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Abstract. Formal verification of arithmetic datapaths has been part of the estab-
lished methodology for most Intel processor designs over the last years, usually
in the role of supplementing more traditional coverage oriented testing activities.
For the recent Intel® Core™ i7 design we took a step further and used formal
verification as the primary validation vehicle for the core execution cluster, the
component responsible for the functional behaviour of all microinstructions. We
applied symbolic simulation based formal verification techniques for full data-
path, control and state validation for the cluster, and dropped coverage driven
testing entirely. The project, involving some twenty person years of verification
work, is one of the most ambitious formal verification efforts in the hardware
industry to date. Our experiences show that under the right circumstances, full
formal verification of a design component is a feasible, industrially viable and
competitive validation approach.

1 Introduction

Most Intel processors launched over the last ten years have contained formally verified
components. This is hardly surprising, as their reliability is crucial, and the cost of cor-
recting problems can be very high. Formal verification has been applied to a range of
design components or features: low-level protocols, register renaming, arithmetic units,
microarchitecture descriptions etc. [1944]]. In an industrial product development setting,
formal verification is a tool, one among others, and it competes with traditional test-
ing and simulation. Usually testing can produce initial results much faster than formal
verification, and in our view the value of formal verification primarily comes from its
ability to cover every possible behaviour. In most of the cases where formal verification
has been applied, its role has been that of a supplementary verification method on top
of a full-fledged simulation based dynamic validation effort.

The single most sustained formal verification effort has been made in the area of
arithmetic, in particular floating point datapaths. In this area verification methods have
reached sufficient maturity that they have now been routinely applied for a series of
design projects [170301312116]], and expanded to cover the full datapath functionality
of the Execution Cluster EXE, a top-level component of a core responsible for the
functional behaviour of all microinstructions. In the current paper we discuss further
expansion of this work on Intel® Core™ i7 design [1]]. For this project, we used formal
verification as the primary validation vehicle for the execution cluster, including full
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datapath, control and state validation, and dropped most usual RTL simulation and all
coverage driven simulation validation for the cluster. To give a flavour of the magnitude
of the work, Intel Core i7 design implements over 2700 distinct microinstructions.

Most of the particular verification techniques we applied are already documented in
literature [3U12013!15]], and our goal here is to discuss the overall programme and the
factors that allowed us to be succesful in mostly replacing testing by verification. We
believe that the effort is an important step forward in the industrial application of formal
verification, At the time of writing this paper, Intel Core i7 is Intel’s flagship, top of the
line processor. We used formal verification as the main pre-silicon validation vehicle for
a large, crucial component of the design in the actual development project, providing
results that were competitive with traditional testing-based methods in timeliness and
validation cost, and at least comparable if not superior in quality - the execution cluster
had the lowest number of issues escaping to silicon for any cluster of the design.

Our methodology has gradually emerged over several years of work on large verifica-
tion tasks. On a philosophical level, we approach verification as program construction,
by emphasizing the role of the human verifier over automation. Technically most of our
work is based on symbolic simulation. This works particularly well for self-contained
pipelines, such as processor execution units. In fact, the vast majority of execution units
inside an Intel microprocessor can be completely verified with direct symbolic sim-
ulation. Direct symbolic simulation does not fare quite so well when the amount of
interdependence between pipelines increase, as is typically the case in verification of
control logic. To extend symbolic simulation to such feedback-intensive verification
problems, we use inductive invariants written by a human verifier. The concreteness of
the computation steps in the approach allows a verifier to locate and analyze compu-
tational problems and devise a strategy around them if and when capacity issues arise.
This is a very common scenario in practice, and in our experience one of the key issues
regarding the practical usability of a verification tool. Building the verification method
on the intuitively tangible ideas of symbolic simulation and invariants also allows us to
communicate the work easily to designers, and to draw on their insights.

In the rest of the paper, we will first look briefly at Intel IA-32 processor structure,
the execution cluster, Intel Core i7 design, and a typical processor design and valida-
tion flow. We will then outline execution cluster verification in past projects and Intel
Core i7, and discuss the challenges, advantages and drawbacks of applying formal veri-
fication in a live development project. In Section 7, we will touch on the basic technolo-
gies enabling our work, and in Section 8 describe different aspects of the Intel Core i7
execution cluster verification effort: datapath, control and state verification.

2 Intel IA-32 Processor Structure

Intel TA-32 processor architecture has evolved gradually over the years. Typically a
new IA-32 design project is intended to maintain functional backwards compatibility
with the earlier designs while providing improvements along different axes: collec-
tions of new instructions (e.g. MMX™, SSE, SSE2 etc.), new capabilities (e.g. 64-bit
address support, vPro™ technology), improved performance (clock frequency, through-
put, power), or design adjustments to meet side conditions set by a new manufacturing
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process. Components from earlier designs are often reused in later projects, especially
for proliferations but also for entirely new microarchitectures like NetBurst® or Core™.
A typical single-core IA-32 processor consists of the following major design compo-
nents called clusters [9]:

— The front end cluster FEC fetches and decodes architectural instructions, translates
them to microinstructions and computes branch predictions. For example, a simple
instruction with a memory source operand typically maps to a memory load mi-
croinstruction and a computation microinstruction, and a complex instruction, such
as FCOS (Cosine) to a microprogram.

— The out-of-order cluster OOO receives streams of microinstructions from the front
end, keeps track of dependencies between them, schedules ready-to-execute mi-
croinstructions for execution, takes care of branch misprediction and event recov-
ery, retires completed instructions and updates architectural state.

— The execution cluster EXE carries out data computations for all microinstructions.
The EXE cluster usually also performs memory address calculations and deter-
mines and signals branch mispredictions.

— The memory cluster MEC interacts with the front end and execution clusters when
they need memory accesses, contains first levels of caches and interfaces with the
external environment of the processor, e.g. the main memory or external bus.

In a multi-core design like Intel Core i7 [1]], a single processor contains several cores and
logic for communication and arbitration between different cores and the environment
of the processor such as memory or external bus. Some of the logic that would exist in
MEC in a single core design may be pushed to the logic outside the cores in a multi-
core design. A register-transfer level (RTL) description of a cluster in System Verilog
usually contains a few hundred thousand lines of code. While not a physical entity like
the above, microcode is also a major design component, the complexity of which is
comparable to that of the clusters.

In this paper we discuss the validation of the execution cluster EXE of the Intel Core
17 design. This cluster consists of the following units:

— The integer execution unit IEU contains logic for plain integer and miscellaneous
other operations (e.g. control register access)

— The SIMD integer unit SIU (single instruction multiple data) contains logic for
packed integer operations (MMX and SSE)

— The floating point unit FPU implements plain and packed floating point operations
such as FDIV, FMUL, FADD etc.

— The address generation unit AGU performs address calculations and access checks
for memory accesses as well as miscellaneous memory-related operations.

— The jump execution unit JEU implements jump operations and determines and sig-
nals branch mispredictions.

— The memory interface unit MIU receives load data from and passes store data to
memory cluster, maintains store forwarding buffers, performs various datatype con-
versions, and takes care of data bypassing

Intel Core i7 EXE cluster implements over 2700 distinct microinstructions, and sup-
ports simultaneous multi-threading (SMT), which allows two independent threads to
run simultaneously on the core.
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3 Intel Processor Design and Validation Flow

A processor design project implementing a new microarchitecture typically involves a
team of over 500 engineers over a time-line of 2 to 3 years [5]. The pre-silicon devel-
opment effort can be divided into two roughly equal stages:

— front end development, which focuses on architecture, RTL and functionality, and
— execution stage, which focuses more on timing and physical design.

Pre-silicon development culminates in tape-out, the moment the design database is con-
sidered healthy enough to be sent to a fabrication plant for the first samples to be pro-
duced. After tape-out usually about 9-12 months of post-silicon development work is
required to obtain a production-quality design [5].

Organizationally validation forms a separate organization within the product devel-
opment team. Validation is an ongoing activity throughout the development effort. Pre-
silicon validation starts at the same time as the design, and often design and validation
are racing to add new design features and the infrastructure to validate them. Pre-silicon
validation goes through three stages:

— Design exercise checks for basic functionality of design with ’easy’ stimulus
— Stress testing checks for corner-case functionality by selections of hard’ stimuli
— Coverage testing attempts to hit coverage goals through biased random stimulus

The goal of the pre-silicon validation effort is to tape out a product that is healthy
enough to enable post-silicon development and validation. Typically the first silicon is
able to boot an operating system and run at least some meaningful software content.
The standard approach for pre-silicon validation is register-transfer level (RTL) sim-
ulation. These dynamic validation activities take place at two levels of granularity:

— Cluster simulation concentrates on validating each cluster in isolation, in the con-
text of a cluster test environment (CTE). CTE is a test bench approximating the
interface of the rest of the design towards the cluster under test. Cluster simulation
provides better controllability and is significantly faster than full chip simulation.
It is the primary vehicle for pre-silicon validation.

— Full chip simulation targets the validation of the entire design. It is especially useful
in analysis of multi-cluster protocols, and essentially checks whether the design
faithfully implements the IA-32 architecture.

Both cluster and full chip simulation compare the observed behaviour of the design
against a reference model. For full-chip simulation the reference model is an architec-
ture level IA-32 simulator. For each cluster, the reference model is purpose-built - for
the execution cluster EXE the reference model consists of a microcode simulator, which
specifies the intended behaviour of each microinstruction, and a collection of ad-hoc
checkers. The register-transfer level description is connected downwards to schematics
with formal equivalence verification (FEV) tools.

The main workhorse of the pre-silicon dynamic validation effort is coverage-driven
testing. Essentially in this testing methodology validators enumerate all different in-
teresting scenarios they can think of for the design under test, and attempt to hit all
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of these by random or biased random stimulus, with the implicit intention that in the
process they also hit most of the interesting scenarios they did not happen to think of.
The methodology is very powerful in practice and results in remarkably clean designs,
as long as interesting scenarios are carefully identified and the temptation to manually
select the stimulus to hit a particular case avoided. However, in many cases no amount
of testing provides certainty: a single dyadic extended-precision (80-bit) floating point
instruction has 2'% possible source data combinations. Hitting coverage goals can also
be very hard — usually for any given coverage goal, there is a point well below 100%
after which additional coverage becomes exceedingly hard to gain.

After tape-out, post-silicon validation tries to identify any functional issues pre-
silicon validation may have missed. It also serves at the ultimate reality check: not
all electrical and physical phenomena can always be modelled accurately beforehand,
and the actual behaviour of the circuit may diverge from the logical description. Testing
the actual silicon instead of simulation makes any debug work much harder, as we lose
visibility of and control over internal state. However, the silicon is much faster than
any simulation. For example, a typical Core i7 pre-silicon full-chip simulation runs at
2-3Hz, whereas the launch frequency of the processor was 2.66GHz. This means that
the total number of all pre-silicon simulation cycles on a large server farm amounts to
no more than a few minutes of run time on a single actual processor.

4 Execution Cluster Verification — A Retrospective

While exploratory formal verification initiatives are carried out by members of Intel
research laboratories, in the product development context formal verification is com-
monly done by a separate dedicated group within the validation team of the product
development organization. In most projects, formal verification is viewed as a comple-
mentary activity alleviating possible shortcomings of dynamic validation in select target
areas, with dynamic validation forming the backbone of the validation effort.

In a project, there is a spectrum of different usage models for formal verification. It
can be used for a one-off effort for establishing the basic soundness of some particular
feature, as a periodical activity validating and re-validating a design after major modifi-
cations, or as a part of regular regression suite preventing the introduction of faulty code
into the design database. Most register transfer level verification work is done on mod-
els that are automatically compiled from RTL source code, essentially at gate level. The
code, written by circuit designers, is usually highly optimized using knowledge about
expected operating constraints, often to the degree that it is “almost wrong”. Formal
verification has often little influence over design style or decisions.

The single most sustained formal verification programme within Intel has been car-
ried out in the area of floating-point and arithmetic datapath verification. In fact, most
Intel processors over the last ten years have had formally verified floating-point datap-
aths. The work discussed in the current paper builds on and extends this body of work.

The earliest concerted floating-point verification effort in Intel was carried out on
the Pentium® Pro design [17]. The goal of the effort was full formal verification of all
floating-point datapaths of the design, and it was done using the forte toolset, symbolic
trajectory evaluation (STE) and a word-level model checking tool. The verification ef-
fort was essentially a one-off research project, establishing the basic feasibility of such
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verification of an industrial-scale design. After the original project, the verification code
was regressed to verify the changes in proliferation projects.

The first processor design where formal verification of floating point and other arith-
metic datapaths was done within the product development organization was the
Pentium® 4 project. The effort was also based on the forte toolset and symbolic trajec-
tory evaluation, but used mainstream BDD manipulation techniques, decompositions
and theorem proving instead of word-level tools. Some of the verification efforts on the
more complex operations, such as division and multiplication, are reported in [[1201315]]
The verification code was maintained throughout the original Pentium 4 project and all
its proliferations with regular, though occasionally infrequent regressions, and many
parts of the code have lived on in other projects.

The Pentium 4 EXE formal verification effort consolidated some of our verification
methodology and introduced a number of technical improvements. For the first time,
formal verification was carried out in the level of the entire EXE cluster, instead of in-
dividual units. This turns out to be important in practice, as clusters are the lowest level
of granularity for which there are clean, well-documented interfaces and on which dy-
namic validation works, which facilitates comparisons and reviews between formal and
dynamic validation content. During the Pentium 4 project we also started to validate as-
sumptions used in formal verification against test traces, by translating FV assumptions
to DV checkers, first manually and later automatically.

The Intel® Core™ 2 processor design project extended the range of formal verifi-
cation from floating-point and other high-complexity, high-risk datapaths to almost all
datapaths in the EXE cluster [6]. This project was also the first to combine formal verifi-
cation and dynamic validation efforts in a single team, and reduce the amount of testing
in areas covered by the formal approach. As with Pentium 4, the effort was based on
forte toolset and standard BDD manipulation utilities, and the verification code was
maintained and regressed throughout the project and for proliferations.

5 Execution Cluster Verification for Intel Core i7

During the early stages of Intel Core i7 development, EXE cluster validation was sep-
arated into two teams, formal verification and dynamic validation, according to tradi-
tional lines. However, during the front end development stage, reflecting the success
of the previous EXE cluster formal verification initiatives, a decision was reached to
wind down the dynamic validation activities and reduce cluster test environment (CTE)
development. Considering the usual stages of validation, dynamic validation was used
extensively for the early design exercise, a moderate amount of stress testing was done,
and coverage driven testing was dropped entirely. In certain areas where verification
work was delayed, dynamic validation was used as a temporary back-up olution.

To account for the more prominent role of formal verification, the scope of
the Intel Core i7 EXE formal verification effort was expanded to include full control,
state and bypass verification in addition to the already standard datapath verification -
see Section 8 for more discussion. We spent significant effort in software engineering
the verification code in a way that would help code maintenance over a live, continu-
ously evolving design and ease reusability for future projects. At the time of the design
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tape-out, all datapath and control verification was completed. Some bypass work and
most of state verification took place after initial tape-out, prior to the design reaching
production quality. At any given time, five to eight persons were working on the project,
and the total amount of work was about twenty person years. The size of the team was
comparable to a typical testing-based cluster validation team, perhaps slightly on the
high side.

To provide timely feedback and to prevent bugs from slipping into the continuously
changing design, existing verification code was routinely run on all new design models.
Nightly regression runs consisting of a representative selection of verification sessions
were responsible for catching most of the design issues, and weekly regressions car-
rying out a complete re-verification the rest. The computational effort to carry out the
regressions was a fraction of the amount of cycles needed for a usual simulation-based
regression suite. To check the soundness of external assumptions used in the formal
verification activity, all assumptions were automatically translated to checkers that were
piggybacking on full-chip RTL simulation test runs. This was an extremely useful ac-
tivity and resulted in many assumption refinements.

The verification effort found a variety of issues in different aspects of the design.
However, the success of validation is often measured not by what it finds but by what
it misses, and it is probably instructive to look at the issues the verification effort failed
to find. In the end, we missed three bugs that escaped to silicon and needed to be fixed
prior to achieving production quality:

— When writeback of 64-bit MMX data from SIU is bypassed to a floating point store,
an event was signaled incorrectly for negative infinity data.

— When two simultaneous broadcasts of cs.1 bit (“Code Segment is in 64-bit mode”)
happen on different threads, one of the broadcast values ends up being stored in a
register for both threads, and the broadcast value for the other thread is dropped.

— The EXE cluster produces the #GP (General Protection) fault instead of #SS (Stack
Segment) fault for descriptor loads that cross the canonical boundary.

The first of these escaped due to an incomplete formal specification for the floating
point store consuming the bypassed data. In its original form it was treating the eventing
condition as a don’t-care. The second problem was caused by formal verification work
not having been done yet on the failing piece of logic before tape-out. In the third case,
the EXE cluster correctly implemented a micro-architectural protocol between EXE
and MEC, but the protocol itself failed to yield the expected architectural result. While
not zero, this was the lowest number of bugs escaping to silicon for any cluster.

Furthermore, during the pre-silicon stage two other issues went undetected by the
formal verification effort, but were caught in full chip testing:

— Packed floating point precision flag was incorrectly raised for precise unmasked
underflows.

— Certain floating point constant ROM reads corrupted the result flags of a subsequent
floating point compare operation.

The first of these was caused by both the RTL code and the formal specification inher-
iting material from an earlier project, and missing an intended design change between
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the projects, and the second by the fact that the control verification work that would
have identified the unintended interference between the operations had not been done
yet at the time. To summarize, out of the five misses, three could be attributed to an
incorrect formal specification, and two to formal verification work not being completed
early enough. The positive side of this is that there were no issues that would have fallen
through the cracks because of failures in our methodology.

6 Formal Verification Value Proposition

The conventional wisdom about formal verification in industrial context is easy to spell
out. Simulation yields partial results quickly and progresses reliably in a linear fashion,
although reaching full coverage is very hard, and completeness unattainable. Formal
verification, on the other hand, while in principle holding the promise of completeness,
is in practice woefully capacity constrained and either slow or downright unable to
produce meaningful results. Although a caricature, we feel this view is not altogether
unjustified. To better understand the barriers of more wide-spread application of formal
verification in industry, at least from an Intel perspective, let us look briefly at some
possible application models for formal verification:

FV may be applied to the fundamental algorithms,

FV may be applied as an extra layer of protection,

FV may be mixed with dynamic simulation on the same design, or
FV may replace simulation as the primary validation approach.

In the first usage model, formal and dynamic validation do not directly overlap. Usually,
dynamic validation cannot start until an implementation has been coded, and validation
of the underlying algorithms is done only by inspection and reviews. Recent forays into
such early microarchitecture validation in Intel [4] have been very encouraging.

As discussed above, much of Intel’s formal verification work has historically fol-
lowed the second usage model, where formal verification is done on top of a full dy-
namic validation effort. There are several pragmatic problems in this approach. First,
if dynamic validation is done diligently, it will find most of the bugs, and thereby get
most of the credit. Secondly, the few remaining bugs are likely to be in extreme cor-
ners of the design, and formal verification will look at these only if a very thorough
and costly effort is made to cover all aspects of the design. This means that doing a
little formal verification will not find any new issues, and doing a thorough effort only
a few, in both cases leading to a perceived low return on investment. The areas where
projects have routinely chosen to do formal verification have then been limited to those
where an uncaught problem would be so visible and costly that the extra effort of doing
formal verification can be justified. As a positive exception, SAT-based bounded model
checking has been very successfully used as a bug-hunting tool in targeted areas.

The third usage model, mixing formal and dynamic techniques on validating a sin-
gle design area, sounds appealing at face value. However, the following fundamental
problem makes it hard to offset the dynamic validation effort by formal verification.
The coverage-based validation paradigm is based on the identification of all interesting
aspects of the design and the sets of interesting cases for all these aspects, with the
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expectation that once we gain coverage for most of these, we will have also exercised
those aspects of the design we failed to account for in the process. Now, even if some
aspects of the design are formally verified, we will still need to identify and gain cov-
erage for them in order to give us confidence that we are also reaching the unaccounted
parts of the design. Therefore, formal verification gives little or no reduction in simu-
lation effort. A practical implication of this problem is also that it is hard to gradually
offset dynamic validation by formal verification.

Consider then the fourth usage model, replacing dynamic simulation by formal ver-
ification. In our view, in to be successful, formal verification needs to

work at the same level of design granularity as simulation
address all the aspects of the design simulation does,
relate to the surrounding simulation-based collateral, and
provide timely feedback about the changing design.

The timeliness aspect merits some more discussion. A common complaint regarding
formal verification in project context is “FV is usually late”. In many situations this is
caused by the FV computational complexity problem simply being too hard. If verifiers
need to first solve a research problem, it is little wonder that they are unable to produce
quick feedback or put together meaningful schedules. In our opinion, the key aspect
in alleviating this problem is a collection of “FV recipes”, tried-and-tested strategies
for solving certain classes of problems. These allow the verifiers either to identify a
computational strategy, or to flag a verification task as being of unknown complexity. A
difficulty in producing timely feedback may also come just from lack of collateral. In
our context, dynamic validation is usually able to draw on material from earlier projects.
If formal verification needs to implement comparable material from scratch, it starts off
with a handicap. While there may be good reasons for slow progress of FV work, we
cannot see that it would step beyond a secondary role without timely results.

There were a number of factors enabling the effort discussed in the current paper.
First of all, the choice of symbolic simulation as the primitive verification approach al-
lowed us to work on cluster-size design objects. Secondly, symbolic simulation directly
supported main datapath verification tasks, and combined with inductive invariants al-
lowed us to address control and state verification, as well. Thirdly, the background of
previous execution cluster verification projects had given us a wealth of experience, ex-
isting verification recipes and directly re-usable code, allowing us to progress quickly
with many verification tasks. Fourthly, through the translation of FV assumption to sim-
ulation checkers, we were also able to relate our work to the existing dynamic validation
collateral and get feedback from: it.

The issues our validation effort missed can be traced back to failures to meet the
requirements above. Two bugs were related to timeliness - our control and bypass ver-
ification efforts were running late, as we were hashing out methodology and doing
the actual verification at the same time. The other three bugs were cases of validation
against an incorrect specification. Mechanical checking of specifications against the
simulation reference model would have likely identified at least two of these.

To be an effective verification engineer in our environment, one needs to have both
an understanding of the design and the FV technologies. In our experience, the two
systematically hardest problems the team members faced were the analysis of BDD
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behaviour in a computation, and the identification of hardware invariants — both of
these skills are still something of a black art.

Looking forward, replicating the work reported here for subsequent projects has been
considerably easier. The methodology and infrastructure for the complete effort is in
place, the verification code is engineered to support reuse and be robust in the face
of design changes, and a variety of strategies and guidelines have been obtained from
practical experience. We are already seeing very effective early validation results from
future projects - our hope is that the methodology will allow us to arrive at a logically
clean design faster than before, and this way allow for faster design convergence.

We believe that the programme discussed in the current paper shows that in areas
where a verifier can concentrate on verification, instead of solving verification research
problems, the effort to carry out formal verification is comparable to thorough coverage-
based validation. Such an effort is not easy, and existing verification collateral, in the
form of verifier experience, reusable code or verification recipes, is likely to be needed
to enable timely results. In areas where these circumstances exist, the choice of whether
to do or not to do formal verification is in the end a risk tolerance question. On the one
hand, formal verification can provide complete design coverage, on the other a formal
verification based validation programme is going to involve more unknowns than a
traditional testing based one.

7 Technical Framework

Technically our verification work is carried out in the Forte verification framework,
originally built on top of the Voss system [8]. The interface language to Forte is reFLect,
a lazy, strongly-typed functional language in the ML family [18]. Most of our verifica-
tion code is written in reFLect: specifications, whether they are functional specifications
or relational constraints, verification facilities, analysis routines etc. The execution of
a verification task in our framework amounts to the evaluation of a reFLect program.
Let us next briefly touch on a collection of aspects of the framework that have been key
enablers for our work: symbolic evaluation of terms, symbolic trajectory evaluation,
weakening techniques, parametric substitutions, relational STE and reflection.

Binary decision diagrams are first-class objects in the forte framework. In fact, in the
reFLect language the type Bool includes not just the constants T and F, but arbitrary
BDD’s. For verification purposes, a very important feature of the language is that it
allows symbolic evaluation of objects containing BDD’s. For example, consider the
following code:

let a = variable "a"; let b = variable "b"; let ¢ = variable "c";
let moo=a=>[F, F, bl | [ F, T, ¢l;

where *variable’ is a function that generates a BDD variable, x = y|z means if-then-else,
and [...] is used to build tuples. When evaluated, "'moo’ yields [F,—a,a AbV —a Ac].
The symbolic evaluation capability allows us to use arbitrary reFLect code when writing
specifications and then use the evaluation mechanism of the language for determining
satisfaction of a specification for all possible assignments to symbolic variables.

The forte framework directly supports symbolic simulation on circuit models through
symbolic trajectory evaluation (STE) [20] as a built-in function. Symbolic simulation
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is based on traditional notions of digital circuit simulation, but the value of a signal
in simulation can either by a constant (T or F) or a symbolic expression representing
the conditions under which the signal is T. Trajectory evaluation extends the normal
Boolean logic to a quaternary logic, with the value X denoting lack of information, i.e.
the signal could be either T or F, and the value T denoting contradictory information. It
carries out circuit simulation with quaternary values starting from a maximally uncon-
strained start state. In the current work we use STE to symbolically simulate the circuit
and trace the values of relevant signals. A single STE simulation is best viewed as an
over-approximation of the class of all actual Boolean traces of the circuit agreeing with
the stimuli driving the STE simulation: If we manage to verify a Boolean property on
the STE simulation, we can deduce that it also holds for all circuit traces.

The computational effort required for an STE simulation is often reduced by the
technique of weakening, in which the simulated value of a given circuit node at a given
time is replaced with the undefined value X. In explicit weakening, the user manually
defines the weakening points, and in dynamic weakening any BDD that is larger than a
user given threshold is automatically replaced with the undefined value X. We also use
more sophisticated automated techniques using causal fan-in information from a circuit
trace to determine weakening points. The automated weakening techniques solve most
circuit simulation capacity problems without need for human intervention.

Parametric substitution is a technique for reducing symbolic evaluation complex-
ity when we are interested in the result of the evaluation only under a given set of
constraints [10]. It is an algorithm that takes a Boolean condition A, and computes a
substitution list v/B = [(v1,B1),(v2,B2),...], which associates each variable v; occur-
ring in A with a BDD B; on a set of fresh variables such that the range of the functions
B; is exactly the range of assignments to v;’s that satisfy A. For example, if we want
to evaluate an implication A = C, we can compute the substitution v/B, apply it to C,
and check whether C' = T for the resulting C'. In general, parametric substitution allow
us to evaluate a term only in scenarios where the parametrized constraint holds: If C
contains a subterm A => DIE, in C’ the corresponding term will be T => D'|E’, and
we will never need to evaluate E’. We often use parametric substitutions together with
case splitting to bring down the complexity of a problem C by decomposing it into a
number of cases Ay,...,A,, and then consider each case A; separately, parameterizing
A; to ease the computation of C.

In the work discussed in the current paper, we access STE through a layer called re-
lational STE or rSTE, a package built around STE to support relational specifications.
Effectively, rSTE is a tool allowing us to check whether one list of constraints (“the
input constraints”), implies another list of constraints (’the output constraints”) over
all traces of the circuit. Most common computational complexity reduction techniques,
including weakening, parametric substitution etc. are made easily accessible to the user
as rSTE options. It also provides sophisticated debug support, breakpoints etc. to en-
able users to quickly focus on usual verification problems. For the verification of the
implication between input and output constraints, we use the tool discussed in [11].

Finally, the reflection mechanism allows terms in the reFLect language to be used as
objects in the language itself [7]. We use it for sanity check traversals, and to reason
about proof decompositions in the theorem prover Goaled [16].
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8 1Intel Core i7 EXE Verification Effort

8.1 High-Level EXE Model

The structure of our verification work is motivated by a generic abstract model of the
execution cluster EXE. This model has a set of abstract microinstructions. These may
be executed in EXE through a number of schedule ports. An instruction scheduled on
a particular port will execute in an execution unit, and write the result back through a
writeback port after a latency, which depends on the instruction. The set of implemented
instructions, the collection of schedule and writeback ports and execution units and the
mapping of instructions to ports, execution units and latencies is left open at the level of
the generic model and is fixed by every individual design. The abstract cluster model has
a number of state components, which an instruction may read or update synchronously.
Our abstract EXE model does not model memory or caches, allowing us to avoid all
the related intricacies. In a real design, EXE accesses memory through the memory
cluster MEC, but for the purposes of EXE verification, it suffices for us to model the
interactions at the EXE-MEC interface only: the load and store addresses and store data
EXE sends to, and the load data EXE receives from MEC.

Much of our work on building the Cluster Verification Environment (CVE) for EXE
is proof engineering [13] and software engineering to create a standard, uniform
methodology for writing specifications and carrying out verification tasks. The aim of
the effort is to support reuse and code maintenance over a constantly changing design,
and separate common and project-specific parts to allow shared code to be written only
once. We use reFLect user-defined record-like datatypes to enforce structure. For exam-
ple, all functional micro-instruction specifications are mappings from an abstract type
of source data to an abstract type of writeback data. The CVE collects all verification
code to a single common directory structure.

8.2 Datapath Verification

Datapath verification is the most important part of our programme. Much of the effort
is related to formally specifying the intended behaviour of the over 2700 individual mi-
croinstructions. On the one hand, this is a formidable task - the informal specifications
of IA-32 architectural instructions take two volumes [2]. On the other, the existence of
written specifications as a starting point was very helpful. The formal specifications tak-
ing most effort were typically those for auxiliary micro-architectural operations without
direct architectural counterparts, which were often lacking in precise documentation.
The largest systematic problem in microinstruction specification was the determina-
tion of don’t-care spaces. Often the architectural specification might explicitly leave an
aspect undefined, but the de-facto micro-architectural specification required for back-
wards compatibility would be stricter. Particular complications included:

— IEEE floating point arithmetic with micro-architectural variations in FPU

— the microarchitecture mixing with the architecture complicates the IA-32 memory
addressing mechanism in AGU, already non-trivial due to its gradual evolution over
a long history
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— mispredicted branch signalling and recovery protocol interacts with the jump oper-
ation datapath in JEU

— mispredicted branch and event recovery protocols interact with control register op-
erations datapath in IEU

— some of MIU functionality is intermingled with the bypass network, which made it
hard to determine clean verification task boundaries

In the time-frame of the Core 17 work, the formal specifications of the micro-operations
were essentially stand-alone, and some of the missed bugs were caused by incorrect
specifications. To reduce this risk, we are currently examining ways to more closely
link the formal specifications with the C++ specifications used by dynamic validation.

We verified separately for each micro-operation op and for each port p on which the
operation op may be scheduled that the following holds for all circuit traces:

D(p,op) NDE(p,op) ADI(p,op) = (wb(p) = spec(op,src(p)))

Where D, DE and DI are sets of basic constraints, environment constraints and internal
constraints for operation op on port p, respectively, src and wb refer to the source data
and write-back results in the circuit trace, and spec is the formal specification for the
operation op. In reality the specification target is not strict equality, but may include
partially undefined don’t-care results etc. In the actual verification work we would rou-
tinely refine the specification and discover missing environment assumptions, augment-
ing DE and DI, until either the verification succeeded, or we had identified a design
issue. We also translated all environment assumptions DE and DI to simulation check-
ers that were routinely run on full-chip simulation traces. This activity was extremely
useful in weeding out incorrect or overly restrictive assumptions.

Most micro-operations could be verified with direct symbolic simulation using a
reasonably straightforward variable ordering, with the following exceptions:

— The FADD family of operations uses a case split and parametric substitution strat-
egy, as discussed in [3l21]].

— The FMUL, IMUL and PMUL families of multiplication operations need a sequen-
tial decomposition as in [15021]].

— The FDIV, FSQRT and IDIV families of operations need an iterative sequential
decomposition as in [[12113].

— Intel Core i7 added a collection of SSE4 instructions for accelerated string and text
processing, e.g. for faster XML parsing. The verification of these require advanced
parametric substitution strategies and sequential decomposition.

— The PSADBW and MPSADBW operations (sum of absolute differences) require a
case split and parametric substitution strategy.

— Most AGU operations require the use of symbolic indexing to deal with complexity
caused by segment register file (SRF) reads.

For a self-contained example of a related datapath verification task, see [22].

8.3 Control and Bypass Verification

The datapath verification above uses collections of internal constraints DI as assump-
tions. The first goal of the control verification is to establish these, by strengthening



Replacing Testing with Formal Verification 427

them to an inductive invariant /, and showing for every operation op and relevant sched-
ule port p:
D(p,op) NDE(p,op) NI NIE = DI(0,0p)

Here D and DE are sets of basic and external constraints for op, I is the global control
invariant for the design, and /E is an external control invariant on circuit inputs. The
second goal is then to show that / indeed is an inductive invariant, i.e. that / holds at
the end of the circuit initialization sequence and is inductive. The techniques used to
establish this are discussed in [11414].

The global control invariant for the Core i7 EXE cluster contains roughly 800 in-
dividual components. This large number reflects the aggressive clock gating the de-
sign uses to conserve power. Many internal circuit restrictions that would automatically
propagate from an existing environment assumption were all circuit clocks toggling
continuously will need to be established via an inductive invariant when we do not
know whether all the relevant clocks will toggle or not.

In the datapath verification, we usually sample source data at the inputs of the exe-
cution unit where the microinstruction is executed. The task of the bypass verification
is then to show that the data at the execution unit inputs is either the properly bypassed
result data of an earlier operation, or the value received by the cluster from a register
file read, depending on the bypass control inputs. The primary challenges in the bypass
verification were the identification of the relevant micro-architectural invariants, and
the management of the sheer number of different possible bypass scenarios.

8.4 State Verification

The abstract EXE model has a number of state components. The primary register file
does not reside inside the cluster in Core i7, but there is a variety of auxiliary registers,
for example the segment register file, floating point control word file etc. In CVE, each
state component is annotated with a specification of which instructions are allowed
to read or update it, and under which constraints. The verification of an update to a
state component by an instruction is done in the context of the datapath proof for that
instruction. The inverse, verification of the claim that the value of a state component
does not change when there is no updating instruction is done as a separate verification
task we call state stability proof. The validation of these typically involves new control
invariant clauses added to the global invariant /.

In the abstract EXE model, all access to state data is synchronous. All instructions
reading a state component do so at a fixed offset relative to their start time, and if they
update the state components, the update takes place exactly one cycle after the read
so that any subsequent operation reading the component will get the updated value. In
reality, an operation often takes several cycles longer to update a state component than
to read it. However, to guarantee consistency, we require that when an update happens,
no reader should access the state component before the value is actually updated. We
call the verification of this restriction the state sequential consistency proof. Usually the
restriction follows from external scheduling constraints. The necessity of articulating
these constraints explicitly to carry out the sequential consistency proof has the upside
that the constraints can then be translated to simulation checkers and used to identify
scheduling violations, for example due to insufficient synchronization in microcode.
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