ATOL: Filesystems and Their Management

Marek Grác xgrac@fi.muni.cz

Red Hat Czech s.r.o. / Faculty of Informatics, Masaryk University

Advanced Topics of Linux Administration

Creating partiotions

- ► fdisk (< 1.5 TB), cfdisk, parted view and manage partition tables
- List partition tables from command line
- partprobe inform the OS of partition table changes
- cat /proc/partitions

Making Filesystems

- ▶ mkfs
- mkfs.ext2, mkfs.ext3, mkfs.msdos
- Specific filesystem utilities can be called directly
 - mke2fs [options] device

Filesystem Labels

- Alternate way to refer to devices
- Device independent
 - e2label devfile [fslabel]
 - mount [options] LABEL=fslabel mountpoint
- blkid used to see labels and filesystems type of all devices

Mount Points and /etc/fstab

- Configuration of the filesystem hierarchy
- ▶ Used by *mount*, *fsck* and other programs
- Maintains the hierarchy between system reboots
- May use filesystem volume labels in the device field
- ► The mount -a command cen be used to mount all filesystems listed in /etc/fstab

Unmounting Filesystems

- umount [options] device/mountpoint
- You cannot unmount a filesystem that is in use
 - Use fuser to check and/or kill processes
- Use the remount option to change a mounted filesystem's options atomically
 - mount -o remount,ro /data

Handling Swap Files and Partitions

- Swap space is a suppplement to system RAM
- Basic setup involves:
 - Create a swap partition or file
 - Write special signature using mkswap
 - Add appropriate entries to /etc/fstab
 - Activate swap space with swapon -a

Filesystems in Linux

- Local disk file systems
 - ext2, ext3, ext4
 - reiserFS
 - XFS
- Shared disk file systems (SAN vs NAS, cluster)
 - ► GFS, GFS2
 - GPFS
 - Lustre

Extended file system (ext2, ext3)

- Designed for Linux
- ext2
 - Very stable
 - Through faultcan hurt filesystem
 - Repair is easy but quite slow
 - ► Inode size <= 128 for Windows driver
- ext3 = ext2 + journaling
 - Backwards compatibility with ext2
 - ▶ Repair is fast (?) but some metadata operations are slow
 - ► Immutable files and append-only files

ReiserFS

- ▶ ReiserFS3 in vanilla Linux kernel. Reiser4 not ready for enterprise.
- ► Reiser3
 - Good for small files
 - Not so stable
 - Less users, less support
- Reiser4
 - ► Plugin driven filesystems
 - Transactions

XFS

- ▶ One of the first journaling fs under UNIX (kernel 2.4.X)
 - ▶ Good for large files, big directories, big filesystems
 - Slow and problematic repair
 - Creation/Deletion of directory entries are slow
 - Quota can be set on per directory base
- Features in XFS
 - Delayed allocation for reducing fragmentation
 - Native backup/restore utilities able to make fs dump without unmounting

GFS

- ▶ GFS2 is available in vanilla kernel since 2.6.19
 - Cluster filesystem
 - All nodes are equal, running are controlling access to shared resources
 - Failure cluster member affects only other members using shared resources
- Features in GFS2:
 - Direct I/O support allows databases to achieve high performance
 - Dynamic multi-path routing around failed components in SAN

GPFS

- Proprietary, generally bundled with IBM hardware
- Used on very large clusters (up to 2000 nodes)
- ► High performance and grids
- Features in GPFS:
 - SQL based syntax policies for file placement and management
 - Shared disk or network block IO configuration
 - Offer clustered NFS (HA)
 - Snapshot by copy-on-write

Lustre

- Not part of vanilla kernel, only patches
- Architecture:
 - Uses modified ext3 as storage fs
 - Single metadata target
 - typicaly 2-8 object storage servers
 - clients accessing data
- Features in Lustre.
 - Support for HA, recovery, transparent reboots
 - Data blocks stripped across objects (bandwidth agregation, not limited by size of target object)

Software RAID Configuration

- Create and define RAID devices using mdadm
 - mdadm -C /dev/md0 -a yes -l 1 -n 2 -x 1 elements
- Format each RAID device with a filesystem
 - mke2fs -k /dev/md0
- Test the RAID devices
- allows to check the status of your RAID devices
 - mdadm –detail /dev/md0

Software RAID Testing and Recovery

- Simulating disk failures
 - mdadm /dev/md0 -f /dev/sda1
- Recovering from a software RAID disk failure
 - replace the failed hard drive and power on
 - reconstruct partitions on the replacement drive
 - mdadm /dev/md0 -a /dev/sda1
- mdadm, /proc/mdstat and syslog messages

What is Logical Volume Manager?

- A layer of abstraction that allows easy manipulation of volumes. Including resizing of filesystems.
- Allow reorganization of filesystems across multiple physical devices
 - Devices are designated as Physical Volumes (PV)
 - One or more PV are used to create a Volume Group (VG)
 - PV are defined with Physical Extents of a fixed size
 - Logical Volumes (LV) are created on PV and are composed of Physical Extents
 - Filesystems may be created on Logical Volumes

Creating Logical Volumes

- Create physical volumes
 - pvcreate /dev/sda3
- Assign physical volumes to volume groups
 - vgcreate vg0 /dev/sda3
- Create logical volumes from volume groups
 - Ivcreate -L 256M -n data vg0
 - mke2fs -j /dev/vg0/data

Resizing Logical Volumes

- Growing Volumes
 - Ivextend can grow logical volumes
 - resize2fs can grow EXT3 filesystems online
 - vgextend adds new physical volumes to an existing volume group
- Shrinking Volumes
 - Filesystem have to be reduced first
 - Requires a filesystem check and cannot be performed online
 - Ivreduce can then reduce volume
- Volume Groups can be reduced with:
 - pvmove /dev/sda3
 - vgreduce vg0 /dev/sda3

Lab: Installation

- ▶ Goals:
 - Deploy LVM on the software RAID device
 - Create a group with two partitions such that new partition could be added, and the filesystem could be extended

Lab: Prepare a paper

- ► Themes:
 - Compare software and hardware RAID
 - ► Compare new filesystems in Linux (ext4, zfs, reiser4, ...)
- Format:
 - ▶ Short presentation (15–20 minutes; 5-7 slides)
 - Paper containing comparision (1000 words)