
IA159 Formal Verification Methods
Introduction

Jan Strejček

Department of Computer Science
Faculty of Informatics
Masaryk University



Agenda

Agenda
basic information about the course
quick overview
motivation

IA159 Formal Verification Methods: Introduction 2/20



What does “Formal Verification Methods” mean?

formal methods are a collection of notations and techniques for
describing and analyzing systems. Methods are
formal in the sense that they are based on some
mathematical theories, such as logic, automata or
graph theory. [Pel01]

verification is the process of applying a manual or an
automatic technique that is supposed to establish
whether the code either satisfies a given property
or behaves in accordance with some higher-level
description of it. [Pel01]

formal verificatin methods are techniques (usually based on
mathematical theories) for analysing systems with
the aim to improve their quality and reliability.

IA159 Formal Verification Methods: Introduction 3/20



Focus of the course

The course is focused on theoretical and algorithmic bases
of verification methods.
The software engineering aspects of verification methods
are beyond the scope of this course.

IA159 Formal Verification Methods: Introduction 4/20



Literature

There is no single reading material covering the course.
Two main sources:

D. A. Peled: Software Reliability Methods, Springer, 2001.
E. M. Clarke, O. Grumberg, and D. A. Peled: Model
Checking, MIT, 1999.

Other sources (mainly recent journal or conference
papers) will be referred.

IA159 Formal Verification Methods: Introduction 5/20



Connections to other courses

The course assumes familiarity with the following notions:
IB005 Formal Languages and Automata I (aka FJA I)
- pushdown automata
IA006 Selected topics on automata theory (aka FJA II)
- infinite words, Büchi automata, bisimulation equivalence
IA040 Modal and Temporal Logics for Processes
- temporal logics, mainly LTL
IV113 Introduction to Validation and Verification
- automata based LTL model checking

IA159 Formal Verification Methods: Introduction 6/20



Connections to other courses

Outher relevant courses:
MA015 Graph Algorithms
IV010 Communication and Parallelism
IB002 Design of Algorithms I
IV022 Design and Verification of Algorithms
PA008 Compiler Construction

IA159 Formal Verification Methods: Introduction 7/20



Connections to other courses

Courses following (is some sense) our course:
IV115 Parallel and Distributed Laboratory Seminar
IV074 Laboratory for Parallel and Distributed Systems
IA072 Seminar on Concurrency

IA159 Formal Verification Methods: Introduction 8/20



Examination

There will be an oral exam at the end.
No intrasemestral tests, no written exams, no homeworks.

IA159 Formal Verification Methods: Introduction 9/20



Overview of verification methods



Verification methods

testing
deductive verification (with use of theorem provers)
equivalence checking
reachability and model checking
static analysis and abstract interpretation
combined methods

IA159 Formal Verification Methods: Introduction 11/20



Testing

simple, feasible, very good cost/performance ratio
very effective in early stages of debugging process
applicable directly to real systems
cannot guarantee that there are no errors
in practice: standard technique for enhancing the quality of
systems, wide tool support

IA159 Formal Verification Methods: Introduction 12/20



Deductive verification

applicable to models of real systems
needs a huge effort of an expert on both deductive
verification and systems under verification
can guarantee that (a model of) a real system satisfies a
given property
in practice: used rarely (e.g. partial correctness of FPU in
AMD processors)

IA159 Formal Verification Methods: Introduction 13/20



Equivalence checking

applicable to models of real systems
needs a detailed formal specification of a system under
verification
there are no algorithms for reasonable equivalences and
infinite-state systems
in practice: some specific applications (e.g. equivalence of
different levels of hardware design)

IA159 Formal Verification Methods: Introduction 14/20



Reachability and model checking

applicable to (usually finite-state) models of real systems
needs formal specification of a system under verification
fully automatic, but feasible only for relatively small
finite-state systems
in practice: a standard technique for verification of simple
hardware designs, used also for verification of small
systems (e.g. communication protocols)

IA159 Formal Verification Methods: Introduction 15/20



Static analysis and abstract interpretation

applicable directly to source code of real systems, feasible
can verify only a specific class of properties (including
many interesting properties)
may produce false alarms (the number of false alarms
grows with the ability to find real bugs)
automatic (verification of some properties may require
provision of a suitable abstraction)
in practice: some static analysis is performed by almost
every compiler, there are very efficient tools (e.g. Coverity,
Stanse) able to work with big pieces of real software, for
example a linux kernel

IA159 Formal Verification Methods: Introduction 16/20



Combined methods

popular combinations:
abstraction + model checking
model checking + counter-example guided abstraction
refinement (CEGAR)
abstract interpretation + CEGAR
testing + model checking
testing + symbolic execution (a case of abstract
interpretation)

the aim is to develop methods which are applicable directly
to (source code of) real systems and (more or less)
automatic
may be incomplete and/or produce false alarms
in practice: already has some specific applications,
e.g. verification of Windows drivers by Static Driver Verifier
definitely the most promising approach

IA159 Formal Verification Methods: Introduction 17/20



Actual topics

formal aspects of testing: coverage criteria, model-based
testing, whitebox fuzz testing
deductive software verification: verification of flowcharts,
axiomatic program verification
theorem prover ACL2 (with a demo)
LTL→ BA via alternating 1-weak BA
partial order reduction
LTL model checking of pushdown systems
abstraction and CEGAR
abstract interpretation (???)

IA159 Formal Verification Methods: Introduction 18/20



Motivation

Formal verification is used in Microsoft, Intel, AMD,. . .
Formal verification is usually a supplementary method, the
main methods are testing or simulation.
In development of execution cluster of Core i7, formal
verification has been used as a primary validation vehicle
(simulation has been dropped)
only 3 bugs escaped to silicon (2 other bugs were detected
during the pre-silicon stage by full chip testing)
this number is usually about 40
the previous minimum is 11
More information in Kaivola et al: Replacing Testing with
Formal Verification in Intel Core i7 Processor execution
Engine Validation, CAV 2009, LNCS 5643, Springer, 2009.

IA159 Formal Verification Methods: Introduction 19/20



Coming next week

Software testing

Do my tests cover the whole code?
What does it mean “to cover the whole code”?
What can I do if I do not know the code?

IA159 Formal Verification Methods: Introduction 20/20


