IA159 Formal Verification Methods

Abstraction

Jan Strejcek

Department of Computer Science
Faculty of Informatics
Masaryk University

Focus and sources

Focus
m principle of abstraction
m exact abstractions and non-exact abstractions
m predicate abstraction
m CEGAR: counterexample-guided abstraction refinement

Sources

m Chapter 13 of E. M. Clarke, O. Grumberg, and D. A. Peled:
Model Checking, MIT, 1999.

m R. Pelanek: Reduction and Abstraction Techniques for
Model Checking, PhD thesis, FI MU, 2002.

m E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith:
Counterexample-guided Abstraction Refinement, CAV
2000, LNCS 1855, Springer, 2000.

|1A159 Formal Verification Methods: Abstraction 2/76

Abstraction is probably the most important technique
for reducing the state explosion problem.

[CGP99]

iqi Verification impossible .
g;gg'nil o possbe > Properties

|A159 Formal Verification Methods: Abstraction 3/76

Abstraction is probably the most important technique
for reducing the state explosion problem.

[CGP99]

Original .| Abstract Verification .
system model Properties

|A159 Formal Verification Methods: Abstraction 4/76

Abstraction is probably the most important technique
for reducing the state explosion problem.

[CGP99]

Original .| Abstract Verification .
system model Properties

m large finite systems — smaller finite systems
m infinite-state systems — finite systems

|A159 Formal Verification Methods: Abstraction 5/76

|A159 Formal Verification Methods: Abstraction 6/76

|A159 Formal Verification Methods: Abstraction 7/76

|1A159 Formal Verification Methods: Abstraction 8/76

!

4 \

S
o

\ e
<
~

m equivalent with respect to F(x > 0)
m nonequivalent with respect to GF(x = 0)

|A159 Formal Verification Methods: Abstraction 9/76

Given two Kripke structures M = (S, —, Sp, L) and
M = (S, =, S5, L"), we say that M’ simulates M, written
M < M, if there exists a relation R C S x S’ such that:

mVsy € Sy.3ds5€ S : (s0.8)) €R
m(s,s)e R = L(s)=L(d)
m(s,s)eRANs—p = P8 :5d-"pA(pp)eR

|1A159 Formal Verification Methods: Abstraction 10/76

Simulation

Given two Kripke structures M = (S, —, Sp, L) and
M = (S, =, S5, L"), we say that M’ simulates M, written
M < M, if there exists a relation R C S x S’ such that:
mVsye Sy.3s5€ S (s0,8) €R
m(s,s)eR = L(s)=L(s)
m(s,s)eRANs—p = P8 :5d-"pA(pp)eR

Lemma

If M < M', then for every path c = s1S, ... of M starting in an
initial state there is a run o' = s}s, ... of M’ starting in an initial
state and satisfying

L(s1)L(s2) ... = L'($))L'(S). ...

IA159 Formal Verification Methods: Abstraction 11/76

Relations between original and abstract systems

Original M< A Abstract Property
system ~ model e LTL
M A 7

M < A = all behaviours of M are also in A
(but not vice versa)

|1A159 Formal Verification Methods: Abstraction 12/76

Relations between original and abstract systems

Original M<A
system
M

Abstract
model
A

AEy

M < A = all behaviours of M are also in A
(but not vice versa)

|1A159 Formal Verification Methods: Abstraction

Property
pelLTL

13/76

Relations between original and abstract systems

Original M< A Abstract A=y Property
system ~ model e LTL
M \i/ ¥
ME ¢

M < A = all behaviours of M are also in A
(but not vice versa)

|1A159 Formal Verification Methods: Abstraction 14/76

Relations between original and abstract systems

Original M<A
system
M

Abstract
model
A

Ao

M < A = all behaviours of M are also in A
(but not vice versa)

|1A159 Formal Verification Methods: Abstraction

Property
pelLTL

15/76

Relations between original and abstract systems

Original M< A Abstract AWp Property
system ~ model e LTL
M \i/ @
77

If A has a behaviour violating ¢ (i.e. A [~ ¢), then either
M has this behaviour as well (i.e. M |~ ¢), or

M does not have this behaviour, which is then called
false positive or spurious counterexample
(M = ¢ or M |~ ¢ due to another behaviour violating).

|1A159 Formal Verification Methods: Abstraction 16/76

Relations between original and abstract systems

Original M> A Abstract Property
system ~ model e LTL
M A 7

M > A = all behaviours of A are also in M
(but not vice versa)

I1A159 Formal Verification Methods: Abstraction 17/76

Relations between original and abstract systems

Original M> A
system
M

Abstract
model
A

Ao

M > A = all behaviours of A are also in M
(but not vice versa)

I1A159 Formal Verification Methods: Abstraction

Property
pelLTL

18/76

Relations between original and abstract systems

Original M> A Abstract Al Property
system ~ model e LTL
M \i/ ¥
M= ¢

M > A = all behaviours of A are also in M
(but not vice versa)

I1A159 Formal Verification Methods: Abstraction 19/76

Relations between original and abstract systems

Original M> A
system
M

Abstract
model
A

AEy

M > A = all behaviours of A are also in M
(but not vice versa)

I1A159 Formal Verification Methods: Abstraction

Property
pelLTL

20/76

Relations between original and abstract systems

Original M>A | Abstract | A= | property
system ~ model e LTL
M \i/ ¥
777

M > A = all behaviours of A are also in M
(but not vice versa)

I1A159 Formal Verification Methods: Abstraction 21/76

Relations between original and abstract systems

Original M< A | Abstract Property
sys,,\t/,em WA mc:;\iel pelTL

M< A<M = Aand M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar = M <A< M

ot

|A159 Formal Verification Methods: Abstraction 22/76

Relations between original and abstract systems

Original M<A |Abstract | A= | property
system N model pelTL

M M= A A

M< A<M = Aand M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar = M <A< M

ot

|A159 Formal Verification Methods: Abstraction 23/76

Relations between original and abstract systems

Original M<A |Abstract | A= | property
system = model
ME ¢

M< A<M = Aand M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar = M <A< M

ot

|A159 Formal Verification Methods: Abstraction 24/76

Relations between original and abstract systems

Original M< A | Abstract AE o Property
system N model pelTL

M M= A A

M< A<M = Aand M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar = M <A< M

ot

|A159 Formal Verification Methods: Abstraction 25/76

Relations between original and abstract systems

Original M<A | Abstract | AL o | property
system = model
M- e

M< A<M = Aand M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar = M <A< M

ot

|A159 Formal Verification Methods: Abstraction 26/76

Relations between original and abstract systems

Original M< A Abstract Al Property
system = model
M o

All these relations hold even for » < CTL".

|1A159 Formal Verification Methods: Abstraction 27/76

Abstraction

Exact abstractions

|1A159 Formal Verification Methods: Abstraction 28/76

Cone of influence (aka dead variables)

|A159 Formal Verification Methods: Abstraction 29/76

Cone of influence (aka dead variables)

m let V be the set of variables appearing in specification
m cone of influence C of V is the minimal set of variables
such that
mVCC
m if v occurs in a test affecting the control flow, then v € C
m if there is an assignment v := e for some v € C, then all
variables occurring in the expression e are also in C

m C can be computed by the source code analysis

m variables that are not in C can be eliminated from the code
together with all commands they participate in

|1A159 Formal Verification Methods: Abstraction 30/76

Cone of influence: example

S: v := getinput();
x := getinput();

y =1,

z:=1;

while v > 0 do
Z:=ZxX;
X =x—-1;
Y=y *V;
vi=v—1:

Z:=2ZxY,

Specification: F(pc — E)

|A159 Formal Verification Methods: Abstraction 31/76

Cone of influence: example

S: v := getinput();
x := getinput();

y =1,

z:=1;

while v > 0 do
Z:=ZxX;
X =x—-1;
Y=y *V;
vi=v—1:

Z:=2ZxY,

Specification: F(pc — E)
V=0, C={v}

|1A159 Formal Verification Methods: Abstraction 32/76

Cone of influence: example

S: v := getinput(); S: v := getinput();
x = getinput(); skip;
y=1; skip;
z:=1; skip;
while v > 0 do while v > 0 do
Z:=Zx%xX; skip;
X =x—-1; skip;
Yy =yxv, skip;
vi=v-—1; vi=v-—1;
Z:=2zZxY, skip;
E E:

Specification: F(pc — E)
V=0, C={v}

|1A159 Formal Verification Methods: Abstraction 33/76

Other exact abstractions

Symmetry reduction

m in systems with more identical parallel components, their
order is not important

Equivalent values

m if the set of behaviours starting in a state s is the same for
values a, b of a variable v, then the two values can be
replaced by one

m applicable to larger sets of values as well
m used in timed automata for timer values

|1A159 Formal Verification Methods: Abstraction 34/76

Abstraction

Non-exact abstractions

|1A159 Formal Verification Methods: Abstraction 35/76

We face two problems

to find a suitable abstract domain (i.e. a set of abstract
states) and a mapping between the original states and the
abstract ones

to compute a transition relation on abstract states

|1A159 Formal Verification Methods: Abstraction 36/76

Finding abstract states

Abstract states are usually defined in one of the following ways:

for each variable x, we replace the original variable domain
Dy by an abstract domain Ay and we define a total function
hX : DX — AX

astate s = (v4,...,Vm) € Dy, x ... x Dy, given by values
of all variables corresponds to an abstract state

h(S) = (B, (V1) - -, Bn(Vin)) € Ax, X ... X Ay,

predicate abstraction - we choose a finite set
& = {¢1,...,0n} of predicates over the set of variables;
we have several choices of abstract domains

The first approach can be seen as a special case the latter one.

|1A159 Formal Verification Methods: Abstraction 37/76

Popular abstract domains for integers

Sign abstraction
m Ac={a;,a,ay}
{ a ifv<O
m h(v)=<¢ ao ifv=0

a, ifv>0

Parity abstraction
| AX - {aea aO}

| ae if v is even
" (V) —{ a, ifvisodd

m good for verification of properties related to the last bit of
binary representation

|1A159 Formal Verification Methods: Abstraction 38/76

Popular abstract domains for integers

Congruence modulo an integer
m hy(v) = v (mod m) for some m
m nice properties:

(xmod m)+(y mod m)) modm = x+y (mod m)
((xmod m)—(y mod m)) modm = x—y (mod m)
(xmodm)-(y modm)) modm = x-y (mod m)

Representation by logarithm
B hy(v) = [loga(v + 1)
m the number of bits needed for representation of v

m good for verification of properties related to overflow
problems

|1A159 Formal Verification Methods: Abstraction 39/76

Popular abstract domains for integers

Single bit abstraction
|] AX - {0, 1}
m hy(v) =the i-th bit of v for a fixed /

Single value abstraction

m A, ={0,1}

1 ifv=c
" (V) = { 0 otherwise

...and others

|1A159 Formal Verification Methods: Abstraction 40/76

Predicate abstraction

Let & = {¢1,...,¢n} be a set of predicates over the set of
variables.

Abstract domain {0, 1}"”

m astate s = (v4,..., V) corresponds to an abstract state
given by a vector of truth values of {¢1,...,¢n}, i.e.

h(s) = (¢1(v1, .-, Vm)s -, Ve, ..., Vm)) € {0,1}"

m example: ¢4 = (xy >3) ¢ = (X1 < X2) ¢3=(x2>10)
s=(5,7)
h(s) = (1,1,0)
m not used in practice (too many transitions) — it is better
to assign a single abstract state to a set of original states

|1A159 Formal Verification Methods: Abstraction 41/76

Predicate abstraction: abstracting sets of states

m let b= (bs,...,b,) be avector of b; € {0,1,*}
m we set [E,d>]:b1 1 N...N\Nbp-dn,

where 0 - ¢ = —¢;, 1-¢;j = ¢j, and x - ¢; = T
m let X denotes the set of original states

Abstract domain 2{0:1}"
m h(X)={be{0,1}"|3sc X :sk[b,o]}
m example: ¢1 = (x4 >3) 2= (X1 <X2) 3= (X2 >10)
X = {(57 7)’ (47 5)’ (27 9)}
h(X) =1{(1,1,0),(0,1,0)}
m nice theoretical properties
m not used in practice (this abstract domain grows too fast)

|1A159 Formal Verification Methods: Abstraction 42/76

Predicate abstraction: abstracting sets of states

Abstract domain {0, 1, x}" (predicate-cartesian abstraction)
m h(X)=min{b|Vsec X :sk[b,d]},
where min means “the most specific”
m example: ¢4 = (X1 >3) ¢ = (X1 < X2) ¢3=(x2>10)
X ={(5.7),(4,5),(2,9)}
h(X) = (x,1,0)
m this one is used in practice

|1A159 Formal Verification Methods: Abstraction 43/76

Abstract structures

Assume that
m we have a Kripke structure M = (S, —, Sy, L)
m we have an abstract domain A and a mappingh: S — A
m itholdsthat A= {L(s)|se S}andL=h

To achieve the last condition, we set AP to contain only

abstraction based on variable domains
an atomic proposition (x = a) for each a € Ay

predicate abstraction
an atomic proposition (¢; holds) for every ¢;

This abstraction is useful if and only if each abstract state deter-
mines validity of AP(¢).

|A159 Formal Verification Methods: Abstraction 44/76

Abstract structures

Assume that
m we have a Kripke structure M = (S, —, Sy, L)
m we have an abstract domain A and a mappingh: S — A
m itholdsthat A= {L(s)|se S}andL=h

We define two abstract models:

Mmay = (A, —may, Ao, La), where
m Ay = {L(s0) | S0 € So}
mLa:A— Asuchthat La(a) = a

W 2, - a iff there exist sy, 52 € S such that
L(s1) = a1, L(s2) = @2, and 51 — s,

|1A159 Formal Verification Methods: Abstraction 45/76

Example Mz,

d d

x=0 x=1 x=2 2> x=3 2> x=4 2> x=5 2~ ...

M2, with abstract domain {0, 1}2 generated by predicate
abstraction with predicates ¢y = (x > 0) and ¢o = (x > 2).

|1A159 Formal Verification Methods: Abstraction 46/76

Example Mz,

M2, with abstract domain {0, 1}2 generated by predicate
abstraction with predicates ¢y = (x > 0) and ¢o = (x > 2).

d

— T

(070)—‘3)(170)%(171)

Lb)_/u

c a a

|A159 Formal Verification Methods: Abstraction 47/76

Abstract structures

Assume that
m we have a Kripke structure M = (S, —, Sy, L)
m we have an abstract domain A and a mappingh: S — A
m itholdsthat A= {L(s)|se S}andL=h

We define two abstract models:

Mumust = (A, — must, Ao, La), where
m Ay = {L(S0) | So € So}
mLa:A— Asuchthat La(a) = a
B 2, s 2 iff foreach sy € S satisfying L(s1) = a4

there exists s, € S such that L(s) = a»
and sy — S

|1A159 Formal Verification Methods: Abstraction 48/76

Example Mpust

d d

x=0 x=1 x=2 2> x=3 2> x=4 2> x=5 2~ ...

M5t With abstract domain {0, 1}2 generated by predicate
abstraction with predicates ¢y = (x > 0) and ¢o = (x > 2).

|1A159 Formal Verification Methods: Abstraction 49/76

Example Mpust

d d

W)
j\M)
)

x=0 x=1 X=2 x=3 2> x=4 2> x=5-2~ ...

M5t With abstract domain {0, 1}2 generated by predicate
abstraction with predicates ¢y = (x > 0) and ¢o = (x > 2).

d

(0,00 ——2——(1,0) (1,1)
U_/
b

c a

|A159 Formal Verification Methods: Abstraction 50/76

Relations between M, Myust, and Mpay

Lemma

|1A159 Formal Verification Methods: Abstraction 51/76

Relations between M, Myust, and Mpay

Lemma

For every Kripke structure M, abstract domain A with a
mapping function h it holds:

Mpust < M < Mmay

m computing Mpmyst and Mp,, requires constructing M first
(recall that M can be very large or even infinite)

m we compute an under-approximation My, ¢ of Mmust and

B an over-approximation M;nay of Mgy directly from an
implicit representation of M

m it holds that My, ; < Mmust < M < Mmay < M,

must —

|1A159 Formal Verification Methods: Abstraction 52/76

Abstraction

Abstraction in practice

|1A159 Formal Verification Methods: Abstraction 53/76

Guarded command language

Syntax
m let V be afinite set of integer variable
m expressions over V use standard boolean (=, <, >) and
binary (4, —, -, ...) operations
m Actis a set of action names

m modelis apair M= (V,E), where E = {t;,...,tn}isa
finite set of transitions of the form #; — (&;. 9;. u;), where
m g € Act
B g; is a boolean expression over V
B u; is a sequence of assignments over V

|1A159 Formal Verification Methods: Abstraction 54/76

Guarded command language

Syntax
m let V be a finite set of integer variable
m expressions over V use standard boolean (=, <, >) and
binary (+, —, -, ...) operations
m Actis a set of action names

m modelisapair M= (V,E), where E = {t;,...,tn}isa
finite set of transitions of the form #; — (&;. 9;. u;), where

m g € Act
m g; is a boolean expression over V
B u; is a sequence of assignments over V

Semantics
m M defines a labelled transition system where

m states are valuations of variables S = 2Y—%
m initial state is the zero valuation sp(v) =0 forallv e V

m s 2 s whenever s = g; and s’ = u;(5s)

|A159 Formal Verification Methods: Abstraction 55/76

d
d d

a a a
x=8 2= x=4 2> x=5-9~. ..

implicit description in guarded command language:

V= {x}

(a, T, X :=x+1)
(b, =(x > 0), x:=0)

(c, x>0)A(x<2), x:=0)

(d, (x >2), x :=0)

|A159 Formal Verification Methods: Abstraction 56/76

Abstraction in practice

m we use predicate abstraction with domain {0, 1, x}"”
m given a formula ¢ with free variables from V, we set

pre(aj, ») = (9i = ¢[X/ui(X)])
m we use a sound decision procedure /s valid, i.e.
is_valid(p) =T = ¢ is atautology

(the procedure is_valid does not have to be complete)

|1A159 Formal Verification Methods: Abstraction 57/76

Abstraction in practice

for every abstract state b € {0, 1, «x}" and for every transition
ti = (aj, 9i, U;), we compute an over-approximation of a
may-successor of b under t; as

m if is_valid([b,®] = —g;) then there is no successor

m otherwise, the successor b is given by

b —

=1 0 ifis_valid([b,®] = pre(a;, ~¢;))

{ 1 if is_valid([b,®] = pre(a;, ¢;))
+ otherwise

|1A159 Formal Verification Methods: Abstraction 58/76

{ 1 if is_valid([b,®] = pre(a;, ¢;))

b; =

/ 0 if is_valid([b,] = pre(a;, ~¢;))

* otherwise

(a, T, x:=x+1)

using the predicates ¢y = (x > 0), ¢ = (x > 2), we compute
the transition

(1,0) i’may’())

|1A159 Formal Verification Methods: Abstraction 59/76

{ 1 if is_valid([b,®] = pre(a;, ¢;))

b —

/ 0 if is_valid([b,®] = pre(a;, ~¢;))

* otherwise

(a, T, x:=x+1)

using the predicates ¢y = (x > 0), ¢ = (x > 2), we compute
the transition

(1,0) 2y (1,)

BE(x>0)A(x<2) = (T = (x+1>0))istrue

|1A159 Formal Verification Methods: Abstraction 60/76

{ 1 if is_valid([b,®] = pre(a;, ¢;))

b —

/ 0 if is_valid([b,®] = pre(a;, ~¢;))

* otherwise

(a, T, x:=x+1)

using the predicates ¢y = (x > 0), ¢ = (x > 2), we compute
the transition

(170) i’mavy’ (1 s *)

BE(x>0)A(x<2) = (T = (x+1>0))istrue
BE(x>0)A(Xx<2) = (T = (x+1>2))isnottrue
BE(x>0)A(Xx<2) = (T = (x+1<2))isnottrue

|1A159 Formal Verification Methods: Abstraction 61/76

Abstraction in practice

m for every transition, we compute successors of all abstract
states

m based on the successors, we transform the original implicit
representation of a system into a boolean program

m boolean program is an implicit representation of an
over-approximation of M,y

m it uses only boolean variables b representing the validity of
abstraction predicates ¢

m boolean program can be used as an input for a suitable
model checker (of finite-state systems)

|1A159 Formal Verification Methods: Abstraction 62/76

V={x}

(a, T, X:=x+1)
(b, =(x > 0), x :=0)

(c, x>0)A(x<2), x:=0)

(d, (x >2), x:=0)

using the predicates ¢y = (x > 0), ¢» = (x > 2), we get the
boolean program (defining an over-approximation) of M,y

V = {by, bo}, where by, bo represents validity of ¢+, ¢
(a, T, by := if by then 1 else x

b := if by then 1 else if by then x else 0)
(b, —by, b1 =0, b, :=0)
(C, by A=bo, by =0, by := 0)
(d, b, b1 =0, b, :=0)

|A159 Formal Verification Methods: Abstraction 63/76

Example of a real NQC code and its absraction

task light_sensor_control () {
int x = 0;
while (true) {
if (LIGHT > LIGHT_THRESHOLD) {

PlaySound (SOUND_CLICK) ;

Wait (30);

x =x + 1;

} else {

if (x > 2) {

PlaySound (SOUND_UP) ;
ClearTimer (0) ;
brick = LONG;

} else if (x > 0) {
PlaySound (SOUND_DOUBLE_BEEP) ;
ClearTimer (0) ;
brick = SHORT;

|1A159 Formal Verification Methods: Abstraction

task A_light_sensor_control ()
bool b = false;
while (true) {
if (%) |

b =D0b ? true : * ;
} else {
if (b) |

brick = LONG;
} else if (b ? true : x)

brick = SHORT;

}
b = false;

64/76

{

Abstraction

CEGAR: counterexample-guided abstraction refinement

|1A159 Formal Verification Methods: Abstraction 65/76

m it is hard to find a small and valuable abstraction
m abstraction predicates are usually provided by a user
m CEGAR tries to find a suitable abstraction automatically

m implemented in SLAM, BLAST, and Static Driver Verifier
(SDV)

m incomplete method, but very successfull in practice

|1A159 Formal Verification Methods: Abstraction 66/76

system M specification ¢

I1A159 Formal Verification Methods: Abstraction 67/76

system M specification ¢
buildanew | 7
abstract model
M (M < M)

I1A159 Formal Verification Methods: Abstraction 68/76

system M specification ¢
build a new
abstract model
M (M < M)
model check
M E p?

I1A159 Formal Verification Methods: Abstraction 69/76

system M specification ¢
build a new
abstract model
M (M < M)
model check
M = ?
YES
NO BUG!
M=o

I1A159 Formal Verification Methods: Abstraction 70/76

system M specification ¢
build a new
abstract model
M (M < M)
model check
M= ¢?
NO
analyze /
counterexample YES
NO BUG!
M

I1A159 Formal Verification Methods: Abstraction 71/76

system M specification ¢
build a new
abstract model
M (M < M) \
model check
M= ¢?

NO
analyze /
counterexample YES

reall

BUG! NO BUG!
M~ ¢ M=o

I1A159 Formal Verification Methods: Abstraction 72/76

system M specification ¢
build a new
abstract model
M (M < M)
add new
abstraction mcﬁle)l:Ch%ck
predicates 2k

NO

\ analyze /

spurious counterexample YES
reall

BUG! NO BUG!
M%‘P M}:gp

I1A159 Formal Verification Methods: Abstraction 73/76

system M specification ¢
build a new
abstract model
ﬁ MI (M S M/)
add new
abstraction mfﬁle)LCh%Ck
predicates 2k

NO

\ analyze /

spurious counterexample YES
reall

BUG! NO BUG!
M%‘P M}:gp

I1A159 Formal Verification Methods: Abstraction 74/76

m added abstraction predicates ensure that the new abstract
model M’ does not have the behaviour corresponding to
the spurious counterexample of the previous M’

m the analysis of an abstract counterexample and finding
new abstract predicates are nontrivial tasks

m the method is sound but incomplete
(the algorithm can run in the cycle forever)

|1A159 Formal Verification Methods: Abstraction 75/76

The End

Thank you for your attention!

m Oral exam (subscribe via IS!)
m 30 min preparation + 30 min exam

m Questions = topics
m model based testing
m LTL—BA
m model checking PDA
m ...

|1A159 Formal Verification Methods: Abstraction 76/76

