IA159 Formal Verification Methods LTL→BA via Alternating 1-Weak BA

Jan Strejček

Department of Computer Science Faculty of Informatics Masaryk University

Focus and sources

Focus

- alternating 1-weak Büchi automata (A1W)
- translation LTL→A1W
- translation A1W→BA

Source

 M. Y. Vardi: An Automata-Theoretic Approach to Linear Temporal Logic, LNCS 1043, Springer, 1995.

LTL→BA translations in general

- applications in automata-based LTL model checking, vacuity checking (checks trivial validity of a specification formula), . . .
- two LTL→BA translations
 - LTL → generalized Büchi automata → BA
 - LTL → alternating 1-weak Büchi automata → BA
- the latter translation is more popular
 - size-reducing optimizations of alternating 1-weak BA
 - produces smaller BA (in some cases)

LTL→BA via alternating 1-weak BA

Alternating Büchi automata

Positive boolean formulae

Positive boolean formulae over set $Q(\mathcal{B}^+(Q))$ are defined as

$$\varphi ::= \top \mid \bot \mid q \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2$$

where \top stands for true, \bot stands for false, and q ranges over Q.

$$S\subseteq Q$$
 is a model of $\varphi\iff$ the valuation assigning true just to elements of S satisfies φ

$$S$$
 is a minimal model of $\varphi \iff S$ is a model of φ and no proper (written $S \models \varphi$) subset of S is a model of φ

Examples of positive boolean formulae

formulae of $\mathcal{B}^+(\{p,q,r\})$	(minimal) models
	no model
Т	\emptyset , $\{p\}$, $\{q\}$, $\{r\}$, $\{p,q\}$,
$oldsymbol{p}\wedgeoldsymbol{q}$	\emptyset , $\{p\}$, $\{q\}$, $\{r\}$, $\{p,q\}$, $\{p,q\}$, $\{p,q,r\}$
$ ho ee (q \wedge r)$	$\{p\}, \{p,q\}, \{p,r\}, \{q,r\}, \{p,q,r\}$
$p \wedge (q \vee r)$	$\{p\}, \{p,q\}, \{p,r\}, \{q,r\}, \{p,q,r\}$ $\{p,q\}, \{p,r\}, \{p,q,r\}$

Examples of positive boolean formulae

formulae of $\mathcal{B}^+(\{p,q,r\})$	(minimal) models
\perp	no model
Τ	\emptyset , $\{p\}$, $\{q\}$, $\{r\}$, $\{p,q\}$, $\{p,q\}$, $\{p,q,r\}$
$oldsymbol{p}\wedgeoldsymbol{q}$	$\{p,q\},\{p,q,r\}$
	$\{p\}, \{p,q\}, \{p,r\}, \{q,r\}, \{p,q,r\}$
$p \wedge (q \vee r)$	$\{p,q\}, \{p,r\}, \{p,q,r\}$

minimal models = clauses in disjunctive normal form

$$\varphi \equiv \bigvee_{S \models \varphi} (\bigwedge_{p \in S} p)$$

Alternating Büchi automata

An alternating Büchi automaton is a tuple $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$, where

- \blacksquare Σ is a finite alphabet,
- Q is a finite set of states,
- $\delta: Q \times \Sigma \to \mathcal{B}^+(Q)$ is a transition function,
- $q_0 \in Q$ is an initial state,
- $F \subseteq Q$ is a set of accepting states.

Trees

A tree is a set $T \subseteq \mathbb{N}_0^*$ such that if $xc \in T$, where $x \in \mathbb{N}_0^*$ and $c \in \mathbb{N}_0$, then also

- $x \in T$ and
- $xc' \in T$ for all $0 \le c' < c$.

$$T = \{ \begin{array}{c} \varepsilon, 0, 1, 2, 3, \\ 00, 01, 20, \\ 21, 22, 210 \end{array} \}$$

Trees

A tree is a set $T \subseteq \mathbb{N}_0^*$ such that if $xc \in T$, where $x \in \mathbb{N}_0^*$ and $c \in \mathbb{N}_0$, then also

- $x \in T$ and
- $xc' \in T$ for all 0 < c' < c.

$$\mathcal{T} = \{ \begin{array}{c} \varepsilon, 0, 1, 2, 3, \\ 00, 01, 20, \\ 21, 22, 210 \end{array} \}$$

A Q-labeled tree is a pair (T, r) of a tree T and a labeling function $r: T \to Q$.

Alternating Büchi automata: a run

A run of an alternating BA $\mathcal{A}=(\Sigma,Q,\delta,q_0,F)$ on word $w=w(0)w(1)\ldots\in\Sigma^\omega$ is a Q-labeled tree (T,r) such that

- $r(\varepsilon) = q_0$ and
- for each $x \in T$: $\{r(xc) \mid c \in \mathbb{N}_0, xc \in T\} \models \delta(r(x), w(|x|))$.

A run (T,r) is accepting iff for each infinite path π in T it holds that $Inf(\pi) \cap F \neq \emptyset$, where $Inf(\pi)$ is the set of all labels (i.e. states) appearing on π infinitely often.

An automaton \mathcal{A} accepts a word w iff there is an accepting run of \mathcal{A} on w. We set

$$L(A) = \{ w \in \Sigma^{\omega} \, | \, A \text{ accepts } w \}.$$

Example of an alternating Büchi automaton

Example of an alternating Büchi automaton

Accepts the language $I^*m(I+m+n)^*n^{\omega}$.

Alternating 1-weak Büchi automata (A1W)

Let $A = (\Sigma, Q, \delta, q_0, F)$ be an alternating BA. For each $p \in Q$ we define the set of all successors of p as

$$Succ(p) = \{q \mid \exists I \in \Sigma, S \subseteq Q : S \cup \{q\} \models \delta(p, I)\}.$$

Automaton \mathcal{A} is 1-weak (or linear or very weak) if there exists a partial order \leq on Q such that for all $p, q \in Q$ it holds:

$$q \in Succ(p) \implies q \leq p$$

alternating 1-weak Büchi automaton = A1W automaton

Notes

- standard Büchi automata are alternating Büchi automata where each $\delta(p, l)$ is \bot or a disjunction of states
- A1W automata have the same expressive power as LTL

LTL→BA via alternating 1-weak BA

LTL→A1W

LTL→A1W

Input: an LTL formula φ and an alphabet $\Sigma = 2^{AP'}$

for some finite $AP' \subseteq AP$

Output: A1W automaton $\mathcal{A} = (\Sigma, Q, \delta, q_{\varphi}, F)$ accepting $L^{\Sigma}(\varphi)$

LTL→A1W

Input: an LTL formula φ and an alphabet $\Sigma = 2^{AP'}$

for some finite $AP' \subseteq AP$

Output: A1W automaton $\mathcal{A} = (\Sigma, Q, \delta, q_{\varphi}, F)$ accepting $L^{\Sigma}(\varphi)$

 $lackbox{Q} = \{q_{\psi}, q_{\neg \psi} \mid \psi \text{ is a subformula of } \varphi\}$

LTL -- A1W

Input: an LTL formula φ and an alphabet $\Sigma = 2^{AP'}$

for some finite $AP' \subseteq AP$

Output: A1W automaton $\mathcal{A} = (\Sigma, Q, \delta, q_{\varphi}, F)$ accepting $L^{\Sigma}(\varphi)$

- lacksquare $Q = \{q_{\psi}, q_{\neg \psi} \mid \psi \text{ is a subformula of } \varphi\}$
- δ is defined as follows (where $\overline{\alpha} \in \mathcal{B}^+(Q)$ satisfies $\overline{\alpha} \equiv \neg \alpha$)

$$\begin{array}{lll} \delta(q_{\top},I) &= \top & \overline{\top} &= \bot \\ \delta(q_{a},I) &= \top \text{ if } a \in I, \ \bot \text{ otherwise} & \overline{\bot} &= \top \\ \delta(q_{\neg\psi},I) &= \overline{\delta(q_{\psi},I)} & \overline{q_{\neg\psi}} &= q_{\psi} \\ \delta(q_{\psi \wedge \rho},I) &= \delta(q_{\psi},I) \wedge \delta(q_{\rho},I) & \overline{q_{\psi}} &= \overline{q_{\neg\psi}} \\ \delta(q_{\mathsf{X}\psi},I) &= q_{\psi} & \overline{\beta \wedge \gamma} &= \overline{\beta} \vee \overline{\gamma} \\ \delta(q_{\psi \cup \rho},I) &= \delta(q_{\rho},I) \vee (\delta(q_{\psi},I) \wedge q_{\psi \cup \rho}) & \overline{\beta} \vee \gamma &= \overline{\beta} \wedge \overline{\gamma} \end{array}$$

LTL -> A1W

Input: an LTL formula φ and an alphabet $\Sigma = 2^{AP'}$

for some finite $AP' \subseteq AP$

Output: A1W automaton $\mathcal{A} = (\Sigma, Q, \delta, q_{\varphi}, F)$ accepting $L^{\Sigma}(\varphi)$

- lacksquare $Q = \{q_{\psi}, q_{\neg \psi} \mid \psi \text{ is a subformula of } \varphi\}$
- δ is defined as follows (where $\overline{\alpha} \in \mathcal{B}^+(Q)$ satisfies $\overline{\alpha} \equiv \neg \alpha$)

$$\begin{array}{lll} \delta(\textbf{\textit{q}}_{\top},\textbf{\textit{I}}) &= \top & \overline{\top} &= \bot \\ \delta(\textbf{\textit{q}}_{a},\textbf{\textit{I}}) &= \overline{\top} \text{ if } \textbf{\textit{a}} \in \textbf{\textit{I}}, \bot \text{ otherwise} & \overline{\bot} &= \top \\ \delta(\textbf{\textit{q}}_{\neg\psi},\textbf{\textit{I}}) &= \overline{\delta(\textbf{\textit{q}}_{\psi},\textbf{\textit{I}})} & \overline{\textbf{\textit{q}}_{\neg\psi}} &= \textbf{\textit{q}}_{\psi} \\ \delta(\textbf{\textit{q}}_{\psi \wedge \rho},\textbf{\textit{I}}) &= \delta(\textbf{\textit{q}}_{\psi},\textbf{\textit{I}}) \wedge \delta(\textbf{\textit{q}}_{\rho},\textbf{\textit{I}}) & \overline{\textbf{\textit{q}}_{\psi}} &= \underline{\textbf{\textit{q}}}_{\neg\psi} \\ \delta(\textbf{\textit{q}}_{X\psi},\textbf{\textit{I}}) &= \textbf{\textit{q}}_{\psi} & \overline{\beta} \wedge \gamma &= \overline{\beta} \vee \overline{\gamma} \\ \delta(\textbf{\textit{q}}_{\psi \cup \rho},\textbf{\textit{I}}) &= \delta(\textbf{\textit{q}}_{\rho},\textbf{\textit{I}}) \vee (\delta(\textbf{\textit{q}}_{\psi},\textbf{\textit{I}}) \wedge \textbf{\textit{q}}_{\psi \cup \rho}) & \overline{\beta} \vee \gamma &= \overline{\beta} \wedge \overline{\gamma} \end{array}$$

■ $F = \{q_{\neg(\psi \cup \rho)} \mid \psi \cup \rho \text{ is a subformula of } \varphi\}$

LTL→A1W

Theorem

Given an LTL formula φ and an alphabet Σ , one can construct an A1W automaton \mathcal{A} accepting $L^{\Sigma}(\varphi)$ and such that the number of states of \mathcal{A} is linear in the length of φ .

LTL→BA via alternating 1-weak BA

A1W→BA

Input: an alternating BA $\mathcal{A}=(\Sigma,Q,\delta,q_0,F)$ Output: a BA $\mathcal{A}'=(\Sigma,Q',\delta',q_0',F')$ accepting $\mathcal{L}(\mathcal{A})$

Input: an alternating BA $\mathcal{A}=(\Sigma,Q,\delta,q_0,F)$ Output: a BA $\mathcal{A}'=(\Sigma,Q',\delta',q_0',F')$ accepting $\mathcal{L}(\mathcal{A})$

Intuitively, \mathcal{A}' guesses labeling of each level of the computation tree of \mathcal{A} . Moreover, \mathcal{A}' has to divide the set of states into two sets: states labeling paths with recent occurrence of an accepting states and the other states.

Input: an alternating BA $\mathcal{A}=(\Sigma,Q,\delta,q_0,F)$ Output: a BA $\mathcal{A}'=(\Sigma,Q',\delta',q_0',F')$ accepting $\mathcal{L}(\mathcal{A})$

Input: an alternating BA $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$ Output: a BA $\mathcal{A}' = (\Sigma, Q', \delta', q'_0, F')$ accepting $\mathcal{L}(\mathcal{A})$

```
an alternating BA \mathcal{A} = (\Sigma, Q, \delta, q_0, F)
Output: a BA \mathcal{A}' = (\Sigma, Q', \delta', q'_0, F') accepting L(\mathcal{A})
   Q' = 2^Q \times 2^Q
   q_0' = (\{q_0\}, \emptyset)
   \delta'((U, V), I) is defined as:
            ■ if U \neq \emptyset then
                 \delta'((U,V),I) = \{(U',V') \mid \exists X,Y \subseteq Q \text{ such that } \}
                                                           X \models \bigwedge_{q \in II} \delta(q, I) and
                                                           Y \models \bigwedge_{q \in V} \delta(q, l) and
                                                           U' = X \setminus F and V' = Y \cup (X \cap F)
            \blacksquare if U = \emptyset then
                    \delta'((\emptyset, V), I) = \{(U', V') \mid \exists Y \subseteq Q \text{ such that } \}
```

 $Y \models \bigwedge_{q \in V} \delta(q, I)$ and

 $U' = Y \setminus F$ and $V' = Y \cap F$)

Input: an alternating BA $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$ Output: a BA $\mathcal{A}' = (\Sigma, Q', \delta', q'_0, F')$ accepting $L(\mathcal{A})$

$$q_0' = (\{q_0\}, \emptyset)$$

- $\delta'((U, V), I)$ is defined as:
 - if $U \neq \emptyset$ then

$$\delta'((U,V),I) = \{(U',V') \mid \exists X,Y \subseteq Q \text{ such that } X \models \bigwedge_{q \in U} \delta(q,I) \text{ and } Y \models \bigwedge_{q \in V} \delta(q,I) \text{ and } U' = X \setminus F \text{ and } V' = Y \cup (X \cap F)\}$$

• if $U = \emptyset$ then

$$\delta'((\emptyset, V), I) = \{(U', V') \mid \exists Y \subseteq Q \text{ such that}$$

$$Y \models \bigwedge_{q \in V} \delta(q, I) \text{ and}$$

$$U' = Y \setminus F \text{ and } V' = Y \cap F\}$$

$$F' = \{\emptyset\} \times 2^Q$$

LTL→A1W

Theorem

Given an alternating BA $\mathcal{A}=(\Sigma,Q,\delta,q_0,F)$, one can construct a BA \mathcal{A}' accepting $L(\mathcal{A})$ and such that the number of states of \mathcal{A}' is $2^{\mathcal{O}(|Q|)}$.

Corollary

Given an LTL formula φ and an alphabet Σ , one can construct a BA \mathcal{A}' accepting $L^{\Sigma}(\varphi)$ and such that the number of states of \mathcal{A}' is $2^{\mathcal{O}(|\varphi|)}$.

Coming next week

Partial order reduction

- When can a state/transition be safely removed from a Kripke structure?
- What is a stuttering principle?
- Can we effectively compute the reduction?