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Focus and sources

Focus
m alternating 1-weak Blchi automata (A1W)
m translation LTL—A1W
m translation A\W—BA

Source

m M. Y. Vardi: An Automata-Theoretic Approach to Linear
Temporal Logic, LNCS 1043, Springer, 1995.
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LTL—BA translations in general

m applications in automata-based LTL model checking,
vacuity checking (checks trivial validity of a specification
formula), ...

m two LTL—BA translations

m LTL — generalized Bichi automata — BA
m LTL — alternating 1-weak Blichi automata — BA

m the latter translation is more popular

m size-reducing optimizations of alternating 1-weak BA
m produces smaller BA (in some cases)
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LTL—BA via alternating 1-weak BA

Alternating Bichi automata
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Positive boolean formulae

Positive boolean formulae over set Q (5 (Q)) are defined as

o u=T [ L]qg]| prAw2| @1V

where T stands for true, L stands for false, and q ranges
over Q.

S C Qisamodelof p <= the valuation assigning true just
to elements of S satisfies ¢

Sis a minimal model of p <= Sis a model of © and no proper
(written S = ) subset of S is a model of
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Examples of positive boolean formulae

formulae of BT ({p,q,r}) | (minimal) models
1L no model
T 0, {p}. {a}t, {r}. {p.q}, - ..
pPAQ p.gh{p.q.r}
pv(gAr) phAp. gt {p,r} {g. 71, {p.q.r}
pA(qVr) pah p.ri{p.q.r}
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Examples of positive boolean formulae

formulae of BT ({p,q,r}) | (minimal) models
1L no model
T 0, {p}. {a}t, {r}. {p.q}, - ..
pAQg {p.qr,{p,q.r}
pv(gAr) ohAp gt {p.rt 1a. 1k, {p,q.r}
pA(qVr) p.gnip.ri,{p.q,r}

minimal models = clauses in disjunctive normal form

v = V(AP

SkEp peS
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Alternating Blchi automata

An alternating Buchi automaton is a tuple A = (X, Q, 9, o, F),
where

m Y is a finite alphabet,

m Qis afinite set of states,

B Qx X — BF(Q)is atransition function,
B q € Qis aninitial state,

m F C Qis asetof accepting states.
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GCES

Atreeisaset T C Nj such thatif xc € T, where x € Nj and
¢ € Np, then also

m xcTand
mxceTforallO<c <c.

T={¢01,23,

g
/I\ 00,01, 20,
0o 1 2 3 21,22,210 }
e RN
20 21 22

00 01 |

210
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GCES

Atreeisaset T C Nj such thatif xc € T, where x € Nj and
¢ € Np, then also

m xcTand
mxceTforallO<c <c.

T={¢01,23,

5
/I\ 00,01, 20,
0 1 2 3 21,22,210}
e PN
20 21 22

00 01 |

210

A O-labeled tree is a pair (T, r) of atree T and a labeling
functionr: T — Q.
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Alternating Blchi automata: a run

A run of an alternating BA A = (X, Q, 9, qo, F) on word
w=w(0)w(1)... € X% is a Q-labeled tree (T, r) such that

m r(¢) = go and
m foreach x € T: {r(xc) | ¢ € No,xc € T} = §(r(x), w(|x])).

Arun (T, r)is accepting iff for each infinite path 7 in T it holds
that Inf(7) N F # 0, where Inf(r) is the set of all labels
(i.e. states) appearing on 7 infinitely often.

An automaton A accepis a word w iff there is an accepting run
of Aon w. We set

L(A) = {w € ¥ | A accepts w}.
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Example of an alternating Blchi automaton
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Example of an alternating Blchi automaton

Accepts the language I*m(/ + m+ n)*n®.
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Alternating 1-weak Blchi automata (A1W)

Let A = (X, Q, 4, qo, F) be an alternating BA. For each p € Q
we define the set of all successors of p as

Succ(p)={q |3, SCQ:SU{qg} =dip )}

Automaton A is 1-weak (or linear or very weak) if there exists
a partial order < on Q such that for all p, g € Q it holds:

q € Suce(p) = q<p

alternating 1-weak Bichi automaton = A1W automaton
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m standard Blchi automata are alternating Blichi automata
where each é(p, /) is L or a disjunction of states

m A1W automata have the same expressive power as LTL
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LTL—BA via alternating 1-weak BA

LTL—-A1W
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LTL—A1W

Input: an LTL formula ¢ and an alphabet ¥ = 2%
for some finite AP’ C AP
Output: A1W automaton A = (, Q, 6, q,., F) accepting L=(y)
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LTL—A1W

Input: an LTL formula ¢ and an alphabet ¥ = 2%
for some finite AP’ C AP
Output: A1W automaton A = (, Q, 6, q,., F) accepting L=(y)

m O ={qy,q-y | ¥ is a subformula of ¢}
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LTL—A1W

Input: an LTL formula ¢ and an alphabet ¥ = 2%
for some finite AP’ C AP

Output: A1W automaton A = (, Q, 6, q,., F) accepting L=(y)

m O ={qy,q-y | ¥ is a subformula of ¢}
m o is defined as follows (where @ € BT (Q) satisfies a = —«)

Sarl) =T T o
5(ga,/) = Tifacl, L otherwise 1 =T
0(q-y, 1) = 6(qy, 1) Qv = 0y
6(Qunp: 1) = 6(qu, 1) N6(qp, 1) %W =g
o(axy, 1) = qy M = 3vy
6(q¢Up7 ) = 6(qp=/)v(5(q’¢)7l)/\Q¢Up) ﬂ = /8/\'7
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LTL—A1W

Input: an LTL formula ¢ and an alphabet ¥ = 2%
for some finite AP’ C AP

Output: A1W automaton A = (, Q, 6, q,., F) accepting L=(y)

m O ={qy,q-y | ¥ is a subformula of ¢}
m o is defined as follows (where @ € BT (Q) satisfies a = —«)

Sarl) =T T o
5(ga,/) = Tifacl, L otherwise 1 =T
0(q-y, 1) = 6(qy, 1) Qv = 0y
6(Qunp: 1) = 6(qu, 1) N6(qp, 1) %W =g
o(axy, 1) = qy M = 3vy
6(q¢Up7 ) = 6(qp=/)v(5(q’¢)7l)/\qup) ﬂ = /8/\'7

m [ = {q-pup) | YU pis asubformula of ¢}
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LTL—A1W

Theorem

Given an LTL formula ¢ and an alphabet ¥, one can construct
an A1W automaton A accepting L* () and such that the
number of states of A is linear in the length of .
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LTL—BA via alternating 1-weak BA

A1TW—BA
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A1TW—BA

Input: an alternating BA A = (X, Q, 4, qo, F)
Output: aBA A" = (X, Q', ¢, q, F') accepting L(.A)
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A1W—BA

Input: an alternating BA A = (%, Q, 4§, qo, F)
Output: aBA A" = (X, Q', ¢, q, F') accepting L(.A)

Intuitively, A" guesses labeling of each level of the computation
tree of A. Moreover, A’ has to divide the set of states into two
sets: states labeling paths with recent occurrence of an accept-
ing states and the other states.
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A1TW—BA

Input: an alternating BA A = (X, Q, 4, qo, F)
Output: aBA A" = (X, Q', ¢, q, F') accepting L(.A)

m Q) =29x2@Q
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A1TW—BA

Input: an alternating BA A = (X, Q, 4, qo, F)
Output: aBA A" = (X, Q', ¢, q, F') accepting L(.A)

m Q) =29x29
® g, = ({q},0)
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A1W—BA

Input: an alternating BA A = (%, Q, 4§, qo, F)
Output: aBA A" = (X, Q', ¢, q, F') accepting L(.A)

m 0 =29x2Q
m g, = ({9}, 0)
m J'((U, V),]) is defined as:
m if U # (0 then
§'((U, V), ) = {(U, V') | 3X, Y C Q such that
X Ngeud(q,/) and
Y = Agev8(a.1) and

U=X~Fand V' =YU(XNF)}
m if U= 0 then

§'((0, V), 1) = {(U', V') | 3Y C Q such that

Y E Agev9(q./) and
U=Y~Fand V' =YnF)}
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A1W—BA

Input: an alternating BA A = (%, Q, 4§, qo, F)
Output: aBA A" = (X, Q', ¢, q, F') accepting L(.A)

m 0 =29x2Q
m g, = ({9}, 0)
m J'((U, V),]) is defined as:
m if U # (0 then
§'((U, V), ) = {(U, V') | 3X, Y C Q such that
X Ngeud(q,/) and
Y = Agev8(a.1) and

U=X~Fand V' =YU(XNF)}
m if U= 0 then

§'((0, V), 1) = {(U', V') | 3Y C Q such that

Y E Agev9(q./) and
U=Y~Fand V' =YnF)}

m = {0} x 29
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LTL—A1W

Theorem

Given an alternating BA A = (X, Q, 4, qo, F), one can construct
a BA A’ accepting L(.A) and such that the number of states of
A’is 200190,

Corollary

Given an LTL formula ¢ and an alphabet ¥, one can construct a
BA A’ accepting L*(y) and such that the number of states of
A is 20(lel)
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Coming next week

Partial order reduction

m When can a state/transition be safely removed from a
Kripke structure?

m What is a stuttering principle?
m Can we effectively compute the reduction?
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