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Focus and sources

Focus
m stuttering principle
m theory of partial order reduction
m heuristics for efficient implementation

Source

m Chapter 10 of E. M. Clarke, O. Grumberg, and D. A. Peled:
Model Checking, MIT, 1999.

I1A159 Formal Verification Methods: Partial Order Reduction 2/72



Basic facts on partial order reduction

m compatible with model checking of finite systems against
LTL formulae without X operator

m size of the reduced system is 3-99% of the original size

m model checking process for reduced systems is faster and
consumes less memory

m best suited for asynchronous systems
m also known as model checking using representatives
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Modified definition of Kripke structure

We consider only deterministic systems.

A Kripke structure is atuple M = (S, T, Sy, L), where
m Sis afinite set of states

m T is a set of fransitions, each a € T is a partial function
a:S— S.

m Sy C Sis asetof initial states

m L: S — 24P s alabelling function associating to each state
s € S the set of atomic propositions that are true in s.

m a transition « is enabled in s if a(s) is defined
m «is disabled in s otherwise

m cnabled(s) denotes the set of transitions enabled in s
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More definitions

Let ¢ be an LTL formula and K = (S, T, S, L) be a Kripke
structure.

m AP(p) is the set of atomic propositions occurring in ¢

m a path in K starting from a state s € S is an infinite
sequence T = Sy, Sy, . .. of states such that sy = s and for
each i there is a transition «; € T such that «;(s;) = sj14

m a path starting in a fixed state can be identified with a
sequence of transitions

m a path 7 satisfies ¢, written 7 |= ¢, if w |= ¢, where the
word w = w(0)w(1)...is defined as w(i) = L(s;) N AP(y)
foralli>0

m K salisfies ¢, written K = o, if all paths starting from initial
states of K satisfy ¢
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Goal of partial order reduction

LTI,y denotes LTL formulae without X operator.

Goal
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Reduction method

m K’ arises from K by disabling some transitions in some
states

m as a result, some states may become unreachable in K’

m for each state s, ample(s) denotes the set of transitions
that are enabled in s in K’, ample(s) C enabled(s)
m calculation of ample sets needs to satisfy three goals
K’ given by ample sets has to satisfy

Ky = KEg

K’ should be substantially smaller than K
the overhead in calculating ample sets must be small
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A base of partial order reduction

Stuttering principle
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Stuttering on words

m let w=w(0)w(1)w(2) ... be an infinite word
m a letter w(/i) is called redundant iff w(i) = w(i + 1) and
there is j > i such that w(i) # w(j)

m canonical form of w is the word obtained by deleting all
redundant letters from w

m infinite words wy, ws are stutter equivalent, written
wy ~ ws, iff they have the same canonical form

Example
m canonical form of kk k ooooomk k.n* is komk.n”
m canonical form of k oo o mmmmm m kkk k.n® is komk.n*
m hence kkkooooomkk.n* ~ kooommmmmmkKkkkk.n*
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Stuttering principle

Theorem (Lamport 1983)

1A159 Formal Verification Methods: Partial Order Reduction 10/72



Stuttering on paths

Paths m = sps1 ... and 7’ = ;8] ... are stutier equivalent with
respect to a set AP’ C AP, written = ~ ,» «/, iff w ~ w/, where
w, w’ are defined as w(i) = L(s;) N AP" and w'(i) = L(s}) N AP’
for each i.

Kripke structures K, K’ are stutter equivalent with respect to
AP’ written K ~ 0 K/, iff
m K and K’ have the same set of initial states and

m for each path 7 of K starting in an initial state s there exists
a path ©’ of K’ starting in the same initial state such that
m ~ap 7 and vice versa.
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Stuttering principle for Kripke structures

Corollary
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Stuttering principle for Kripke structures

Corollary

Let ¢ be an LTL_x formula and K, K’ be Kripke structures such
that K ~AP(p) K'. Then

KEe << KEo.

Hence, for every set of stutter equivalent paths (with respect to
AP(¢)) of K it is sufficient to keep at least one representant of
these paths in K.
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Example

Let AP(y) contain just x = 2.
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Example

Let AP(y) contain just x = 2.

(D) -
(D)
(D) -
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Let AP(y) contain just x = 2.

(D)) -
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Theory of partial order reduction

Conditions on ample sets
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Terminology: (in)visibility and full expansion

A transition « € T is invisible if for each pair of states s,s' € S
such that a(s) = s’ it holds that

L(s) N AP(p) = L(s') N AP(y).

A transition is visible if it is not invisible.
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Terminology: (in)visibility and full expansion

A transition « € T is invisible if for each pair of states s,s' € S
such that a(s) = s’ it holds that

L(s) N AP(p) = L(s') N AP(y).

A transition is visible if it is not invisible.

A state s is fully expanded when ample(s) = enabled(s).
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Terminology: (in)dependence

An independence relation I/ C T x T is a symmetric and
antireflexive relation satisfying the following two conditions for
each state s € S and for each (o, 8) € I

enabledness: if a, 8 € enabled(s) then o € enabled(3(s))
commutativity: if «, 8 € enabled(s) then a(3(s)) = B(«a(s))

The dependency relation D is the complement of /.
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Condition CO

If all ample sets satisfy the following conditions C0, C1, C2, and
C3, then K’ ~AP(y) K.

1A159 Formal Verification Methods: Partial Order Reduction 21/72



Condition CO

If all ample sets satisfy the following conditions C0, C1, C2, and
C3, then K’ ~AP(y) K.

ample(s) =0 <= enabled(s) = 0.
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Condition C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occuring first.
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Condition C1

C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occuring first.

Lemma

If C1 holds, then the transitions in enabled(s) ~. ample(s) are
all independent of those in ample(s).
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Condition C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occuring first.

Thanks to C1, all paths of K starting in a state s and not included
in K’ have one of the following two forms:

m the path has a prefix 5o . .. Bma, Where a € ample(s)
and each (; is independent of all transitions in ample(s)
including o

m the path is an infinite sequence of transitions Gy . ..
where each f; is independent of all transitions in ample(s).
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Condition C1: consequences

Due to C1, after execution of a se-
quence (o4 ...0m of a transitions
not in ample(s) from s, all the tran-
sitions in ample(s) remain enabled.
Further, the sequence Gyf ... OBma
executed from s leads to the same
state as the sequence a3y . .. Bm.

As the sequence (Gyf ... Bma is not
included in the reduced system, we
want GofB1...0ma and alGyf ... Bm
to be prefixes of stutter equivalent
paths. This is quaranteed if « is in-
visible.
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Condition C2

C2 (invisibility)

If s is not fully expanded, then every a € ample(s) is invisible.
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Condition C3: motivation

Conditions C0, C1, and C2 are not yet sufficient to guarantee
that K’ is stutter equivalent to K. There is a possibility that
some transition will be delayed forever because of a cycle.

[ is visible, a1, ap, az are invisible, 3 is independent of
aq, ao, ag, and aq, as, ag are interdependent
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Condition C3

C3 (cycle condition)

A cycle in reduced structure is not allowed if it contains a state
in which some transition is enabled, but is never included in
ample(s) for any state s on the cycle.
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Partial order reduction

Correctness
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Statement

Theorem
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Terminology

m since now a path can be finite or infinite

m o o) the concatenation of a finite path o and a (finite or

infinite) path » (o is applicable if the last state /asi(o) of o is
the same as the first state of )

m ir(7) denote the sequence of transitions on a path =

m for a (finite or infinite) sequence v of transitions, vis(v)
denotes its projection onto the visible transitions
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For every infinite path 7 of K starting in some initial state we
construct an infinite sequence of paths

™ =T, T{, T2, T3,

where, for each i, mj = o; o ; such that |o;| = i.
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For every infinite path 7 of K starting in some initial state we
construct an infinite sequence of paths

™ =T, T{, T2, T3,

where, for each i, mj = o; o ; such that |o;| = i.

e (@)@
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For every infinite path 7 of K starting in some initial state we
construct an infinite sequence of paths

™ =T, T, T2, T3,

where, for each i, mj = o; o ; such that |o;| = i.

e (@)@

o= 00 o 1Mo

® @@
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Construction of 7, 1

Let s be the last state of o;.
The construction of 7;, 1 depends on «g.

j i

Qg aq a2
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Construction of 74

Case A  «p € ample(sp).

j i

Qg aq a2
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Construction of 74

Case A  «p € ample(sp).

o = gj o i
P =
@0 1 2
° Sp ° ]
Tit+1 Nit+1
7T,+1 frnd [e]
0 o o2
° So ° ]
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Construction of 7, 1

Case B oy ¢ ample(sp).
By C2, all transitions in ample(sy) must be invisible.
Due to CO and C1, there are two cases.

o nj
= o

@0 A o2
° cee So ] .
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Construction of 7, 1

Case B1 «g & ample(sp).
Some 3 € ample(sy) appears on ; after a finite
sequence of independent transitions agay ... ak_1.

j Ni

ag ak_1

° SO )
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Construction of 7, 1

Case B1 «g & ample(sp).
Some 3 € ample(sy) appears on ; after a finite
sequence of independent transitions agay ... ak_1.

o= i o ni
i =
@ Qg1
] Sp o °
JCEEEN Q41
[ e > @
Qo Ok—1
Tjt1 Ni+1
Tit1 = o
e——> ... ——> 9 3
\ Qg Qg1 k41
° ce ° -
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Construction of 7, 1

Case B2 oy ¢ ample(sp).
Some 3 € ample(sp) is independent
of all transitions in 7;.

o nj
o= o

Qo A o2
° cee So ] .

N
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Construction of 7, 1

Case B2 oy ¢ ample(sp).
Some 3 € ample(sp) is independent

of all transitions in 7;.

i ° Ni
T =
@0 A o2
° So ] .
ﬂ\A N BN
@ S @ s S @ e >
@ a a2
Oit1 Mi+1

Tit1 = o

e ——> ... ——= 9

\ﬂ
Qg a4 a2
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Properties of mg, w1, mo, . ..

Lemma

For all 7j, mj, it holds:

T ~AP(p) T

m vis(tr(m;)) = vis(tr(m;))

m if¢;, & are prefixes of m;, m; satisfying
vis(tr(&;)) = vis(tr(&;)), then

L(last(&;)) N AP(p) = L(last(¢;)) N AP(p).

(It is sufficient to prove it for ; and 7, 1. And this is easy.)
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Definition of o

We define an infinite path o as the limit of the finite paths o;.

To prove correctness of the reduction, we have to show that:
o belongs to the reduced structure K’

T ~AP(g) T

(The first item follows directly from the construction of o;.)
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Properties of o

"Every transition of 7 eventually appears in 0.

Lemma

Let o be the first transition of n;. There exists j > i such that o
is the last transition of o; and, for all i < k < j, « is the first
transition of ny.

(This is a consequence of C3.)
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Properties of o

"Only invisible transitions are added to o.
Visible transitions of = keep their order.”

Lemma

Let v be the first visible transition on n; and prefix.,(n;) be the
maximal prefix of tr(n;) that does not contain ~. Then one of the
following holds:

m v /s the first action of n; and the last transition of o1, or

m v /s the first visible transition of ;. 1, the last transition of
oiy1 Is invisible, and prefix.(niy1) E prefix.(n;)-

v [ w denotes that v = w or v can be obtained from w by
erasing one or more transitions.
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Properties of o

Hence, K ~AP(y) K’
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Calculating ample sets

Complexity of checking conditions C0—-C3
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Conditions C0 and C2

ample(s) =0 <= enabled(s) = 0.

C2 (invisibility)
If s is not fully expanded, then every a € ample(s) is invisible.

m conditions CO and C2 are local: their validity depends just
on enabled(s) and ample(s), not on the whole structure

m CO can be checked in constant time
m C2 can be checked in linear time with respect to |ample(s)|
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Condition C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occuring first.

m checking C1 for a state s and a set T C enabled(s) is at
least as hard as checking reachability for K (reachability
problem can be reduced to checking C1)

m we give a procedure computing a set of transitions that is
guaranteed to satisfy C1

m computed sets do not have to be optimal: tradeoff
efficiency Vs. amount of reduction
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Condition C3

C3 (cycle condition)

A cycle in reduced structure is not allowed if it contains a state
in which some transition is enabled, but is never included in
ample(s) for any state s on the cycle.

m C3is also non-local
m in contrast to C1, C3 refers only to the reduced structure

m instead of checking C3, we formulate a stronger condition
which is easier to check
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Condition C3

Lemma

Assume that C1 holds for all ample sets along a cycle in a
reduced structure. If at least one state along the cycle is fully
expanded, then C3 hold for this cycle.

m C1 implies that each « € enabled(s) ~. ample(s) is
independent of transitions in ample(s)

B o € enabled(s) ~ ample(s) is also enabled in the next
state on the cycle in K’

m if the cycle contains a fully expanded state, then it surely
satisfies C3

I1A159 Formal Verification Methods: Partial Order Reduction 53/72



Condition C3’

If K’ is generated using depth-first search strategy, then every
cycle in K’ has to contain a back edge (i.e. an edge going to a
state on the search stack)

Cc3

If sis not fully expanded, then no transition in ample(s) may
reach a state that is on the search stack.

m C3’ can be checked efficiently during nestedDFS algorithm
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Calculating ample sets

Algorithm
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Basic information

Reduced system is constructed on-the-fly: ample(s) is
computed only when a model checking algorithm needs to
know successors of s.

Algorithm computing ample sets depends on the model of
computation. We consider processes with

m shared variables and
B message passing with queues.
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m pc;(s) denotes the program counter of process P; in a
state s

m pre(a) is a set including all transitions 5 such that there
exists a state s for which « ¢ enabled(s) and

a € enabled(5(s))

dep(«) is the set of all transitions that are dependent on «
T; is the set of transitions of process P;

Ti(s) = T; N enabled(s)

current;(s) is the set of all transitions of P; that are enabled
in some s’ such that pc;(s) = pc;(s’)

(note that T;(s) C current;(s))
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Tradeoff

We do not compute the sets pre(a) and dep(o) precisely.
We preffer to efficiently compute over-approximations of these
sets.
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Computing pre(«)

m pre(«) includes the transitions of the processes that
contain . and that can change a program counter to a
value from which a can execute

m if the enabling condition for « involves shared variables,
then pre(«) includes all other transitions that can change
these shared variables

m if o sends or receives messages on some queue g, then
pre(«) includes transitions of other processes that receive
or send data through q, respectively
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Computing dep(«)

m pairs of transitions that share a variable, which is changed
by at least one of them, are dependent

m pairs of transitions belonging to the same process are
dependent

m two receive fransitions that use the same message queue
are dependent

m two send transitions are also dependent (sending a
message may cause the queue to fill)

Note that a pair of send and receive transitions in different
processes are independent as they can potentially enable each
other, but not disable.
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Sketch of the algorithm

m C1 implies that transitions in enabled(s) ~. ample(s) are
independent on those in ample(s)

m as transitions in T;(s) are interdependent, it holds
Ti(s) C ample(s) v T;(s) N ample(s) = 0

m hence, T;(s) is a good candidate for ample(s)
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Sketch of the algorithm

m C1 implies that transitions in enabled(s) ~. ample(s) are
independent on those in ample(s)

m as transitions in T;(s) are interdependent, it holds
Ti(s) C ample(s) v T;(s) N ample(s) = 0

m hence, T;(s) is a good candidate for ample(s)

Idea of the algorithm

We check whether some T;(s) # () satisfies the conditions C1,
C2, and C3'. If there is no such T;(s), we set
ample(s) = enabled(s).
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Checking C1

Along every path in the original structure that starts in s, the
following condition holds: a transition that is dependent on a
transition in ample(s) cannot be executed without a transition in
ample(s) occuring first.

If ample(s) = T;(s) violates C1, then there is a path

g0 g P P, e
PN
where
® o ¢ T,(s) and « is dependent on Tj(s),
® O, ..., s are independent on T;(s).
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Checking C1

B o Bn s agTi(s) o

s Bo
PN
There are two cases.

Case A o € Tjfor some i # j. Then dep(T,(s)) (1 T, + (.
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Checking C1

B o Bn s agTi(s) o

s Bo
PN
There are two cases.

Case A a € T;forsome i # j. Then dep(T(s)) T, # .
CaseB ac T

® [,..., 0 n are independent on T;(s) and hence
Bo, --.,0n & T; (all transitions of P; are considered as
interdependent).

m Therefore pc;(s) = pc;(s’) and thus « € current;(s) ~ Ti(s).

m As a ¢ Ti(s), some transition of f, ..., 3, has to be
included in pre(«).

m Hence, pre(current;(s) ~ Ti(s)) 1 T; # ( for some j # i.
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Algorithm checking C1

function checkC1(s, P;)
forall P; # P; do
if dep(Ti(s))NT; #0 v pre(current;(s) ~ Ti(s)) N T; # 0 then
return false
return true
end function

If the function returns irue, then C1 holds. It may return false
even if T;(s) satisfies C1.
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Algorithm

function checkC2(X) function checkC3'(s, X)
forall o € X do forall « € X do
if visible(«) then if onStack(a(s)) then
return false return false
return true return true
end function end function

function ample(s)
forall P; such that T;(s) # () do
if checkC1(s, P;) A checkC2(T;(s)) A checkC3'(s, T;(s)) then
return T;(s)
return enabled(s)
end function
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Partial order reduction

Example
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Example: code

Specification formula ¢ = G=((pcy = CSp) A (pc1 = CSy))

NCy :
CSO .

NC1 :
CS1 .

cobegin Py||Py coend

while true do
wait(turn = 0);
turn = 1;
endwhile;

while true do
wait(turn = 1);
turn = 0;
endwhile;
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Example

e
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Example
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Coming next week

LTL model checking of pushdown system

m How can | denote an infinite-state system?
m Can | verify an infinite-state system?

m What are pushdown processes good for?
m Can | do LTL model checking for them?
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