
IA159 Formal Verification Methods
Software Testing

Jan Strejček

Department of Computer Science
Faculty of Informatics
Masaryk University



Focus and sources

Focus
software testing is not a typical formal method
we focus on three formal parts of software testing

control flow coverage criteria
dataflow coverage criteria
model-based testing

Sources
Chapter 9 of
D. A. Peled: Software Reliability Methods, Springer, 2001.
Model-based testing.
http://www.goldpractices.com/practices/mbt

IA159 Formal Verification Methods: Software Testing 2/34



Basic classification

Testing can be divided according to
the level of the tested parts
unit (module) testing - the lowest level of testing, where

one tests small pieces of code separately
integration testing - testing that different pieces of code

work well together
system testing - testing the system as a whole

approach to the source code
white box testing (aka transparent box testing)- based on

inspecting the source code
suitable for unit and integration testing

black box testing - does not use the source code (which
may be inaccessible or unknown)
suitable for system testing

IA159 Formal Verification Methods: Software Testing 3/34



Basic terminology

execution path - a path in the flowchart of the tested code, i.e.,
it is a sequence of control points and instructions
appearing in the tested code

test case - a sequence of inputs, actions, and events
accompanied with expected response of the
system

test suite - a set of test cases

IA159 Formal Verification Methods: Software Testing 4/34



White box testing

a typical program has a large or unbounded number of
execution paths
it is not feasible to examine all of them
need for a reasonably small test suite with a high degree of
probability of finding potential errors
code coverage criteria are metrices saying whether a given
test suite covers a given code
testers aim to find the smallest test suite with the highest
coverage
two kinds of code coverage criteria

control flow coverage criteria
dataflow coverage criteria

IA159 Formal Verification Methods: Software Testing 5/34



White box testing

Control flow coverage criteria

IA159 Formal Verification Methods: Software Testing 6/34



Control flow coverage criteria

y:=y+1

x=y and z>w

x:=x−1

true false

When is this code covered?

IA159 Formal Verification Methods: Software Testing 7/34



Control flow coverage criteria

y:=y+1

x=y and z>w

x:=x−1

true false

statement coverage
each executable statement (e.g. assignments, input, test,
output) appears in at least one test case
covering test case: (x = 2, y = 2, z = 4, w = 3)

IA159 Formal Verification Methods: Software Testing 8/34



Control flow coverage criteria

y:=y+1

x=y and z>w

x:=x−1

true false

edge coverage
each execution edge of the flowchart appears in some test
case
two covering test cases: (x = 2, y = 2, z = 4, w = 3),
(x = 3, y = 3, z = 5, w = 7)

IA159 Formal Verification Methods: Software Testing 9/34



Control flow coverage criteria

y:=y+1

x=y and z>w

x:=x−1

true false

condition coverage
each decision predicate is a Boolean combination of
element conditions, e.g. x < y or even(x)

each of these element conditions appears in some test
case where it is calculated to TRUE and in another test
case where it is calculated to FALSE (if possible)

IA159 Formal Verification Methods: Software Testing 10/34



Control flow coverage criteria

y:=y+1

x=y and z>w

x:=x−1

true false

condition coverage
two covering test cases: (x = 3, y = 3, z = 5, w = 7),
(x = 3, y = 4, z = 7, w = 5)

in both cases, the decision predicate is evaluated to
FALSE. . .

IA159 Formal Verification Methods: Software Testing 11/34



Control flow coverage criteria

y:=y+1

x=y and z>w

x:=x−1

true false

edge/condition coverage
executable edges as well as conditions has to be covered
three covering test cases: (x = 2, y = 2, z = 4, w = 3),
(x = 3, y = 3, z = 5, w = 7), (x = 3, y = 4, z = 7, w = 5)

IA159 Formal Verification Methods: Software Testing 12/34



Control flow coverage criteria

y:=y+1

x=y and z>w

x:=x−1

true false

multiple condition coverage
similar to condition coverage
each Boolean combination of TRUE/FALSE values that
may appear in any decision predicate during some
execution of the program must appear in some test case

IA159 Formal Verification Methods: Software Testing 13/34



Control flow coverage criteria

y:=y+1

x=y and z>w

x:=x−1

true false

multiple condition coverage
four covering test cases: (x = 2, y = 2, z = 4, w = 3),
(x = 3, y = 3, z = 5, w = 7), (x = 3, y = 4, z = 7, w = 5),
(x = 3, y = 4, z = 5, w = 6)

disadvantage: an explosion of the number of test cases

IA159 Formal Verification Methods: Software Testing 14/34



Control flow coverage criteria

y:=y+1

x=y and z>w

x:=x−1

true false

path coverage
every executable path must be covered by a test case
the number of paths can be enormous (for example, loops
may result in infinite or an unfeasible number of paths)

IA159 Formal Verification Methods: Software Testing 15/34



Hierarchy of control flow coverage criteria

a criterion A subsumes a criterion B, denoted A→ B, if
guaranteeing the coverage A also guarantees B

path
coverage

��

multiple condition
coverage

��
edge/condition

coverage

uujjjjjjjjjjj
��

edge
coverage

��

condition
coverage

statement
coverage

IA159 Formal Verification Methods: Software Testing 16/34



Hierarchy of control flow coverage criteria

a criterion A subsumes a criterion B, denoted A→ B, if
guaranteeing the coverage A also guarantees B

path
coverage

��

multiple condition
coverage

��
edge/condition

coverage

uujjjjjjjjjjj
��

edge
coverage

��

condition
coverage

statement
coverage

IA159 Formal Verification Methods: Software Testing 17/34



Note

It can happen due to a lucky selection of the test cases, that a
less comprehensive coverage will find errors that a more
comprehensive approach will happen to miss.

IA159 Formal Verification Methods: Software Testing 18/34



Loop coverage

all mentioned criteria (except of path coverage) do not care
about number of loop iterations

ad hoc strategies for testing loops
check the case where the loop is skipped
check the case where the loop is executed once
check the case where the loop is executed some typical
number of times (but what is typical?)
if the bound n on the number of iterations of the loop is
known, try executing it n − 1, n, and n + 1 times

testing loops become even more difficult when nested
loops are involved

IA159 Formal Verification Methods: Software Testing 19/34



White box testing

Dataflow coverage criteria

IA159 Formal Verification Methods: Software Testing 20/34



Dataflow coverage criteria

There may be an execution path in which some variable is set
to some value for a particular purpose, but later the value is
misused. Control flow criteria do not ensure that such an
execution path is included in test suite.

⇓

Dataflow coverage criteria [Rapps-Weyuker, 1985]

IA159 Formal Verification Methods: Software Testing 21/34



Auxiliary sets of nodes

for each program variable x we define the following sets of
flowchart nodes

def (x) = nodes where some value is assigned to x
p−use(x) = nodes where x is used in a predicate (e.g. in if or

while statements)
c−use(x) = nodes where x is used in some expression other

than a predicate

for each s ∈ def (x) we further define the sets
dpu(s, x) = nodes s′ ∈ p−use(x) such that there is a path

from s to s′ going only through nodes not included
in def (x)

dcu(s, x) = nodes s′ ∈ c−use(x) such that there is a path
from s to s′ going only through nodes not included
in def (x)

IA159 Formal Verification Methods: Software Testing 22/34



Dataflow coverage criteria

For each program variable x and each node s ∈ def (x), the
test suite should include the following paths starting in s and
going only through nodes not included in def (x), as subpaths:

all-defs: include one path to some node in dpu(s, x) or in
dcu(s, x).

all-p-uses: include one path to each node in dpu(s, x).
all-c-uses/some-p-uses: include one path to each node in

dcu(s, x), but if dcu(s, x) is empty, include at least
one path to some node in dpu(s, x).

all-p-uses/some-c-uses: include one path to each node in
dpu(s, x), but if dpu(s, x) is empty, include at least
one path to some node in dcu(s, x).

all-uses: include one path to each node in dpu(s, x) and to
each node in dcu(s, x).

all-du-paths: include all the paths to each node in dpu(s, x)
and to each node in dcu(s, x).

IA159 Formal Verification Methods: Software Testing 23/34



Dataflow coverage criteria

The paths should not contain cycles except for the first and the
last nodes, which may be the same (e.g. an assignment
x := x+ 1 is both in def (x) and c−use(x)).

IA159 Formal Verification Methods: Software Testing 24/34



Hierarchy of dataflow coverage criteria

all-du-paths
coverage

��
all-uses

coverage

xxqqqqqqqq

&&MMMMMMMM

all-c-uses/some-p-uses
coverage

��

all-p-uses/some-c-uses
coverage

sshhhhhhhhhhhhhhhhhhh

��
all-defs

coverage
all-p-uses
coverage

IA159 Formal Verification Methods: Software Testing 25/34



Notes

we cannot expect that our test suite achieves the full
coverage (for example, some instructions may be
unreachable)
we cannot even compute the maximal possible coverage
as it is undecidable whether a given part of the code is
reachable or not

there are other approaches to evaluation quality of a test
suite, e.g. mutation analysis
[Budd-DeMillo-Lipton-Frederick, POPL’80]

IA159 Formal Verification Methods: Software Testing 26/34



Mutation analysis

Idea

A test suite is unlikely to be comprehensive enough if it gives
the same results to two different programs.

given a test suite and a code, one generates several
mutations of the program (based on code inspections and
structural changes)
if some test case behaves differently on the original code
and a mutation, then the mutation dies
if a considerable number of mutations remain alive, the test
suite is probably inappropriate

IA159 Formal Verification Methods: Software Testing 27/34



Notes (cont.)

addition of a code monitoring executions of test cases (e.g.
a code measuring the coverage) can affect a behaviour of
the system under test

there are dedicated software packages for test case
generation, coverage evaluation, test execution, and test
management (maintaining different test suits, perform
version control etc.)

IA159 Formal Verification Methods: Software Testing 28/34



Black box testing

Model-based testing

IA159 Formal Verification Methods: Software Testing 29/34



Black box testing: model-based testing

to check the functionality of the system under test, we
need to know the intended behaviour of the system
the behaviour can be described by

simple text
message sequence charts
state machines
. . .

formal descriptions are called models of the system

IA159 Formal Verification Methods: Software Testing 30/34



Example: A model of a simple phone system

IA159 Formal Verification Methods: Software Testing 31/34



Model-based testing: coverage criteria

models can be used to generate a test cases
a test suite can be designed according to various coverage
criteria

cover all edges
cover all the states
cover all the paths (usually impractical)
cover each adjacent sequence of n states
cover certain nodes at least/at most a given number of
times in each test case
switch coverage - cover each pair of incoming and
outcoming edge for all states

after execution of the test suite and evaluation of the
obtained results, we decide whether to

modify the model or
generate more tests or
stop testing

IA159 Formal Verification Methods: Software Testing 32/34



Probabilistic testing

we may want to test primarily the typical executions in
order to maximize minimal time to failure (MTTF)
in this case we employ probabilistic testing

the system is modeled as a Markov chain
the test suite is then generated according to probabilities of
transitions

IA159 Formal Verification Methods: Software Testing 33/34



Coming next week

Deductive software verification

prehistory of formal verification: 40 years old technique!
Does my program terminate? For all inputs?
If yes, does it do what it is supposed to do?
Can it be proven automatically?

IA159 Formal Verification Methods: Software Testing 34/34


