that we have made a CSS-conformant stylesheet for our anthology and stored it in a
file called anthology. css which is available from the same location as the anthology itself, we could make it
avaijlable over the Web simply by adding a processing instruction like the following to the anthology:

<?xml-stylesheet href="anthology.css"
type="text/css"?>

Multiple stylesheets can be defined for the same document, and options are available to specify how a web
browser should select amongst them. For example, if the document also contained a directive:

<?xml-stylesheet href="anthology m.css"
type="text/css" media="mobile"?>

a different stylesheet called anthology_m.css could be used when rendering the document on a handheld
device such as a mobile phone.

Most modern web browsers support CSS (although the extent of their implementation varies), and some
of them support XSLT.

25http://www.w3.or‘g/TR/xinclude/.

li

http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/xinclude/

v. A Gentle Introduction to XML

Content validation

As we noted above, most schema languages provide some degree of datatype validation for attribute values
(v.5.1 Declaring attributes). They vary greatly in the validation facilities they offer for the content of elements,
other than the syntactic constraints already discussed. Thus, while we may very easily check that our <stanza>
elements contain only <line> elements, we cannot easily check that <line> elements contain between five and
500 correctly-spelled English words, should we wish to constrain our poetry in such a way. Also, because
attributes and elements are treated differently, it is difficult or impossible to express co-occurrence constraints:
for example, if the status of a poem is draft we might wish to permit elements such as <editorialQuery> within
its content, but not otherwise.

The XML DTD language offers very little beyond syntactic checking of element content. By contrast, a
major impetus behind the design and development of the W3C schema language was the addition of a much
more general and powerful constraint language to the existing structural constraints of XML DTDs. In RELAX
NG the opposite approach was taken, in that all datatype validation, whether of attributes or element content,
is regarded as external to the schema language. For attributes, as we have seen, RELAX NG makes use of the
W3C Schema Datatype Library (but permits use of others). Because RELAX NG treats both elements and
attributes as special cases of patterns, the same datatype validation facilities are available for element content
as for attribute values; it is unlike other schema languages in this respect. In addition, for content validation,
a different component of DSDL known as Schematron can be used. Schematron is a pattern matching (rather
than a grammar-based) language, which allows us to test the components of a document against templates that
express constraints such as those mentioned above.

Like other XML processors, Schematron uses XPath to identify parts of an XML document; in addition,
it provides elements that describe assertions to be tested and conditions which must be validated, as well as
elements to report the results of the test.

lii

Languages and Character Sets

The documents which users of these Guidelines may wish to encode encompass all kinds of material, potentially
expressed in the full range of written and spoken human languages, including the extinct, the non-existent,
and the conjectural. Because of this wide scope, special attention has been paid to two particular aspects of
the representation of linguistic information often taken for granted: language identification, and character
encoding.

Even within a single document, material in many different languages may be encountered. Human culture,
and the texts which embody it, is intrinsically multilingual, and shows no sign of ceasing to be so. Traditional
philologists and modern computational linguists alike work in a polyglot world, in which code-switching
(in the linguistic sense) and accurate representation of differing language systems constitute the norm, not
the exception. The current increased interest in studies of linguistic diversity, most notably in the recording
and documentation of endangered languages, is one aspect of this long standing tradition. Because of their
historical importance, the needs of endangered and even extinct languages must be taken into account when
formulating Guidelines and recommendations such as these.

Beyond the sheer number and diversity of human languages, it should be remembered that in their written
forms they may deploy a huge variety of scripts or writing systems. These scripts are in turn composed of
smaller units, which for simplicity we term here characters. A primary goal when encoding a text should
be to capture enough information for subsequent users of it correctly to identify both language, script, and
constituent characters. In this chapter we address this requirement, and propose recommended mechanisms
to indicate the languages, scripts and characters used in a document or a part thereof.

Identification of language is dealt with in vi.1 Language identification. In summary, it recommends the
use of pre-defined identifiers for a language where these are available, as they increasingly are, in part as a
result of the twin pressures of an increasing demand for language-specific software and an increased interest
in language documentation. Where such identifiers are not available or not standardized, these Guidelines
recommend a way of documenting language identifiers and their significance, in the same way as other
metadata is documented in the TEI Header.

Standardization of the means available to represent characters and scripts has moved on considerably since
the publication of the first version of these Guidelines. At that time, it was essential to explicitly document the
characters and encoded character sets used by almost any digital resource if it was to have any chance of being
usable across different computer platforms or environments, but this is no longer the case. With the availability
of the Unicode standard, almost 100,000 different characters representing almost all of the world's current
writing systems are available and usable in any XML processing environment without formality. Nevertheless,
however large the number of standardized characters, there will always be a need to encode documents which
use non-standard characters and glyphs, particularly but not exclusively in historical material. Furthermore,
the full potential of Unicode is still not yet realised in all software which users of the Guidelines are likely

liii

vi. Languages and Character Sets

vi.1

to encounter. The second part of this chapter therefore discusses in some detail the concepts and practice
underlying this standard, and also introduces the methods available for extending beyond it, which are more
tully discussed in 5. Representation of Non-standard Characters and Glyphs.

Language identification
Identification of the language a document or part thereof is written in is a crucial requirement for many
envisioned usages of an electronic document. The TEI therefore accomodates this need in the following way:
+ A global attribute xml:lang is defined for all TEI elements. Its value identifies the language and writing
system used.

o The TEI Header has a section set aside for the information about the languages used in a document: see
further 2.4.2. Language Usage.

The value of the attribute xml:lang identifies the language using a coded value. For maximal compatibility
with existing processes, modelling this value in the following way is recommended (this parallels the modelling
of xml:lang):

o The identifier for the language should be constructed as in Best Current Practice 47. This same identifier
has to be used to identify the corresponding <language> element in the TEI header, if one is present.

The first part of BCP 47 is called Tags for Identifying Languages®, and proposes the following mechanism
for constructing an identifier (tag) for languages as administered by the Internet Assigned Numbers Authority
(IANA). The tag is assembled from a sequence of subtags separated by the hyphen (-, U+002D) character. It
gives the language (possibly further identified with a sublanguage), a script and a region for this language, each
possibly followed by a variant subtag.

 Theidentifier consists of at least one ‘primary’ subtag, it may be followed by one or more ‘extended’ subtags.

« Languages are identified by a language subtag, which may be a two letter code taken from ISO 639-1 or a
three letter code taken from ISO 639-2.

» ISO 639-2 reserves for private use codes in the range 'qaa’ to 'qtz'. These codes should be used for non-
registered language subtags.
o A single letter primary subtag "x" indicates that the whole language tag is privately used.

"non

+ Extended language subtags must begin with the letter "s". They must follow the primary subtag and precede
subtags that do define other properties of the language. The order is significant.

o 4 character subtags are interpreted as script identifiers taken from ISO 15924

« Region subtags can be either two letter country codes taken from ISO 3166 (with exceptions) or 3 digit
codes from the UN Standard Country Codes for Statistical Use.

o Variant subtags may follow any of the above, but must precede private use extensions.

n_n

o Private use extensions are separated from the other subtags by the single letter subtag "x", which must be
followed by at least one subtag. They might consist of several subtags separated with "-", but may not exceed
a length of 32 characters.

Examples of language tags

* Simple language subtag
- de (German)

- ja (Japanese)

!Currently BCP 47 comprises two Internet Engineering Task Force documents, referred to separately as RFC 4646 and RFC 4647; over time, other
IETF documents may succeed these as the best current practice.
2Phillips, Addison and Davis, Mark, Tags for Identifying Languages2006-09: http://tools.ietf.org/html/bcp47

liv

http://tools.ietf.org/html/bcp47

vi.l. Language identification

- zh (Chinese)

Language subtag plus Script subtag
- zh-Hant (Traditional Chinese)

- en-Latn (English written in Latin script)

- sr-Cyrl (Serbian written with Cyrillic script)

* Language-Script-Region
- zh-Hans-CN (Simplified Chinese for the PRC)
- sr-Latn-891 (Serbian, Latin script, Serbia and Montenegro)

Language-Region
- zh-SG (Chinese for Singapore)
- de-DE (German for Germany)

* Other
- zh-CN (Chinese in China, no script given)

- zh-Latn (Chinese transcribed in the Latin script)

* Extended:
- de-CH-x-phonebook (phonebook collation for Swiss German)

- zh-s-nan (the Southern Min language of the macrolanguage Chinese)

- zh-s-nan-Hans-CN (the Southern Min language of the macrolanguage Chinese as spoken in China
written in simplified Characters)

- zh-Latn-x-pinyin (Chinese transcribed in the Latin script using the Pinyin system)

It should be noted that capitalization given here follows established convention (e.g. capital letters for
country codes, small letters for language codes), but BPC 47 does not ascribe any meaning to differences in
capitalization.

As can be seen, both BPC 47 and ISO 639-2 provide extensions that can be employed by private convention.
The constructs mentioned above can thus be used to generate identifiers for any language, past and present,
in any used in any area of the world. If such private extensions are used within the context of the TEI, they
should be documented within the <language> element of the TEI header, which might also provide a prose
description of the language described by the language tag.

While language, region and script can be adequately identified using this mechanism, there is only very
rough provision to express a dimension of time for the language of a document; those codes provided (e.g.
grc for ‘Greek, Ancient (to 1453)” in ISO 639-2) might not reflect the segments appropriate for a text at hand.
Text encoders might express the time window of the language used in the document by means of the extension
mechanism defined in BCP 47 and relate that to a <date> element in the corresponding <language> section of
the TEI header.

Equivalences to language identifiers by other authorities can be given in the <language> section as well,
but no formal mechanism for doing so has been defined.

The scope of the language identification is extending to the whole subtree of the document anchored at the
element that carries the xml:lang attribute, including all elements and all attributes where a language might

apply.’

3This will exclude all attributes where a non-textual dataty