
PV222

Security Architectures

Lecture 2

Web Security

2nd April 2009 PV222: Security Architectures: Lec 2 2

Lecture Overview

� What is the web?

� The web components: HTTP and HTML

� HTTP, state and cookies

� Web server hazards

� SSL/TLS

� Further information

2nd April 2009 PV222: Security Architectures: Lec 2 3

The World Wide Web

� The World Wide Web (or just the web) is

essentially a means of providing access to

data across the Internet in a way that hides

most of the complexity.

� In technical terms it does not do much more

than the simple file transfer protocol FTP.

� However, the combination of transparency

and hyperlinks enable the construction of the

enormously complex web we have today.

2nd April 2009 PV222: Security Architectures: Lec 2 4

Web browsers and servers

� Two key elements of the web are the

browsers and servers.

� The web browser is a programme running on

a PC that provides a means of viewing

information provided by web servers

connected to the Internet.

2nd April 2009 PV222: Security Architectures: Lec 2 5

What is Web Security?

� Garfinkel and Spafford (in Web Security,

Privacy & Commerce) define web security

as:

1. “Securing the web server and the data that is on
it.”

2. “Securing information that travels between the
web server and the user.”

3. “Securing the end user’s computer and other
devices that people use to access the Internet.”

2nd April 2009 PV222: Security Architectures: Lec 2 6

The protocol

� The web protocol, i.e. the set of rules by

which data is transferred between web

browsers and web servers is called HTTP, for

HyperText Transfer Protocol.

� This is a very simple “request/reply” protocol

running over TCP (the Transmission Control

Protocol).

� Requests are directed from a web browser to

a resource at a specific address.

2nd April 2009 PV222: Security Architectures: Lec 2 7

Addresses (URIs and URLs)

� URIs (Universal Resource Identifiers) are means of
identifying network resources.

� A URI is either a URL (Uniform Resource Locator)
or a Name (URN).

� URL syntax is defined in RFCs 1738 and 1808.

� A URL looks like:

http://<host><path>

where <host> is an Internet host name or IP
address.

2nd April 2009 PV222: Security Architectures: Lec 2 8

The language

� When a web browser receives a request, it responds
with information (a “web page”) in a language called
HTML (HyperText Markup Language).

� An HTML file is essentially a text file containing a
series of “markup tags” instructing the recipient how

to display the text.

� A tag may also include a URI for a different web

page, and the browser will display this as a
hyperlink.

2nd April 2009 PV222: Security Architectures: Lec 2 9

Web standards

� Some of the most fundamental web-related

specifications are IETF RFCs (requests for

comments).

� W3C (World Wide Web Consortium) is a

forum that develops and publishes web

specifications.

2nd April 2009 PV222: Security Architectures: Lec 2 10

HTTP – overview

� There are two main versions of HTTP:

Version 1.0 (HTTP/1.0 defined in RFC 1945)

and version 1.1 (HTTP/1.1 defined in RFC

2616).

� HTTP is an application-level protocol.

� The fundamental unit of HTTP

communication is a message (a structured

sequence of bytes).

2nd April 2009 PV222: Security Architectures: Lec 2 11

HTTP – requests/responses

� HTTP is a request/response protocol – that

is, a user agent (typically a web browser on a

PC) sends a request, and a remote server

sends a response to that request.

� The request consists of a request method, a

URI, and a protocol version number, followed

by a MIME-like message containing a request

modifiers (parameters), client information,

and (possibly) content of some kind.

2nd April 2009 PV222: Security Architectures: Lec 2 12

HTTP – responses

� A server response consists of:

� a status line, including the protocol version
number, and a success/error code, and

� a MIME-like message, containing server
information, content meta-information (headers),
and content.

� The content will typically be written in HTML.

2nd April 2009 PV222: Security Architectures: Lec 2 13

HTML

� The latest versions of HTML are HTML 4.01
and XHTML 1.0.

� HTML 4.01 is a W3C Recommendation from
1999. (HTML 2.0 was published as RFC
1866).

� HTML 5 is currently in the W3C Working
Draft phase of publication.

� XHTML is a reformulation of HTML in XML
1.0 (the latest version was published by W3C
in August 2002).

2nd April 2009 PV222: Security Architectures: Lec 2 14

HTML syntax

� An HTML document is divided into:

� a head section (between <HEAD> and </HEAD>)
and

� a body (between <BODY> and </BODY>).

� The title appears in the head (along with

other information about the document), and

the content appears in the body.

� The body will typically contain paragraphs,

marked up with <P> … </P>.

2nd April 2009 PV222: Security Architectures: Lec 2 15

HTML and SGML

� SGML (Standard Generalized Markup

Language) was published as international

standard ISO 8879 in 1986.

� SGML is a system for defining markup

languages.

� Authors mark up their documents by

representing structural, presentational, and

semantic information alongside content.

� HTML is one example of a markup language.

2nd April 2009 PV222: Security Architectures: Lec 2 16

SGML use

� A markup language defined in SGML is called an
SGML application.

� An SGML application is characterised by:

� An SGML declaration that specifies which characters and

delimiters appear.

� A document type definition (DTD) that defines the syntax of

markup constructs.

� A specification that describes the semantics of the markup.

� Document instances containing data (content) and markup.

2nd April 2009 PV222: Security Architectures: Lec 2 17

XML

� The Extensible Markup Language (XML) is a

subset of SGML.

� Its goal is to enable generic SGML to be

server, received, and processed on the web

in the way that is now possible with HTML.

� XML has been designed for ease of

implementation and for interoperability with

both SGML and HTML.

2nd April 2009 PV222: Security Architectures: Lec 2 18

Using HTML

� Writing in HTML is simple.

� The easiest way is to use a tool which

automatically produces the HTML syntax

(adds the correct tags).

� However, because HTML is essentially plain

text plus tags, direct editing simple HTML

pages is very straightforward (particularly if

you have a few examples to work from).

2nd April 2009 PV222: Security Architectures: Lec 2 19

HTTP is stateless

� The HTTP protocol does not require the

server to maintain any protocol state.

� That is, the server does not keep any

information to enable consecutive requests

from a single user agent to be linked.

� Hence HTTP does not support “sessions”,

e.g. as might be required to support

e-commerce.

2nd April 2009 PV222: Security Architectures: Lec 2 20

Cookies

� HTTP Cookies are simple means of enabling

browser sessions with a server.

� The idea is that the server sends back state

information in its response header, in the

form of a Cookie.

� The Cookie is then resubmitted with the next

request to the same server.

� A Cookie might, for example, specify the

current contents of your shopping basket.

2nd April 2009 PV222: Security Architectures: Lec 2 21

Cookie contents

� A cookie header (in a response header)
contains:
� attribute, the data payload;

� domain scope, enables sharing of cookies by web
hosts with specified domain name;

� path scope, limits the URI path to which the
cookie should be sent back;

� expiration, the expiry date of the Cookie;

� SSL flag, if set the Cookie should only be sent
back via an HTTPS (HTTP over SSL) connection.

2nd April 2009 PV222: Security Architectures: Lec 2 22

Cookies and privacy

� Whilst Cookies are an invaluable tool for e-

commerce and other uses of the web, they

also constitute a privacy threat.

� Clearly, a server can use Cookies to track

individual user PCs (even if the server cannot

automatically discover the owner of a

particular PC).

� We look at one way this tracking can pose a

threat.

2nd April 2009 PV222: Security Architectures: Lec 2 23

Tracking cookies

� Web-based advertising agencies, e.g. DoubleClick,
Focalink, Globaltrack, and ADSmart put
advertisements on web sites.

� These web pages contain an tag, pointing to
a URL on the advertising agency’s server.

� When a web browser sees this tag, it
contacts the agency server to retrieve the graphic.

� The first time the graphic is downloaded, the user
browser will receive an agency cookie containing a

random ID.

2nd April 2009 PV222: Security Architectures: Lec 2 24

Tracking cookies

� Every time the browser visits a site containing

the agency’s advertisements, it sends the

cookie (the random ID) along with the URL of

the page that is being read (using the referer

field) to the agency.

� This enables the agency to track a single

user’s behaviour across multiple web sites.

2nd April 2009 PV222: Security Architectures: Lec 2 25

Countermeasures

� Software can be used to detect tracking

cookies and eliminate them (and, in some

cases, even prevent them being loaded).

� Sources of software include:

� www.spybot.info (for Spybot Search and Destroy),

and

� www.lavasoftusa.com (for Ad-Aware 6.0)

2nd April 2009 PV222: Security Architectures: Lec 2 26

Referer field

� One of the fields in the header of an HTTP request
message is the Referer field.

� This allows the client to specify, for the server’s
benefit, the address (URI) of the resource from
which the URI of this request was obtained.

� In most browsers, when you look at a new page, the
browser will send the URL of the current page in the
referer field.

� Under the HTTP definitions, this is means to be an
option for the user, but according to Garfinkel and
Spafford, they have never seen a browser where it
is optional.

2nd April 2009 PV222: Security Architectures: Lec 2 27

OWASP Top Ten – I

� The Open Web Application Security Project

(OWASP) is an open community dedicated to

improving the security of web applications.

� The OWASP Top Ten is a project to collate

information on what the most critical web

application security flaws are.

2nd April 2009 PV222: Security Architectures: Lec 2 28

OWASP Top Ten – II

1. Unvalidated Input

2. Broken Access Control

3. Broken Authentication and Session Management

4. Cross Site Scripting

5. Buffer Overflow

6. Injection Flaws

7. Improper Error Handling

8. Insecure Storage

9. Application Denial of Service

10. Insecure Configuration Management

2nd April 2009 PV222: Security Architectures: Lec 2 29

Unvalidated Input

� Unvalidated Input:
� Covers attacks types such as: cross site scripting; buffer

overflows; format string attacks; SQL injection.

� One way to protect the web server is to filter out malicious
input – this has the problem that there are a large number
of ways of encoding information.

� Other applications use only client-side mechanisms to
validate input – but these are easily bypassed.

� The best way to defend against these types of attacks is to
check against a strict format that specifies what will be
allowed.

� Validate against a “positive” specification:
� Data type; allowed character set; minimum and maximum

length; …

2nd April 2009 PV222: Security Architectures: Lec 2 30

Cross Site Scripting – I

� Cross Site Scripting (XSS):

� When an attacker uses a web application to send malicious

code to a different end user.

� Can occur anywhere a web application uses input from a
user in the output it generates without validating it.

� Victim’s browser has no way of knowing that the script

should not be trusted, and will execute it.

� XSS attacks can generally be categorised into two

categories:

� Stored

� Reflected

2nd April 2009 PV222: Security Architectures: Lec 2 31

Cross Site Scripting – II

� Stored attacks are those where the injected code is
permanently stored on the target servers, such as in a:
database; message forum; visitor log; …

� Reflected attacks are those where the injected code is
reflected off the web server, such as in an error message,
search result, etc.

� They are delivered to the victim via another route, such as in
an email message, or on some other web server.

� When a user is tricked into clicking on a malicious link or
submitting a specially crafted form, the injected code travels to
the vulnerable web server, which reflects the attack back to
the server.

� The browser then executes the code because it came from a
“trusted” server.

2nd April 2009 PV222: Security Architectures: Lec 2 32

Cross Site Scripting – III

� XSS can cause a variety of problems for the end user.

� The most severe XSS attacks involve disclosure of the
user’s session cookie, allowing an attacker to hijack the

user’s session and take over the account.

� Other attacks include:

� Disclosure of end user files

� Installing a Trojan horse

� Modifying presentation of content

� Best method of protection is to ensure that web

applications perform validation of all a rigorous

specification.

2nd April 2009 PV222: Security Architectures: Lec 2 33

Web server scripting

� Most web browsers have the capability to

interpret scripts embedded in the web pages

downloaded from a web server.

� Such scripts may be written in a variety of

scripting languages and are run by the

client’s browser.

� In the past most browsers were installed with

the capability to run scripts enabled by

default.

2nd April 2009 PV222: Security Architectures: Lec 2 34

Impact of scripting attacks

� Users may unintentionally execute scripts

written by an attacker when they follow

untrusted links in web pages, mail messages,

or newsgroup postings.

� Users may also unkowingly execute

malicious scripts when viewing dynamically

generated pages based on content provided

by other users.

2nd April 2009 PV222: Security Architectures: Lec 2 35

Scripting attack – simple example

� An attacker might post a message such as:
� Hello message board. This is a message.

<SCRIPT>malicious code</SCRIPT>

This is the end of my message.

to an Internet discussion group.

� When a victim with scripts enabled in their browser
reads this message, the malicious code may be
executed unexpectedly.

� Scripting tags that can be embedded in this way
include <SCRIPT>, <OBJECT>, <APPLET>, and
<EMBED>.

2nd April 2009 PV222: Security Architectures: Lec 2 36

Attacks on servers

� Web servers themselves may be the victims of
attacks via HTTP requests.

� For example, to cause buffer overflow in a web
server, an attacker might induce errors at Web traffic
ports by entering large character strings to find a
susceptible overflow field.

� Once a field spills over into a code-executing field,
an attacker will enter another string that will spill a
command into the executable field.

� Buffer overflows can give an attacker access to a
range of sensitive server functions.

2nd April 2009 PV222: Security Architectures: Lec 2 37

Attacks on servers

� Certain implementations of HTTP can be

used to create an HTTP bypass, granting

access to a server’s activity logging functions.

� With these implementations, a Web page can

be accessed and altered without the system’s

Web server recording the change.

� This method is often used to deface Web

pages.

2nd April 2009 PV222: Security Architectures: Lec 2 38

Attacks on servers

� Web-code vulnerabilities can appear in many

languages and application extensions,

including VB, Visual C++, ASP, TCL, Perl,

PHP, XML, CGI and Cold Fusion.

� Basically, an attacker will exploit a known

weakness in an application, such as CGI

scripts not checking input.

2nd April 2009 PV222: Security Architectures: Lec 2 39

CGI scripts

� A Common Gateway Interface (CGI) Script is

a program which is run on demand by a

server to generate the content of a web page.

� If a web page has to do more than simply

give an unchanging text and graphics display

to the viewer, dynamic content generation,

e.g. as provided by a CGI Script, is needed.

2nd April 2009 PV222: Security Architectures: Lec 2 40

Injection Flaws – I

� Injection Flaws:

� Allow attackers to relay malicious code through a
web application to another system.

� This is because many web applications use
operating system features and external programs
to perform their functions.

� These include: calls to the operating system; shell
commands; calls to backend databases (e.g. SQL

injection).

2nd April 2009 PV222: Security Architectures: Lec 2 41

Injection Flaws – II

� To implement SQL injection, the attacker must
find a parameter that the web application passes
to a database.

� By carefully embedding malicious SQL commands
in the content of the parameter, the attack can
trick the web application to forward the malicious
query to the database.

� The consequences are particularly damaging, as
an attacker can obtain, corrupt, or destroy
database contents.

� Careful validation of data is required.

2nd April 2009 PV222: Security Architectures: Lec 2 42

URL Obfuscation Attacks

� URL Obfuscation attacks are mechanisms used to
trick users to visit an attacker’s website.

� Examples of such attacks are: using strings; using @ sign;
URL redirection.

� Using strings:

� http://254.231.52.42/ebay/account_update/now.php

� Using @ sign:

� http://www.citybank.com/update.pl@254.231.52.42/usb

/upd.pl

� URL redirection:

� http://usa.visa.com/track/dyredir.jsp?rDirl=http://

200.251.251.10/.verified/

2nd April 2009 PV222: Security Architectures: Lec 2 43

SSL/TLS overview

� SSL = Secure Sockets Layer. Current version

is v3.

� TLS = Transport Layer Security. TLS 1.0 is

similar to SSL 3.0 with minor tweaks.

� TLS is defined in RFC 2246.

� SSL/TLS provides security “at TCP layer”. In

fact, it usually provides a thin layer between

TCP and HTTP.

2nd April 2009 PV222: Security Architectures: Lec 2 44

SSL/TLS basic features

� SSL/TLS widely used in Web browsers and

servers to support “secure e-commerce” over

HTTP.

� Built into Microsoft IE, Netscape, Mozilla, Apache,
IIS, …

� Presence of SSL protected link indicated by the
browser padlock symbol.

2nd April 2009 PV222: Security Architectures: Lec 2 45

SSL architecture

� SSL architecture involves two layers:

� SSL Record Protocol

� Lower layer providing secure, reliable channel to upper

layer.

� Upper layer carrying:

� SSL Handshake Protocol,

� Change Cipher Spec. Protocol,

� Alert Protocol,

� HTTP,

� Any other application protocols.

2nd April 2009 PV222: Security Architectures: Lec 2 46

SSL architecture

SSL

Handshake

Protocol

SSL Record

Protocol

TCP

SSL

Change

Cipher

Spec

Protocol

SSL

Alert

Protocol

HTTP,

other apps

2nd April 2009 PV222: Security Architectures: Lec 2 47

SSL Record Protocol

� Carries application data and “management” data.

� Sessions:
� Sessions created by handshake protocol.

� Defines set of cryptographic parameters (encryption and
hash algorithm, master secret, certificates).

� Carries multiple connections to avoid repeated use of
expensive handshake protocol.

� Connections:
� State defined by nonces, secret keys for MAC and

encryption, IVs, sequence numbers.

� Keys for many connections derived from single master
secret created during handshake protocol.

2nd April 2009 PV222: Security Architectures: Lec 2 48

SSL Record Protocol

� SSL Record Protocol provides:

� Data origin authentication and integrity.

� MAC using algorithm similar to HMAC, based on MD5 or

SHA-1 hash algorithms.

� MAC protects 64 bit sequence numb for anti-replay.

� Confidentiality.

� Bulk encryption using symmetric algorithm (IDEA, RC2-
40, DES-40 (exportable), DES, 3DES, RC4-40 and RC4-

128.

2nd April 2009 PV222: Security Architectures: Lec 2 49

SSL Record Protocol

� Data from application/upper layer SSL

protocol partitioned into fragments (max size

214 bytes).

� MAC first, then pad (if needed), and finally

encrypt.

� Prepend header containing: Content type,

version, length of fragment.

� Submit to TCP.

2nd April 2009 PV222: Security Architectures: Lec 2 50

SSL Handshake Protocol

� SSL needs secret keys:

� Used for MAC & encryption at Record Layer.

� Different keys in each direction.

� These keys are established as part of the

SSL Handshake Protocol.

� The SSL Handshake Protocol is a complex

protocol with many options.

2nd April 2009 PV222: Security Architectures: Lec 2 51

SSL Handshake Protocol security goals

� Entity authentication of participating parties
(client and server).
� Server nearly always authenticated, client more

rarely.

� Appropriate for most e-commerce applications.

� Establishment of a fresh, shared secret.
� Shared secret used to derive further keys for SSL

Record Protocol.

� Secure ciphersuite negotiation (including
encryption and hash algorithms).

2nd April 2009 PV222: Security Architectures: Lec 2 52

SSL Handshake Protocol – key exchange

� SSL supports several key establishment

mechanisms.

� Most common is RSA encryption.

� Client chooses pre_master_secret, encrypts it

using public RSA key of server, and sends to
server.

� Can also create pre_master_secret using

one of several variants of Diffie-Hellman key

establishment protocol.

2nd April 2009 PV222: Security Architectures: Lec 2 53

SSL Handshake Protocol – entity
authentication

� SSL supports several different entity

authentication mechanisms.

� Most common based on RSA:

� The ability to decrypt pre_master_secret and

generate correct MAC using keys derived from
pre_master_secret authenticates the server to
the client.

� DSS or RSA signatures on nonces (and other

fields, e.g. Diffie-Hellman values).

2nd April 2009 PV222: Security Architectures: Lec 2 54

SSL key deriviation

� Keys used for MAC and encryption derived

from pre_master_secret:

� Derive master_secret from
pre_master_secret and client/server nonces

using MD5 and SHA-1.

� Derive key material from master_secret and
client/server nonces, by repeated use of hash

functions.

� Split key material into MAC and encryption keys

as needed.

2nd April 2009 PV222: Security Architectures: Lec 2 55

SSL Handshake Protocol run

� We choose the most common use of SSL for

illustration:

� No client authentication.

� Client sends pre_master_secret using

Server’s public encryption key from Server
certificate.

� Server authenticated by ability to decrypt to obtain
pre_master_secret, and construct correct
finished message.

2nd April 2009 PV222: Security Architectures: Lec 2 56

SSL Handshake Protocol run

M1: C → S: ClientHello

� Client initiates connection.

� Sends client version number.

� 3.1 for TLS.

� Sends ClientNonce.

� 28 random bytes plus 4 bytes of time.

� Offers list of ciphersuites.

� key exchange and authentication options, encryption

algorithms, hash functions, e.g.
TLS_RSA_WITH_3DES_EDE_CBC_SHA.

2nd April 2009 PV222: Security Architectures: Lec 2 57

SSL Handshake Protocol run

M2: S → C: ServerHello, ServerCertChain,
ServerHelloDone

� Sends server version number.

� Sends ServerNonce and SessionID.

� Selects single ciphersuite from list offered by client, e.g.
TLS_RSA_WITH_3DES_EDE_CBC_SHA.

� Sends ServerCertChain message.

� Allows client to validate server’s public key.

� (optional) CertRequest message.

� Omitted in this protocol run – no client authentication.

� Finally, ServerHelloDone.

2nd April 2009 PV222: Security Architectures: Lec 2 58

SSL Handshake Protocol run

M3: C → S: ClientKeyExchange,
ChangeCipherSpec, ClientFinished
� ClientKeyExchange contains encryption of
pre_master_secret under server’s public key.

� ChangeCipherSpec indicates that client is updating
cipher suite to be used in this session.

� Sent using SSL Change Cipher Spec. Protocol.

� (optional) ClientCertificate,
ClientCertificateVerify messages.

� Only when client is authenticated.

� Finally, ClientFinished message.

� A MAC on all messages sent so far (both sides).

� MAC computed using master_secret.

2nd April 2009 PV222: Security Architectures: Lec 2 59

SSL Handshake Protocol run

M4: S → C: ChangeCipherSpec,
ServerFinished

� ChangeCipherSpec indicates that server is
updating cipher suite to be used on this session.

� Sent using SSL Change Cipher Spec. Protocol.

� Finally, ServerFinished message.

� A MAC on all messages sent so far (both sides).

� MAC computed using master_secret.

� Server can only compute MAC if it can decrypt

pre_master_secret in M3.

2nd April 2009 PV222: Security Architectures: Lec 2 60

SSL Handshake Protocol run

Summary:

M1: C → S: ClientHello

M2: S → C: ServerHello,

ServerCertChain, ServerHelloDone

M3: C → S: ClientKeyExchange,

ChangeCipherSpec, ClientFinished

M4: S → C: ChangeCipherSpec,
ServerFinished

2nd April 2009 PV222: Security Architectures: Lec 2 61

SSL Handshake Protocol run

1. Is the client authenticated to the server in this
protocol run?

2. Can an adversary learn the value of
pre_master_secret?

3. Is the server authenticated to the client?

1. No.

2. No. Client has validated server’s public key; only the
holder of the private key can decrypt

ClientKeyExchange to learn pre_master_secret.

3. Yes. ServerFinished includes MAC on nonces
computed using key derived from pre_master_secret.

2nd April 2009 PV222: Security Architectures: Lec 2 62

Other SSL Handshake options

� Many optional/situation-dependent protocol

messages:

� M2 (S → C) can include:

� ServerKeyExchange (e.g. for DH key exchange).

� CertRequest (for client authentication).

� M3 (C → S) can include:

� ClientCert (for client authentication).

� ClientCertVerify (for client authentication).

2nd April 2009 PV222: Security Architectures: Lec 2 63

Other SSL protocols

� Alert protocol.

� Management of SSL session, error messages.

� Fatal errors and warnings.

� Change cipher spec protocol.

� Not part of SSL Handshake Protocol.

� Used to indicate that entity is changing to recently
agreed ciphersuite.

� Both protocols run over Record Protocol (so

peers of Handshake Protocol).

2nd April 2009 PV222: Security Architectures: Lec 2 64

SSL and TLS

� TLS 1.0 = SSL 3.0 with minor differences:
� TLS signalled by version number 3.1

� Use of HMAC for MAC algorithm.

� Different method for deriving key material (master-
secret and key-block).

� Pseudo-random function based on HMAC with MD5 and
SHA-1.

� Additional alert codes.

� More client certificate types.

� Variable length padding (can be used to hide lengths of
short messages and so frustrate traffic analysis).

� And more…

2nd April 2009 PV222: Security Architectures: Lec 2 65

SSL/TLS applications

� Secure e-commerce using SSL/TLS.

� Client authentication not needed until client
decides to buy something.

� SSL provides secure channel for sending credit
card information.

� Client authenticated using credit card information,
merchant bears (most of) risk.

� Very widely used.

2nd April 2009 PV222: Security Architectures: Lec 2 66

SSL/TLS application issues

� Secure e-commerce: some issues.
� No guarantees about what happens to client data (including

credit card details) after session: may be stored on
insecure server.

� Does client understand meaning of certificate expiry and
other security warnings?

� Does client software actually check complete certificate
chain?

� Does the name in certificate match the URL of e-commerce
site? Does the user check this?

� Is the site the one the client thinks it is?

� Is the client software proposing appropriate ciphersuites?

2nd April 2009 PV222: Security Architectures: Lec 2 67

SSL/TLS application issues

� Secure electronic banking:

� Client authentication may be enabled using client

certificates.

� Issues of registration, secure storage of private keys,
revocation and re-issue.

� Otherwise, SSL provides secure channel for sending

username, password, mother’s maiden name, …

� What else does client use same password for?

� Does client understand meaning of certificate expiry and

other security warnings?

� Is client software proposing appropriate ciphersuites?

� Enforce from server.

2nd April 2009 PV222: Security Architectures: Lec 2 68

Books

� Any modern book on computer networking

will cover the web, HTTP, HTML, Cookies,

etc.

� Eric Rescorla, SSL and TLS: Designing and

Building Secure Systems. Addison Wesley,

2000. [There are other books on this topic].

� D. Stein, Web Security, Addison Wesley,

1998.

� S. Laurent, Cookies. McGraw Hill, 1998.

2nd April 2009 PV222: Security Architectures: Lec 2 69

Standards

� All IETF RFCs can be obtained from:
www.ietf.org

� The W3C recommendations are available at:
www.w3.org

� The international standardisation body ISO has
published the SGML standard (a catalogue of
current standards is available at www.iso.ch).

� For general information about security standards
see: A. W. Dent and C. J. Mitchell: User’s guide to
cryptography and standards (Artech House, 2004).
� http://www.isg.rhul.ac.uk/ugcs

2nd April 2009 PV222: Security Architectures: Lec 2 70

Acknowledgements

� Some information taken from original lecture notes by Chris
Mitchell.

� SSL/TLS discussion based on an (abbreviated version of) Kenny
Paterson’s lecture on Secure Network Protocols.

� Information derived from a number of web sites, including the
W3C web site (lots of useful tutorial information there).

� Some additional information from: Simson Garfinkel and Gene
Spafford – Web Security, Privacy & Commerce

� Information taken on the OWASP Top 10:
� http://www.owasp.org/index.php/Top_10_2004

� A more up to date version is available from:
� http://www.owasp.org/index.php/OWASP_Top_Ten_Project

2nd April 2009 PV222: Security Architectures: Lec 2 71

Conclusions

� After today’s lecture you should:
� Have a basic understanding of how the

components that make up the web work.

� Understand what are the security problems faced
by clients and servers using the web as an
interface.

� Be able to describe a high level overview of how
SSL allows us to build secure connections
between clients and servers.

� Be able to appreciate that security of web
applications does not just start and end with SSL.

