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Syllabus
• Models of systems
• Formal specification of program properties (modal and temporal logics)
• Automatic verification - reachability analysis, symbolic and explicit model check-

ing, equivalence checking
• Deductive verification methods (theorem proving)
• Software testing
• Program analysis, abstraction, abstract interpretation
• Counter-example guided abstraction refinement
• Combining formal methods, SW tools BLAST, Spec# etc.

1 Basic information about the course

1.1 What does “Formal Verification Methods” mean?

formal methods are a collection of notations and techniques for describing and an-
alyzing systems. Methods are formal in the sense that they are based on some
mathematical theories, such as logic, automata or graph theory. [Pel01]

verification is the process of applying a manual or an automatic technique that
is supposed to establish whether the code either satisfies a given property or
behaves in accordance with some higher-level description of it. [Pel01]

formal verificatin methods are techniques (usually based on mathematical theo-
ries) for analysing systems with the aim to improve their quality and reliability.

The course is focused on theoretical and algorithmic bases of verification methods.
The software engineering aspects connected to verification methods are beyond the
scope of this course.

1.2 Literature

There is no single reading material covering all the topics mentioned in this course.
However, many these topics are covered by the books [Pel01] and [CGP99]. Rec-
ommended reading material for the other topics are some recent papers that will be
referred in this text.

1.3 Connections to other courses

In the course, we assume that students are familiar with the content of the following
courses (in particular with the mentioned notions).

• IB005 Formal Languages and Automata I (aka FJA I) - pushdown automata

• IA006 Selected topics on automata theory (aka FJA II) - infinite words, Büchi
automata, bisimulation equivalence

• IA040 Modal and Temporal Logics for Processes - temporal logics, mainly LTL
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• IV113 Introduction to Validation and Verification - automata based LTL model
checking

Courses that are also relevant to our topic:

• MA015 Graph Algorithms

• IV010 Communication and Parallelism

• IB002 Design of Algorithms I

• IV022 Design and Verification of Algorithms

• PA008 Compiler Construction

Courses following (is some sense) our course:

• IV115 Parallel and Distributed Laboratory Seminar

• IV074 Laboratory for Parallel and Distributed Systems

• IA072 Seminar on Concurrency

1.4 Examination

There will be an oral exam at the end (no intrasemestral tests, no written exams, no
homeworks).

2 Introduction

Verification methods can be loosely divided into the following basic cathegories:

• testing

– simple, feasible, very good cost/performance ratio

– very effective in early stages of debugging process

– applicable directly to real systems

– cannot guarantee that there are no errors

– in practice: standard technique for enhancing the quality of systems, wide
tool support

• deductive verification (with use of theorem provers)

– applicable to models of real systems

– needs a huge effort of an expert on both deductive verification and systems
under verification

– can guarantee that (a model of) a real system satisfies a given property

– in practice: used rarely (e.g. partial correctness of FPU in AMD processors)

• equivalence checking

– applicable to models of real systems

– needs a detailed formal specification of a system under verification

– there are no algorithms for reasonable equivalences and infinite-state sys-
tems

– in practice: some specific applications (e.g. equivalence of different levels
of hardware design)

• reachability and model checking

– applicable to (usually finite-state) models of real systems

2



– needs formal specification of a system under verification

– fully automatic, but feasible only for relatively small finite-state systems

– in practice: a standard technique for verification of simple hardware de-
signs, used also for verification of small systems (e.g. communication pro-
tocols)

• static analysis and abstract interpretation

– applicable directly to source code of real systems, feasible

– can verify only a specific class of properties (including many interesting
properties)

– may produce false alarms (the number of false alarms grows with the ability
to find real bugs)

– automatic (verification of some properties may require provision of a suit-
able abstraction)

– in practice: some static analysis is performed by almost every compiler,
there are very efficient tools (e.g. Coverity, Stanse) able to work with big
pieces of real software, for example a linux kernel

• combined methods

– e.g. abstraction + model checking, model checking + counter-example
guided abstraction refinement (CEGAR), abstract interpretation + counter-
example guided abstraction refinement (CEGAR), testing + model check-
ing, testing + symbolic execution (a case of abstract interpretation)

– the aim is to develop methods which are applicable directly to (source code
of) real systems and (more or less) automatic

– may be incomplete and/or produce false alarms

– in practice: already has some specific applications, e.g. verification of Win-
dows drivers (by Static Driver Verifier [SDV]

– definitely the most promising approach

3 Software testing

This section is based on Chapter 9 of [Pel01] and [MBT]. We mention only some
formal parts of software testing area.

3.1 Basic terminology

There are two basic approaches to software testing:

white box testing (aka transparent box testing)- based on inspecting the source
code of the system under test

black box testing - does not use the source code (which may be inaccessible or
unknown)

Software testing methods can be also divided according to the level of the tested parts
of the system

unit (module) testing - the lowest level of testing, where one tests small pieces of
code separately

integration testing - testing that different pieces of code work well together

system testing - testing the system as a whole
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y:=y+1

x=y and z>w

x:=x−1

true false

Figure 1: A simple flowchart.

White box testing is suitable for unit testing and integration testing, while black box
testing is more appropriate for system testing.

We use the following terminology:

execution path is a path in the flowchart of the tested code, i.e., it is a sequence of
control points and instructions appearing in the tested code

test case is a sequence of inputs, actions, and events accompanied with expected
response of the system

test suite is a set of test cases

3.2 White box testing

A program typically has a very large, or even unbounded, number of execution paths.
Hence, it is not feasible to examine all of them. Roughly speaking, we would like
to have a reasonably small test suite which provides a high degree of probability of
finding potential errors. Various code coverage criteria have been defined as a metrices
saying whether (or to what extent) a given test suit covers a given code (the higher
code coverage, the higher probability of finding potential error). The aim is to find
the smallest test suit with the highest coverage.

3.2.1 Control flow coverage criteria

We will present the main coverage criteria and the differences between them using a
small example described in Figure 1. For the sake of readability, the test cases for
our example are described using the state of the variables just prior to the decision
predicate x = y ∧ z > w.

statement coverage: Each executable statement of the program (e.g. assignments,
input, test, output) appears in at least one test case.

One test case is enough to cover the flowchart according to statement coverage:

(x = 2, y = 2, z = 4, w = 3) (1)
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edge coverage: Each execution edge of the flowchart appears in some test case.

To cover the flowchart, we need to add to test case (1) another test case:

(x = 3, y = 3, z = 5, w = 7) (2)

condition coverage: Each decision predicate is a (possibly trivial) Boolean combina-
tion of element conditions (e.g. comparison between two expressions, application
of a relation to some program variables). Each of these element conditions ap-
pears in some test case where it is calculated to TRUE and in another test case
where it is calculated to FALSE, provided that it can have these truth values.

Test case (2) together with the test case

(x = 3, y = 4, z = 7, w = 5) (3)

cover the code. However, in both cases, the decision predicate is evaluated to
FALSE...

edge/condition coverage: This coverage criterion requires the executable edges as
well as the conditions to be covered.

Test cases (1), (2), and (3) together cover the code.

multiple condition coverage: This is similar to condition coverage, but instead of
taking care of each trivial condition, we require each Boolean combination that
may appear in any decision predicate during some execution of the program must
appear in some test case.

To cover the code, we need to add one more test case to the three present test
cases.

(x = 3, y = 4, z = 5, w = 6) (4)

The main disadvantage of the multiple condition coverage is that it involves an
explosion of the number of test cases.

path coverage: This criterion requires that every executable path be covered by a test
case.

The number of paths for a given piece of code can be enormous. For example,
loops may result in infinite or an unfeasible number of paths.

We say that one criterion subsumes another, if guaranteeing the former coverage
also guarantees the latter. This relation appears in Figure 2, where a coverage criterion
that subsumes another appears above it, with an arrow from the subsuming criterion
to the subsumed one. Please note that it can happen due to a lucky selection of the
test cases, a less comprehensive coverage will find errors that a more comprehensive
approach will happen to miss.

The above criteria (except of path coverage) do not treat loops adequately: they
do not care about number of iterations. There are several ad hoc strategies for testing
loops

loop coverage:

• Check the case where the loop is skipped.

• Check the case where the loop is executed once.

• Check the case where the loop is executed some typical number of times.
(But what is typical?)

• If the bound n on the number of iterations of the loop is known, try exe-
cuting it n− 1, n, and n+ 1 times.

Testing loops become even more difficult when nested loops are involved.
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Figure 2: A hierarchy of control flow coverage criteria.

3.2.2 Dataflow coverage criteria

Using control flow coverage criteria, one may fail to include some execution path in
which some variable is set to some value for a particular purpose, but later that value
is misused. Hence, dataflow coverage criteria have been introduced [RW85].

Definition of dataflow coverage criteria employs the following sets of nodes. By
nodes we mean nodes in the flowchart (corresponding to statements and conditions of
the program). In the following, x ranges over program variables.

def (x) = nodes where some value is assigned to x

p−use(x) = nodes where x is used in a predicate (e.g. in if or while statements)

c−use(x) = nodes where x is used in some expression other than a predicate

For each s ∈ def (x) we define the following sets:

dpu(s, x) = nodes s′ ∈ p−use(x) such that there is a path from s to s′ going only
through nodes not included in def (x)

dcu(s, x) = nodes s′ ∈ c−use(x) such that there is a path from s to s′ going only
through nodes not included in def (x)

Each dataflow coverage criterion defines the paths that should be included in a test
suite. For each program variable x and each node s ∈ def (x), one needs to include at
least the following paths starting in s and going only through nodes not included in
def (x), as subpaths in the test suite:

all-defs: include one path to some node in dpu(s, x) or in dcu(s, x).

all-p-uses: include one path to each node in dpu(s, x).

all-c-uses/some-p-uses: include one path to each node in dcu(s, x), but if dcu(s, x)
is empty, include at least one path to some node in dpu(s, x).

all-p-uses/some-c-uses: include one path to each node in dpu(s, x), but if dpu(s, x)
is empty, include at least one path to some node in dcu(s, x).

all uses: include one path to each node in dpu(s, x) and to each node in dcu(s, x).

all-du-paths: include all the paths to each node in dpu(s, x) and to each node in
dcu(s, x).

These paths should not contain cycles except for the first and the last nodes, which may
be the same (for example, an assignment x := x+ 1 is both in def (x) and c−use(x)).
The hierarchy of the dataflow coverage criteria appears in Figure 3.
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Figure 3: A hierarchy of dataflow coverage criteria.

3.2.3 Notes

In general, we cannot expect that our test suite achieves the full coverage (for exam-
ple, some instructions may be unreachable). Moreover, we cannot even compute the
maximal possible coverage as it is undecidable whether a given part of the code is
reachable or not.

High code coverage is only one property of a quality test suite. There are also other
ideas associated with quality of a test suite. For example, mutation analysis [BDLS80]
is based on the following idea:

A test suite is unlikely to be comprehensive enough if it gives the same results to
two different programs.

Given a test suite and a code, one generates several mutations of the program
(based on code inspection or structural changes) and evaluates the test suite on these
mutations. If some test case behaves differently on the original code and a muta-
tion, then the mutation dies. At the end of the process, if a considerable number of
mutations remain alive, the test suite is probably inappropriate.

Note that an addition of a code monitoring executions of test cases (a code mea-
suring the coverage) can affect the behaviour of the system under test.

There are dedicated software packages for test case generation, coverage evaluation,
test execution, and test management (maintaining different test suits, perform version
control etc.)

3.3 Black box testing: model-based testing

The mission of black box testing is to check functionality of all features of the system
under test. First we need to know the intended observable behaviour of the system.
This behaviour can be described in many ways like simple text, message sequence
charts, state machines, etc. Formal descriptions are called models of the system.
Figure 4 provides an example of a model given as a finite state machine.

We use the model to generate test cases. Again, various coverage criteria can be
chosen (some of them are similar to those mentioned before):

• covering all the edges

• covering all the nodes

• covering all the paths (this is usually impractical)

• covering each adjacent sequence of n nodes
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Figure 4: A model of a simple phone system.

• covering certain nodes at least/at most a given number of times in each sequence
in the test suite

• (switch coverage) covering each pair of incoming and outcoming edge for all
nodes

After execution of the tests and comparison of actual outputs with expected out-
puts, we decide on further actions (whether to modify the model, generate more tests,
or stop testing).

3.3.1 Notes

Model checking can be applied to verify whether the model satisfies desired properties.
We may want to test primarily the typical executions of the system in order to

maximize the minimal time to failure (MTTF). In this case, we can employ probabilistic
testing. The system is modelled as Markov chain. The test suite is then generated
according to the probabilities of transitions.

4 Deductive software verification

This section is based on Chapter 7 of [Pel01]. Research in this area started in late
1960’s by Floyd [Flo67] and Hoare [Hoa69].

Since deductive verification is often tedious, it is not performed frequently on the
actual code. However, it can be performed on the basic algorithms or on abstractions
of the code. The faithfulness of the translation of a program into an abstracted one
can sometimes also be formally verified.

4.1 Two notions of correctness

To simplify the presentation, we adopt several assumptions on the programs we want
to verify. More precisely, we assume that the initial values of the program are stored
in input variables x0, x1, . . . and that these variables do not change their values during
the execution of the program. We also consider only deterministic programs.

By state of a program we mean an assignment to the program variables. Let P be
a program and a, b be its states. By P (a, b) we denote the fact that executing P from
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the state a, it terminates with a state b. Further, by a |= ϕ we denote that the state
a satisfies the formula ϕ.

A specification (or some desired property) of a program P is given by two first
order formulae:

• initial condition ϕ is a formula with all its free variables among input variables
of P

• final assertion ψ

We define two notions of correctness. The program P is

partially correct with respect to ϕ and ψ, written {ϕ}P{ψ}, iff for all states a, b
the implication

P (a, b) ∧ a |= ϕ =⇒ b |= ψ

holds. In other words, if the program starts with a state satisfying ϕ and then
terminates, then the terminal state satisfies ψ.

totally correct with respect to ϕ and ψ, written 〈ϕ〉P 〈ψ〉, iff {ϕ}P{ψ} and for every
state a satisfying ϕ the program terminates.

4.2 Verification of flowcharts

begin

end

true false
p

v:=e

Figure 5: Nodes in a flowchart.

We identify each program with its flowchart. A flowchart has four kinds of nodes
(see Figure 5):

begin - one outgoing edge, no incoming edges

end - one incoming edge, no outgoing edges

assignment has the form v := e, where v is a program variable and e is a first order
term; one or more incoming edges, one outgoing edge

decision predicate p is an unquantified first order formula; one or more incoming
edges, two outgoing edges marked with true and false

A location of a flowchart program is an edge connecting two flowchart nodes. An
example of a simple flowchart program is given in Figure 6.

4.2.1 Partial correctness

To verify that a program is partially correct with respect to ϕ and ψ, it is sufficient
to perform the following two steps.

1. We attach to each location of the flowchart a first order formula called assertion.
To the location exiting from the begin node we attach ϕ and ψ is attached to the
location entering end node. The idea is that these assertions should be satisfied
by every state reachable in the corresponding location by an execution starting
in a state satisfying ϕ. These assertions are also called invariants1.

1In some programming languages assertions can be inserted into the code as additional
runtime checks so that the program will break with a warning message whenever an invariant
is violated.
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begin

true false

end

y1:=0

y2:=x1

y2>=x2

y1:=y1+1

A

C

FD

E

B

y2:=y2−x2

Figure 6: A flowchart program for integer division.

2. For every assignment or decision node c, every assumption pre(c) on an incoming
edge (called precondition), and every assumption post(c) on an outgoing edge
(called postcondition), we prove that

if the control of the program is just before c, with a state satisfying
pre(c) and c is executed such that the control moves to the location
annotated with post(c), then the state after the move satisfies post(c).

Every considered triple pre(c), c, post(c) fits into one of the three cases:

(a) c is a decision node with a predicate p and post(c) is associated to the
outgoing edge marked with true. Then we need to prove:

pre(c) ∧ p =⇒ post(c)

(b) c is a decision node with a predicate p and post(c) is associated to the
outgoing edge marked with false. Then we need to prove:

pre(c) ∧ ¬p =⇒ post(c)

(c) c is an assignment of the form v := e, where v is a variable and e an expres-
sion. This case is more difficult, as the states before and after the assign-
ment are different (i.e. pre(c) and post(c) reason about different states).
Therefore, we relativize the postcondition to assert about the states before
the assignment. Hence, we have to prove

pre(c) =⇒ post(c)[v/e]

where post(c)[v/e] is the assertion post(c) where all occurences of v are
replaced with e.

Proving the consistency between each precondition and postcondition of all nodes
guarantess that {ϕ}P{ψ}. In fact, it guarantees even a stronger property:

10



In each execution that starts with a state satisfying the initial condition
of the program, when the control of the program is at some location, the
assumption attached to that location holds.

Finding assertions for the proof may be a difficult task. There are some heuristics
and tools suggesting invariants. But there cannot be a fully automatic way of finding
them (the problem is undecidable).

Example. In order to prove that the flowchart in Figure 6 computes an integer
divison, we define the initial condition and final assertion as

ϕ ≡ x1 ≥ 0 ∧ x2 > 0
ψ ≡ (x1 = y1 ∗ x2 + y2) ∧ y2 ≥ 0 ∧ y2 < x2

and the other invariants as

ϕ(A) ≡ x1 ≥ 0 ∧ x2 > 0
ϕ(B) ≡ x1 ≥ 0 ∧ x2 > 0 ∧ y1 = 0
ϕ(C) ≡ (x1 = y1 ∗ x2 + y2) ∧ y2 ≥ 0
ϕ(D) ≡ (x1 = y1 ∗ x2 + y2) ∧ y2 ≥ x2
ϕ(E) ≡ (x1 = y1 ∗ x2 + y2− x2) ∧ y2− x2 ≥ 0
ϕ(F ) ≡ (x1 = y1 ∗ x2 + y2) ∧ y2 ≥ 0 ∧ y2 < x2

Please note that the decision node y2>=x2 has in fact two ingoing edges, one leading
from the node y2:=x1, the other leading from the node y2:=y2-x2. Both locations
corresponding to these edges are associated with the invariant ϕ(C).

Now the consistency can be checked using a mechanized theorem prover (at least
in this case). 2

4.2.2 Modification for array variables

To verify programs with array variables, the method has to be modified in one point:
relativization of postconditions of assignment nodes.

The problem can be demonstarted by the following simple example. Consider
the assignment x[x[1]] := 2 with precondition pre(c) ≡ x[1] = 1 ∧ x[2] = 3 and
postcondition post(c) ≡ x[x[1]] = 2. It is easy to prove that

pre(c) =⇒ post(c)[x[x[1]]/2]

holds as post(c)[x[x[1]]/2] is in fact the tautology 2 = 2. But if pre(c) holds and the
assignment is performed, then x[1] = 2 and x[x[1]] = 3 and hence the post(c) does not
hold.

In order to fix this problem, we extend the syntax of terms with a new construct
(x; e1:e2)[e3], where x is an array variable (we assume that the set of array variables
is disjoint from simple variables and we do not allow quantifying over array variables
in our first order logic) and e1, e2, e3 are terms. Informally, (x; e1:e2) denotes almost
the same array as x: only the element with the index e1 has been set to e2.

The added construct does not increase the expressiveness of the logic. Consider a
formula ρ containing an (x; e1:e2)[e3] construct. This formula can be translated into
an equivalent formula

(e1 = e3 ∧ ρ[(x; e1:e2)[e3]/e2]) ∨ (¬(e1 = e3) ∧ ρ[(x; e1:e2)[e3]/x[e3]).

This translation removes all occurrences of (x; e1:e2)[e3]. The process can be repeated
until all added constructs are eliminated.

Let c be an array assignment x[e1] := e2. To guarantee that if pre(c) holds and c
is executed then post(c) holds, we have to prove that

pre(c) =⇒ post(c)[x/(x; e1:e2)]

where post(c)[x/(x; e1:e2)] denotes the post(c) formula with x substituted by (x; e1:e2).

11



Example. Let us return to the case where c is x[x[1]] := 2 and post(c) ≡ x[x[1]] = 2.
The relativized postcondition post(c)[(x;x[1]:2)/x] can be simplified in the following
way:

post(c)[x/(x;x[1]:2)] ≡
≡ (x[x[1]]) = 2)[x/(x;x[1]:2)]
≡ (x;x[1]:2)[(x;x[1]:2)[1]] = 2
≡ (x[1] = 1 ∧ (x;x[1]:2)[2] = 2) ∨ (¬(x[1] = 1) ∧ (x;x[1]:2)[x[1]] = 2)

...
≡ x[1] = 1 =⇒ x[2] = 2

The resulting formula is the expected one. The simplification steps may be quite
difficult and hard to follow. Fortunately, mechanized theorem provers can help. 2

4.3 Proving termination

A partially ordered domain is a pair (W,≺) where W is a set and ≺ is a strict partial
order relation over W (i.e. irreflexive, asymmetric, and transitive). We often write
u � v instead of v ≺ u. We also write u � v when u � v or u = v. A well founded
domain is a partially ordered domain that contains no infinite sequence of the form
w0 � w1 � w2 � . . ..

To prove the termination with respect to the initial condition ϕ, we need to follow
the following steps:

1. Select a well founded domain (W,�) such that W is a subset of the domain of
program variables and � is expressible using the signature of the program.

2. Attach to each location in the flowchart an invariant and an expression. The
invariant attached to the outgoing edge of the begin node is the initial condition.

3. Show consistency for each triple pre(c), c, post(c), as in the partial correctness
proof.

4. We show that expressions associated with locations satisfy the following condi-
tions:

• When an expression e, attached to a flowchart location, is calculated in
some state in the execution (when the program counter is in that location),
it is within W . This means that for each location with an associated
invariant ρ and expression e we have to prove

ρ =⇒ (e ∈W ).

Note that e ∈ W is not, in general, a first order logic formula. However,
in this context, it can often be translated into a first order formula.

• In each execution of the program, when proceeding from one location to its
successor location, the value of the associated expression does not increase.
More precisely, for every node c, every invariant pre(c) and expression e1
associated with an incoming edge, and every expression e2 associated with
an outgoing edge, we have to prove that

– if c is a decision node with predicate p and e2 is associated with the
true edge, then

pre(c) ∧ p =⇒ e1 � e2,
– if c is a decision node with predicate p and e2 is associated with the

false edge, then
pre(c) ∧ ¬p =⇒ e1 � e2,
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– if c is an assignment v := e then

pre(c) =⇒ e1 � e2[e/v].

• In each execution of the program, during a traversal of a cycle (a loop) in
the flowchart there is some point where a decrease occurs in the value of the
associated expression from one location to its successor. This means that
for each cycle we have to find a node with an incoming and an outgoing
edges such that the corresponding implication above holds even if � is
replaced with �.

If we manage to do all these steps, the termination is proven. It may be difficult to
find the right well founded domain, invariants and expressions. Clearly, termination
and partial correctness can be proven simultaneously.

Example. Termination of the flowchart in Figure 6 with the initial condition ϕ ≡
x1 ≥ 0 ∧ x2 > 0 can be proven with the following invariants and expressions:

ϕ(A) ≡ x1 ≥ 0 ∧ x2 > 0 e(A) ≡ x1
ϕ(B) ≡ x1 ≥ 0 ∧ x2 > 0 e(B) ≡ x1
ϕ(C) ≡ x2 > 0 ∧ y2 ≥ 0 e(C) ≡ y2
ϕ(D) ≡ x2 > 0 ∧ y2 ≥ x2 e(D) ≡ y2
ϕ(E) ≡ x2 > 0 ∧ y2 ≥ x2 e(E) ≡ y2
ϕ(F ) ≡ y2 ≥ 0 e(F ) ≡ y2

2

4.4 Axiomatic program verification

Hoare [Hoa69] developed a proof system that included both logic and pieces of code.
This proof system allows us to verify code (rather than flowcharts) and to prove
different sequential parts of the program separately (and combine the proofs later).

The logic in constructed on top of some first order deduction system. In addition
to first order formulas, the logic allows assertions of the form {ϕ}S{ψ}, where ϕ,ψ
are first order formulas and S is (a part of) a program with the following syntax:

S ::= v := e | skip | S;S | if p then S else S fi | while p do S end | begin S end

where v is a variable, e is a first order expression, and p is an unquantified first order
formula. These assertions are called Hoare triples. A Hoare triple {ϕ}S{ψ} means
that if execution of S starts with a state satisfying ϕ and S terminates from that
state, then a state satisfying ψ is reached. Clearly, if S is the entire program, then
{ϕ}S{ψ} claims that S is partially correct with respect to initial condition ϕ and final
assertion ψ.

The axioms and proof rules of Hoare’s logic are given below. The proof rules use
the standard notation where premises are above the line while the consequent is below
the line.

Assignment axiom
{ϕ[v/e]}v := e{ϕ}

Skip axiom
{ϕ}skip{ϕ}

Left strengthening rule
ϕ =⇒ ϕ′ {ϕ′}S{ψ}

{ϕ}S{ψ}
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Right weakening rule
{ϕ}S{ψ′} ψ′ =⇒ ψ

{ϕ}S{ψ}

Sequential composition rule

{ϕ}S1{η} {η}S2{ψ}
{ϕ}S1;S2{ψ}

If-then-else rule
{ϕ ∧ p}S1{ψ} {ϕ ∧ ¬p}S2{ψ}
{ϕ}if p then S1 else S2 fi{ψ}

While rule
{ϕ ∧ p}S{ϕ}

{ϕ}while p do S end{ϕ ∧ ¬p}

Begin-end rule
{ϕ}S{ψ}

{ϕ}begin S end{ψ}

Some other proof rules can be derived, like the following rules combining the assign-
ment axiom with the left strengthening rule (this rule has actually just one premise,
the axiom is written there just for explanation) and the sequential composition rule
with the right weakening or left strengthening rule, respectively:

ϕ =⇒ ψ[v/e] (axiom: {ψ[v/e]}v := e{ψ})
{ϕ}v := e{ψ}

{ψ}S1{η1} η1 =⇒ η2 {η2}S2{ψ}
{ϕ}S1;S2{ψ}

The proof trees are constructed as usual...

There are several proof system that extend the Hoare proof system for verifying
concurrent programs. Such proof systems provide axioms for dealing with shared
variables, synchronous and asynchronous communication, procedure calls). They are
usually tailored for a particular programming language, e.g. Pascal or CSP.

A generic proof system for handling concurrency was suggested by Manna and
Pnueli [MP83]. The system is not connected to any particular syntax. Instead, it
works with transition systems. It allows verifying temporal properties. Here is an
example of proof rules (these two are called FCS and FPRS):

G(ϕ =⇒ (ϕ1 ∨ ϕ2))
G(ϕ1 =⇒ Xψ)
G(ϕ2 =⇒ Xψ)

G(ϕ =⇒ Xψ)

G(ϕ =⇒ Xψ)

G(ϕ =⇒ Fψ)

4.5 Notes

Deductive verification

• is not limited to finite state systems.

• can handle programs of various domains and datastructures (and even parametrized
programs).

• can be applied directly to the code.

• can verify that the program is correct (but a bug can occur in compiler, in hard-
ware, due to a wrong initial condition or difference between assumed semantics
of code and the real one, etc.).
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Figure 7: The model checking schema.

• needs a great mental effort as it is mostly manual (the result depends strongly
on the ingenuity of the people performing verification). Hence it is very slow.
Moreover, proofs constructed manually may contain errors. The chance to find
an error is high.

• is not scalable.

The presented Hoare’s proof system is sound. It is not complete thanks to incom-
pletenes of first order logic with natural numbers and basic arithmetic operations over
them (Gödel’s incompletenes theorem). But it is relatively complete, i.e. any correct
assertion can be proved under the following two (sometimes unrealistic) conditions:

• Every correct (first order) logic assertion that is needed in the proof is already
included as an axiom in the proof system. (Alternatively: there is an oracle
(e.g. a human) that is responsible to decide whether such an assertion is correct
or not.)

• Every invariant or intermediate assertion that we need for the proof is expressive.

The second condition eliminates the cases when the proof needs some properties that
cannot be expressed in first order logic.

The relative completeness of the Hoare’s proof system implies that the system is
complete for programs and first order logic with natural numbers and addition and
subtraction as the only operators.

5 Model checking: an overview

In this section we define the model checking problem and we provide a basic taxonomy
of system classes and temporal logics. In particular, we recall definitions of low-level
formalisms for system description (Kripke structure and labelled transition system),
Linear Temporal Logic (LTL), and Büchi automata (BA). We also provide borders of
decidability of the model checking problem. Further, we recall the automata-based
approach to LTL model checking of finite-state systems.

Informations presented in this section can be found e.g. in Chapters 1, 2, 3 and 9
of [CGP99] and in [May98] (everything specific to infinite-state systems).

Model checking problem is the problem to decide whether a given model (or system)
satisfies a given specification (see Figure 7). The problem is further specified by the
considered class of models and by the considered class of specifications.
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5.1 Specifications

Specification is a formal description of some property that should be satisfied by the
system. Note that in the context of model checking, specification usually does not
describe the full functionality of the system. Specification is typically given as a
formula of some temporal logic. There are two kinds of temporal logics:

linear-time logics Formulae are interpreted over sequences representing single runs.
The most popular linear-time logic is Linear Temporal Logic (LTL).

branching time logics Formulae are interpreted over trees, where a tree represents
all possible runs starting in a given state. Typical examples of branching-time
logics are Computational Tree Logic (CTL), CTL∗, Hennessy–Milner logic, and
modal µ-calculus.

modal µ-calculus

CTL∗

MMMMMMM

CTL LTL

Henessy-Milner logic

Figure 8: The hierarchy of basic temporal logics.

Figure 8 represents the relative expressive power of the mentioned logics: a line be-
tween two logics means that every property expressible in the lower logic can be also
expresses in the upper logic, but not vice versa.

Temporal logics can be also divided into state-based and action-based.

state-based These logics talk about properties of states of the system. Properties of
a single state are reflected by validity of atomic propositions in the state. These
atomic propositions are then atomic formulaes of state-based logics.

action-based Every transition of a system is labelled with an action. Action-based
logic are interpreted over behaviours of the system represented only by sequences
(or trees) of actions.

In the following, we focus on LTL model checking problems. Now we provide definition
of both action-based and state-based LTL.

Formulas of state-based Linear Temporal Logic (LTL) are defined by the abstract
syntax equation

ϕ ::= > | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1 Uϕ2,

where > stands for true and a ranges over a countable set AP of atomic propositions.
We also use ⊥ to abbreviate ¬>, Fϕ to abbreviate >Uϕ, Gϕ to abbreviate ¬F¬ϕ, and
ϕRψ to abbreviate ¬(¬ϕU¬ψ). The temporal operators X,F,U,G,R are called next,
eventually, until, globally, and release, respectively. The set of atomic propositions
occurring in a formula ϕ is denoted by AP(ϕ).

We define the semantics of LTL in terms of languages over infinite words. An al-
phabet is a set Σ = 2AP′ , where AP ′ ⊆ AP is a finite subset. A word over alphabet Σ
is an infinite sequence w = w(0)w(1)w(2) . . . ∈ Σω of letters from Σ. For every i ∈ N0,
by wi we denote the suffix of w of the form w(i)w(i+ 1)w(i+ 2) . . ..

The validity of an LTL formula ϕ for w ∈ Σω, written w |= ϕ, is defined as follows:
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w |= >
w |= a iff a ∈ w(0)
w |= ¬ϕ iff w 6|= ϕ
w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 ∧ w |= ϕ2

w |= Xϕ iff w1 |= ϕ
w |= ϕ1 Uϕ2 iff ∃i ∈ N0 : wi |= ϕ2 ∧ ∀ 0 ≤ j < i : wj |= ϕ1

Given an alphabet Σ, an LTL formula ϕ defines the language

LΣ(ϕ) = {w ∈ Σω | w |= ϕ}.

An action-based LTL is very similar to the state-based version. The only changes
are the following. In the syntax, a ranges over countable set of actions Act . Formulae
of action-based LTL are then interpreted over infinite sequences of actions from a finite
subset Act ′ ⊆ Act . Semantics of formula a is defined as follows:

w |= a iff a = w(0)

The specification can be formulated also without any logic. Linear-time properties
can be defined for example with use of Büchi automata.

Definition 5.1. A Büchi automaton (BA) is a tuple A = (Σ, Q, δ, q0, F ), where

• Σ is a finite alphabet,

• Q is a finite set of states,

• δ : Q× Σ→ 2Q is a transition function,

• q0 ∈ Q is an initial states,

• F ⊆ Q is a set of accepting states.

A run of A on inifnite word w = w(0)w(1)... ∈ Σω is an infinite sequence of states
σ = σ(0)σ(1)..., where σ(0) = q0 and σ(i+ 1) ∈ δ(σ(i), w(i)) holds for all i.

A run σ is accepting if Inf (σ)∩F 6= ∅, where Inf (σ) is a set of the states appearing
in σ infinitely often. An automaton A accepts a word w if there is an accepting run
of A on w. We set

L(A) = {w ∈ Σω | A accepts w}.

a

a

b

q2

b

q1

Figure 9: A Büchi automaton accepting words with infinitely many occurrences
of a.

A graphical description of Büchi automata is identical to the graphical desciprion
of nondeterministic finite automata (see Figure 9).

Later we show that every action-based LTL formula can be translated into an
equivalent Büchi automaton.
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byte cnt = 0; // number of processes in critical sections
byte turn = 0; // token for entering a critical section

init {
run(P0); run(P1); // parallel execution of P0 a P1

}

proctype P0() proctype P1()
{ {

// s0 //s1
do do
// NC0 (noncritical section) // NC1 (noncritical section)
:: do :: do

:: (turn == 0) -> break; :: (turn == 1) -> break;
:: else; :: else;
od; od;
// CS0 (critical section) // CS1 (critical section)
cnt = cnt + 1; cnt = cnt + 1;
cnt = cnt - 1; cnt = cnt - 1;
turn = 1; turn = 0;

od; od;
} }

Figure 10: Mutual exclusion program in ProMeLa.

5.2 Models

By model we mean a formal description of all possible behaviours of the system to
be verified, where behaviour is a sequence (or a tree in the branching-time setting) of
successive states or actions (depending on the setting) starting in an initial state of
the system. A model can be described in a standard language (C, Java, VHDL, . . . ),
or in some dedicated languge (for examle, SPIN [SPI] uses Process or Protocol Meta
Language ProMeLa2), or with use of some process algebra (BPA, BPP, PA, pushdown
processes, Petri nets, . . . . Here we introduce two low-level formalisms for representa-
tion of models: Kripke structure (used in context of state-based model checking) and
labelled transition systems (used for the action-based approach).

Definition 5.2. A Kripke structure is a tuple M = (S,R, S0, L), where

• S is a set of states

• R ⊆ S × S is transitions relation

• S0 ⊆ S is a set of initial states

• L : S → 2AP is a labelling function associating to each state s ∈ S the set of
atomic propositions that are true in s.

A path in M starting in a state s is an infinite sequence π = s0s1s2... of states such
that s0 = s and (si, si+1) ∈ R holds for every i.

Given a set AP ′ ⊆ AP, we set

LAP′(M) = {l0l1 . . . | ∃ a path s0s1 . . . of M . ∀i ≥ 0 : li = L(si) ∩AP ′}.

2An example of ProMeLa code is provided by Figure 10.
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turn = 0
s0, NC1

turn = 0
NC0, s1

turn = 0
CS0, s1NC0, NC1

turn = 0
CS0, NC1

s0, CS1

turn = 1

s0, NC1

turn = 1 turn = 1
NC0, s1

turn = 1
NC0, NC1

turn = 1
NC0, CS1

⊥,⊥

turn = 0
s0, s1

turn = 1
⊥,⊥

turn = 1
s0, s1

turn = 0

turn = 0

Figure 11: Kripke structure for a mutual exclusion program.

Figure 11 provides an example of a Kripke structure corresponding to the ProMeLa
code of Figure 10. Each state is directly marked with the atomic propositions valid in
the state.

Definition 5.3. A labelled transition system (LTS) is a tuple M = (S,Act ,→, s0),
where

• S is a set of states

• Act is a set of atomic actions or labels

• →⊆ S ×Act × S is transitions relation (we write s
a→ t instead of (s, a, t) ∈→)

• s0 ∈ S is a distinguished initial states

A run of M over u = u0u1 . . . ∈ Actω is a seguence

s0
a0→ s1

a1→ s2
a2→ . . . ,

where s0 is the initial state. We set

L(M) = {u ∈ Actω | there is a run of M over u}.

We often use some more concise formalism for description of models. In particular,
infinite-state models cannot be finitely described directly by a Kripke structure or an
LTS.

We introduce a formalism called Process Rewrite Systems (PRS) [May00], which
subsumes many standard formalisms for description of infinite-state systems. More
information about PRS and their properties can be found in [May98, Řeh07].

The concept of Process Rewrite Systems is based on rewriting of process terms.
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Definition 5.4. Let Const = {X, . . .} be a countably infinite set of process constants.
The set T of process terms is defined by the abstract syntax

t ::= ε | X | t1.t2 | t1‖t2,

where

• ε is the empty term,

• X ∈ Const is a process constant (used as an atomic process),

• ’‖’ means a parallel composition, and

• ’.’ means a sequential composition.

We always work with equivalence classes of terms modulo commutativity and asso-
ciativity of ’‖’ and modulo associativity of ’.’ We also define ε.t = t = t.ε and t‖ε = t.
By Const(t) we denote the set of process constants occurring in t.

We distinguish four classes of process terms as:

“1” terms consisting of a single process constant only (i.e. ε 6∈ 1), e.g. X.

“S” sequential terms without parallel composition, e.g. X.Y.Z.

“P” parallel terms without sequential composition. e.g. X‖Y ‖Z.

“G” general terms with arbitrarily nested sequential and parallel compositions.

Definition 5.5. Let Act = {a, b, · · · } be a countably infinite set of atomic actions
and α, β ∈ {1, S, P,G} such that α ⊆ β. An (α, β)-PRS (process rewrite system) is a
pair ∆ = (R, t0), where

• R ⊆ ((αr {ε})×Act × β) is a finite set of rewrite rules, and

• t0 ∈ β is an initial term.

We write (t1
a
↪→ t2) ∈ R instead of (t1, a, t2) ∈ R.

We define Const(∆) as the set of all constants occurring in the rewrite rules of ∆ or
in its initial state, and Act(∆) as the set of all actions occurring in the rewrite rules
of ∆.

Definition 5.6. The semantics of an (α, β)-PRS ∆ = (R, t0) is given by the LTS
(S,Act(∆),−→∆, t0), where

• the set of states S = {t ∈ β | Const(t) ⊆ Const(∆)},
• the transition relation −→∆ is the least relation satisfying the following inference

rules for all t1, t2, t ∈ S and a ∈ Act(∆).

(t1
a
↪→ t2) ∈ R
t1

a−→∆ t2

t1
a−→∆ t2

t1‖t
a−→∆ t2‖t

t1
a−→∆ t2

t1.t
a−→∆ t2.t

Note that parallel composition is commutative and, thus, the inference rule for
parallel composition also holds with t1 and t exchanged.

Every pair α, β ∈ {1, S, P,G} induces a class of all labelled transition systems that
can be expressed by an (α, β)-PRS. Some of the classes correspond to LTS classes of
widely known models.

• (1, 1)-PRS are equivalent to finite-state systems (FS). Every process constant
corresponds to a state and the state space is bounded by |Const(∆)|.

• (1, S)-PRS are equivalent to Basic Process Algebra processes (BPA).This class
can model sequential programs with procedures. BPA can model unbounded
nesting of procedure calls, but cannot model return values and global variables.
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• (1, P )-PRS are equivalent to communication-free nets, the subclass of Petri nets
where every transition has exactly one place in its preset. This class of Petri
nets is equivalent to Basic Parallel Processes (BPP).The class can model sys-
tems consisting of simple finite-state parallel processes. The number of parallel
processes in unbounded. Processes can be dynamically created or terminated,
but they cannot communicate.

• (1, G)-PRS are equivalent to PA-processes,process algebras with sequential and
parallel composition, but no communication. This is the least common general-
ization of BPA and BPP.

• It is easy to see that pushdown automata can be encoded as a subclass of (S, S)-
PRS (with at most two constants on the left-hand side of rules). Caucal showed
that any unrestricted (S, S)-PRS can be presented as a pushdown automaton,
in the sense that the transition systems are isomorphic up to the labelling of
states. Thus (S, S)-PRS are equivalent to pushdown processes (PDA) (which
are the processes described by pushdown automata). This formalism can model
sequential programs with procedure call, return values, and global variables.

• (P, P )-PRS are equivalent to Petri nets (PN). Every constant corresponds to
a place in the net and the number of occurrences of a constant in a term cor-
responds to the number of tokens in this place. This is because we work with
classes of terms modulo commutativity of parallel composition. Every rule in ∆
corresponds to a transition in the net.

• (S,G)-PRS is the smallest common generalisation of pushdown processes and
PA-processes. They are called PAD (PA + PDA).

• (P,G)-PRS are called PAN-processes.It is the smallest common generalisation
of Petri nets and PA-processes and it strictly subsumes both of them (e.g. PAN
can describe all Chomsky-2 languages while Petri nets cannot).

• The most general case (G,G)-PRS is simply called PRS.

Figure 12 describes a hierarchy of (α, β)-PRS classes with respect to strong bisim-
ulation equivalence (bisimilarity). We call this hierarchy the PRS-hierarchy. More
precisely, the classes of PRS systems are interpreted as the sets of their underlying
labelled transition systems. A line connecting X and Y with Y placed higher than X
means that every transition systems definable in X can be (up to bisimulation equiv-
alence) defined in Y while the reverse does not hold – we write X ( Y . Moreover, the
classes that are not connected by any sequence of upward going lines are incomparable.

5.3 Model checking problems and decidability

At the beginning, we have said that the model checking problem is to decide whether
a given model satisfies a given specification. We have to define when a system satisfies
a specification. In general, it means that all behaviours of the systems satisfy the
specification. In state-based LTL setting, it means that a given model M and a given
LTL formula ϕ satisfy

LAP(ϕ)(M) ⊆ L2AP(ϕ)
(ϕ).

Similarly, in action-based LTL setting, it means that a given model M and a given
LTL formula ϕ satisfy

L(M) ⊆ LAct(ϕ).

Recall that the model checking problem is parametrized by a logic and a class of
systems. Hence, the model checking problem for a logic L and a class of systems C is to
decide whether a given model of C satisfies a given formula of L. The combination of
L and C determines whether the problem is decidable or not. For example, Figure 13
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Figure 12: The PRS-hierarchy

presents the decidability boundary of action-based LTL model checking problem for
classes of PRS hierarchy,

The situation in state-based LTL model checking is more complicated as the de-
cidability depends also on the set of atomic proposition and their relation to states.
The decidability border may differ from the one for action-based LTL model checking
mentioned. For example, the state-based LTL model checking is undecidable for the
class of Petri nets with atomic propositions saying whether a particular places are
non-empty.

Later we will show that state-based LTL model checking remains decidable for
PDA where validity of atomic propositions depends only on control state and the
topmost stack symbol.

5.4 Automata-based LTL model checking of finite systems

This subsection is devoted to a prominent model checking problem: state-based LTL
model checking of finite state systems.

Figure 14 represents the automata-based approach to LTL model checking of finite-
state systems. For details see [CGP99]. Time and space complexity of this Lalgorithm
is O(|M | · 2O(|ϕ|)), where |M | is the number of states and transitions in the Kripke
structure M . The LTL model checking problem is PSPACE-complete.

The biggest disadvantage of this approach originates in translations of a model
into the corresponding Kripke structure: the Kripke structure is extremely large even
for systems with relatively short description in some higher-level formalism (these
formalisms represent the state space implicitly, while a Kripke structure explicitely
represents each state of the model). This phenomenon is called state explosion problem.
The main sources of the explosion are large domains of variable values, parallelism,
dynamically allocated memory, etc. Many techniques fighting this problem have been
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Figure 13: The decidability boundaries of the action-based LTL model checking.

suggested. Some of them aim to minimize the Kripke structure, for example

• abstraction,

• partial order reduction,

• symmetry reduction.

Other techniques try to optimize the memory consumption of model checking algo-
rithms or enable the algorithms to use more hardware sources (e.g. by running on
more computers simultaneously):

• on-the-fly algorithms

• symbolic model checking

• distributed algorithms

Some of these methods are mentioned in the following sections.

6 Translation LTL→BA via alternating automata

There are two popular translations of LTL formulae into equivalent Büchi automata.
Both of them proceed in two steps:

• an LTL formula is translated into an intermediate formalism

• this formalism is then translated into Büchi automata.

One translation uses generalized Büchi automata (see e.g. Chapter 9 of [CGP99]),
while the other employs alternating 1-weak Büchi automata [Var95]. The latter trans-
lation is more frequent nowadays as there exist some optimization reducing the size of
alternating 1-weak automata and hence the Büchi automata produced by the whole
translation are in some cases smaller than the automata produced by the other trans-
lation. We present the translation using alternating automata.

6.1 Alternating 1-weak Büchi automata (A1W)

The transition function of an alternating automaton assigns to each state and letter
a positive boolean formula over states. The set of positive boolean formulae over set
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Figure 14: Automata-based LTL model checking of finite system.

Q (denoted B+(Q)) consists of formulae > (true), ⊥ (false), all elements of Q, and
boolean combinations over Q built with ∧ and ∨. A subset S of Q is a model of
ϕ ∈ B+(Q) iff ϕ is satisfied by the valuation assigning true just to states in S. A set
S is a minimal model of ϕ (denoted S |= ϕ) iff S is a model of ϕ and no proper subset
of S is a model of ϕ. If we transform a positive boolean formula into a disjunctive
normal form (DNF), then every minimal model corresponds to some clause and vice
versa. Let us note that there is no model of ⊥, while every subset of Q is a model of
>. The minimal model of > is the empty set.

Definition 6.1. An alternating Büchi automaton is a tuple A = (Σ, Q, δ, q0, F ), where

• Σ is a finite alphabet,

• Q is a finite set of states,

• δ : Q× Σ→ B+(Q) is a transition function,

• q0 ∈ Q is an initial state,

• F ⊆ Q is a set of accepting states.

By A(p) we denote the automaton A with initial state p ∈ Q instead of q0.
A run of an alternating automaton is a (potentially infinite) tree. A tree is a set

T ⊆ N∗0 such that if xc ∈ T , where x ∈ N∗0 and c ∈ N0, then also x ∈ T and
xc′ ∈ T for all 0 ≤ c′ < c. A Q-labeled tree is a pair (T, r) where T is a tree and
r : T → Q is a labeling function. A run of an automaton A = (Σ, Q, δ, q0, F ) over
word w = w(0)w(1) . . . ∈ Σω is a Q-labeled tree (T, r) such that r(ε) = q0 and for each
x ∈ T the set S = {r(xc) | c ∈ N0, xc ∈ T} satisfies S |= δ(r(x), w(|x|)). A run (T, r)
is accepting iff for each infinite path π in T it holds that Inf (π)∩F 6= ∅, where Inf (π)
is the set of all labels (i.e. states) appearing infinitely often on π. An automaton A
accepts a word w ∈ Σω iff there exists an accepting run of A over w. A language of
all words accepted by an automaton A is denoted by L(A).

A (standard) Büchi automaton (BA) corresponds to an alternating Büchi automa-
ton where, for each q ∈ Q and l ∈ Σ, δ(q, l) is a disjunction of states (or ⊥). The
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difference is only in notation: in the case of (standard) Büchi automata we usually
write δ(q, l) = {q1, . . . , qn} instead of δ(q, l) = q1 ∨ . . . ∨ qn and δ(q, l) = ∅ instead of
δ(q, l) = ⊥.

Definition 6.2. Let A = (Σ, Q, δ, q0, F ) be an alternating Büchi automaton. By
Succ(p) we denote the set Succ(p) = {q | ∃l ∈ Σ, S ⊆ Q : S ∪ {q} |= δ(p, l)} of all
possible successors of p. We also set Succ′(p) = Succ(p) r {p}. An automaton A is
called 1-weak (or linear or very weak) if there exists an ordering < on the set of states
Q such that q ∈ Succ′(p) implies q < p.

In the following we use A1W automaton meaning ‘alternating 1-weak Büchi au-

tomaton’. Further, instead of S |= δ(l, p) we write p
l→ S and say that there is a

transition leading from p to S under l. We also say that a state p has a loop whenever
p ∈ Succ(p).

m

l

m

l

n

q3

q2

p

q1
n

n

l

m

Figure 15: An A1W automaton accepting the language l∗m(l +m+ n)∗nω.

An A1W automaton A = (Σ, Q, δ, q0, F ) can be drawn as a graph; nodes are the

states and every transition p
l→ S is depicted as a branching edge labelled with l

and leading from node p to the nodes in S. Edges that are not leading to any node
correspond to the cases when S is the empty set, i.e. δ(p, l) = >. Initial and accepting
states are indicated in the standard way. For example, Figure 15 depicts an automaton
accepting the language l∗m{l,m, n}∗nω.

6.2 LTL→A1W translation [MSS88, Var95]

Let ϕ be an LTL formula and Σ be an alphabet. The formula can be translated into
an automaton A satisfying L(A) = LΣ(ϕ), where A = (Σ, Q, δ, qϕ, F ) and

• the states Q = {qψ, q¬ψ | ψ is a subformula of ϕ} correspond to the subformulae
of ϕ and their negations,

• the transition function δ is defined inductively as:

δ(q>, l) = >
δ(qa, l) = > if a ∈ l, δ(qa, l) = ⊥ otherwise

δ(q¬ψ, l) = δ(qψ, l)
δ(qψ∧ρ, l) = δ(qψ, l) ∧ δ(qρ, l)
δ(qXψ, l) = qψ
δ(qψUρ, l) = δ(qρ, l) ∨ (δ(qψ, l) ∧ qψUρ)
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where α denotes the positive boolean formula dual to α defined by induction on
the structure of α as:

> = ⊥ q¬ψ = qψ β ∧ γ = β ∨ γ
⊥ = > qψ = q¬ψ β ∨ γ = β ∧ γ

• the set of accepting states is F = {q¬(ψUρ) | ψU ρ is a subformula of ϕ}.
One can readily confirm that the resulting automaton is always A1W automaton.

Moreover, the number of its states is linear in the length of ϕ.

6.3 A1W→BA translation [Var95]

Let A = (Σ, Q, δ, q0, F ) be an alternating BA. A Büchi automaton accepting the
language L(A) can be constructed as A′ = (Σ, Q′, δ′, q′0, F

′), where

• Q′ = 2Q × 2Q,

• q′0 = ({q0}, ∅),
• F ′ = {∅} × 2Q,

• δ′((U, V ), l) is defined as:

– if U 6= ∅ then

δ′((U, V ), l) = {(U ′, V ′) | ∃X,Y ⊆ Q such that
X |=

V
q∈U δ(q, l) and

Y |=
V
q∈V δ(q, l) and

U ′ = X r F and V ′ = Y ∪ (X ∩ F )}

– if U = ∅ then

δ′((∅, V ), l) = {(U ′, V ′) | ∃Y ⊆ Q such that
Y |=

V
q∈V δ(q, l) and

U ′ = Y r F and V ′ = Y ∩ F )}

Intuitively, A′ guesses labeling of each level of the computation tree of A. More-
over, A′ has to divide the set of states into two sets: states labeling paths with recent
occurrence of an accepting states and the other states.

7 Partial order reduction

Let LTL−X denote the fragment of all LTL formalas without X operator. The partial
order reduction method can be used in model checking of finite systems against LTL−X

formulas to reduce the systems to be checked. The size of the reduced system is usually
3–99% of the original size [Pel06]. Hence, the model checking process is faster and
consumes less memory. The method is best suited for asynchronous systems. The
method is also called model checking using representatives. This section is based on
Chapter 10 of [CGP99].

In this section we use a slightly different definition of a Kripke structure:

Definition 7.1. Kripke structure is a tuple (S, T, S0, L), where

• S is a set of states,

• T is a set of transitions (for each α ∈ T , α ⊆ S × S),

• S0 ⊆ S is a set of initial states,

• L : S → 2AP is a labelling function associating to each state a set of atomic
propositions that are true in the state.
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We also consider finite and deterministic systems only. Hence every α ∈ T is seen
as a partial function α : S → S. A transition α is enabled in a state s if α(s) is
defined. Otherwise, α is disabled in s. The set of transitions enabled in s is denoted
by enabled(s).

A path in a Kripke structure K starting from a state s ∈ S is an infinite sequence
π = s0, s1, . . . of states such that s0 = s and for every i there is a transition αi ∈ T
satisfying αi(si) = si+1. A path starting in a fixed state can be also identified with a
sequence of transitions.

Let ϕ be an LTL formula and let AP(ϕ) denote the finite set of atomic propositions
occurring in ϕ. A path π = s0, s1, . . . of a Kripke structure (S, T, S0, L) satisfies ϕ,
written π |= ϕ, if w |= ϕ, where the word w = w(0)w(1) . . . is defined as w(i) =
L(si) ∩ AP(ϕ) for all i ≥ 0. A Kripke structure K satisfies ϕ, written K |= ϕ, if all
paths starting from initial states of K satisfy ϕ.

The model checking problem is the problem to decide whether for a given Kripke
structure K and a given specification formula ϕ it holds that K |= ϕ.

Let us consider a fixed Kripke structure K = (S, T, S0, L) and a fixed LTL−X

formula ϕ. The idea of partial order reduction method is to disable some transitions
in some states of K in such a way that the resulting structure K′ is equivalent to K
in the sense that K′ |= ϕ if and only if K |= ϕ. More precisely, for every path π of the
original system starting from an initial state there has to be a path π′ in the reduced
system starting from an initial state such that π |= ϕ iff π′ |= ϕ.

The reduced system is defined by so-called ample sets. For each state s, ample(s) ⊆
enabled(s) is the set of transitions that are enabled in s in the reduced system. Cal-
culation of ample sets needs to satisfy three goals:

1. The reduced system given by ample sets has to be correct, i.e. it has to satisfy
ϕ iff the original system satisfies ϕ.

2. The reduced system should be substantially smaller than the original.

3. The overhead in calculating ample sets must be reasonably small.

First we formulate some conditions on ample sets. Then we prove that ample sets
matching these conditions define a correct reduced system. Finally we discuss some
heuristics for calculating such ample sets and we argue that these sets can be calculated
on-the-fly.

7.1 Conditions on ample sets

First we recall the cornerstone of partial order reduction: the concept of stuttering. Let
w be an infinite word. A letter w(i) is called redundant iff w(i) = w(i+1) and there is
j > i such that w(i) 6= w(j). The canonical form of w is the infinite word obtained by
deleting all redundant letters from w. Two infinite words w1, w2 are stutter equivalent,
written w1 ∼ w2, iff they have the same canonical form.

Theorem 7.2 ([Lam83]). Any LTL−X formula cannot distinguish between words that
are stutter equivalent, i.e. the formula either satifies all such words or none of them.

The stuttering equivalence can be extended to paths and Kripke structures. Paths
π = s0, s1, . . . and π′ = s′0, s

′
1, . . . are stutter equivalent with respect to a set AP ′ ⊆

AP , written π ∼AP′ π
′, iff w ∼ w′, where w,w′ are defined as w(i) = L(si)∩AP ′ and

w′(i) = L(s′i) ∩ AP ′ for all i ≥ 0. Two Kripke structures K,K′ are stutter equivalent
with respect to AP ′, written K ∼AP′ K

′, iff

• K and K′ have the same set of initial states,

• for each path π of K starting in an initial state s there exists a path π′ of K′

starting in the same initial state such that π ∼AP′ π
′ and vice versa.
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Figure 16: Transition α commuting with β0β1 . . . βm.

From Theorem 7.2 we immediately get:

Corollary 7.3. Let ϕ be an LTL−X formula and K,K′ be Kripke structures such that
K ∼AP(ϕ) K

′. Then K |= ϕ iff K′ |= ϕ.

Hence, given a fixed LTL−X formula ϕ, for every set of stutter equivalent paths
(with respect to AP(ϕ)) of the original Kripke structure it is sufficient to keep at least
one representant of these paths in the reduced structure.

A transition α ∈ T is invisible with respect to a set of propositions AP ′ ⊆ AP if for
each pair of states s, s′ ∈ S such that α(s) = s′ it holds that L(s)∩AP ′ = L(s′)∩AP ′.
We always consider invisibility with respect to the set AP(ϕ). A transition is visible
if it is not invisible.

Definition 7.4. An independence relation I ⊆ T×T is a symmetric and antireflexive
relation satisfying the following two conditions for each state s ∈ S and for each
(α, β) ∈ I:

• Enabledness: if α, β ∈ enabled(s) then α ∈ enabled(β(s))

• Commutativity: if α, β ∈ enabled(s) then α(β(s)) = β(α(s))

The dependency relation D is the complement of I, namely D = (T × T ) r I.

When it is hard to check whether two transitions are independent or not, it is safe
to assume that they are dependent.

We say that state s is fully expanded when ample(s) = enabled(s).

The following four conditions ensure that the reduced system is stutter equivalent
to the original one (with respect to AP(ϕ)).

C0 ample(s) = ∅ if and only if enabled(s) = ∅
C1 Along every path in the original structure that starts in s, the following condition

holds: a transition that is dependent on a transition in ample(s) cannot be
executed without a transition in ample(s) occuring first.

The condition C1 implies the following lemma.

Lemma 7.5. The transitions in enabled(s)r ample(s) are all independent of those in
ample(s).
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Figure 17: Two concurrent processes, full and (an invalid) reduced structures (β
is visible, α1, α2, α3 are invisible, β is independent of α1, α2, α3, and α1, α2, α3

are interdependent).

Thanks to C1, all paths of the original structure starting in a state s and not
included in the reduced structure have one of the following two forms:

• the path has a prefix β0β1 . . . βmα, where α ∈ ample(s) and each βi is indepen-
dent of all transitions in ample(s) including α.

• the path is an infinite sequence of transitions β0β1 . . . where each βi is indepen-
dent of all transitions in ample(s).

Due to C1, after execution of a finite sequence of transitions β0β1 . . . βm not in ample(s)
from s, all the transitions in ample(s) remain enabled. Further, C1 implies that the
sequence of transitions β0β1 . . . βmα executed from s leads to the same state as the
sequence αβ0β1 . . . βm (see Figure 16). As the sequence β0β1 . . . βmα is not included
in the reduced system, we want β0β1 . . . βmα and αβ0β1 . . . βm to be prefixes of stutter
equivalent paths. This is quaranteed if α is invisible. Therefore we formulate condition
C2:

C2 (invisibility) If s is not fully expanded, then every α ∈ ample(s) is invisible.

Conditions C0, C1 and C2 are not yet sufficient to guarantee that the reduced structure
is stutter equivalent to the original one. There is a possibility that some transition
will be delayed forever because of a cycle (see Figure 17). To remedy this problem, we
add the following condition:

C3 (cycle condition) A cycle in reduced structure is not allowed if it contains a
state in which some transition is enabled, but is never included in ample(s) for
any state s on the cycle.

Condition C0, C1, C2, and C3 are sufficient.

7.2 Example

Consider the following program for mutual exclusion:

P :: m : cobegin P0‖P1 coend

P0 :: l0 : while True do
NC 0 : wait(turn = 0);
CS0 : turn := 1;

endwhile;

P1 :: l1 : while True do
NC 1 : wait(turn = 1);
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Figure 18: Reduced Kripke structure for the mutual exclusion program.

CS1 : turn := 0;
endwhile;

Each process Pi has a noncritical region (when program counter pci has value NC i) and
a critical region (when pci = CS i). The processes share the boolean variable turn. We
would like to prove that, regardless the initial value of turn, the two processes cannot
be in their critical regions at the same time. This desired property can be described
by LTL−X formula ϕ = G¬((pc0 = CS0) ∧ (pc1 = CS1)).

Figure 18 presents the Kripke structure corresponding to the program. Each state
is labelled by values of turn, pc0 and pc1 (value of pc0 and pc1 is ⊥ before the processes
P0, P1 are started). The transition α corresponds to the parallel start of processes
P0, P1 and transitions βi, εi, γi, δi to execution of the commands at program locations
li, NC i when turn 6= i, NC i when turn = i, CS i, respectively.

The system can be reduced before model checking against the property ϕ. The
reduced system has to be stutter equivalent to the original one with respect to AP(ϕ) =
{pc0 = CS0, pc1 = CS1}. Only the actions γ0, γ1, δ0, δ1 are visible with respect to
AP(ϕ).

The dependency relation is calculated according to the following rules.

• All of the transitions are dependent on α as it must be executed before any
other transition in the program.

• Each transition is dependent on itself (since dependency is reflexive).

• Two transitions that change the same variable (including program counters) are
dependent.

• If one transition sets a variable and the other checks that variable, then the
transitions are dependent.

Thus, all transitions of the same process are interdependent. Also, pairs (γ1, δ0),
(γ0, δ1), (ε1, δ0), (ε0, δ1), (δ0, δ1) are dependent.
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The reduced system satisfying conditions C0–C3 is also given in Figure 18.

7.3 Correctness

Let ϕ be a fixed specification formula. The considered reduction is done with respect
to the set AP(ϕ). Let K be a full structure and K′ be its reduced version satisfying
the conditions C0–C3. We prove that K ∼AP(ϕ) K

′.
Given a (finite or infinite) sequence v of transitions, vis(v) denotes the projection

of v onto the visible transitions. Given two finite sequences v, w of transitions, we
write v < w if v can be obtained from w by erasing one or more transitions. We write
v v w whenever v < w or v = w.

For the rest of this subsection we extend the definition of path allowing both finite
and infinite paths. By σ◦η we denote the path constructed by concatenation of a finite
path σ and a (finite or infinite) path η (◦ is applicable only if the last state last(σ) of
σ is the same as the first state of η). By |σ| we denote the number of transitions in σ.
Let tr(π) denote the sequence of transitions on a path π.

Let π be an infinite path of K starting in some initial state. We construct an
infinite sequence of infinite paths π0, π1, π2, . . . where π = π0. Each πi is defined as
σi ◦ ηi such that |σi| = i. Paths πi are defined by induction. Clearly, π0 = π = σ0 ◦ η0

where σ0 is just the first state of π and η0 = π. The path πi+1 = σi+1 ◦ ηi+1 is
constructed from πi = σi ◦ ηi in the following way. Let s0 = last(σi) and

ηi = s0
α0→ s1

α1→ s2
α2→ . . . .

There are two cases:

A α0 ∈ ample(s0). Then σi+1 = σi ◦ (s0
α0→ s1) and ηi+1 = s1

α1→ s2
α2→ . . ..

B α0 6∈ ample(s0). By C2, all transitions in ample(s0) must be invisible. There are
two cases:

B1 Some β ∈ ample(s0) appears on ηi after some sequence of independent
transitions α0α1 . . . αk−1 (i.e. β = αk). Then there is a path

ξ = s0
β→ β(s0)

α0→ β(s1)
α1→ . . .

αk−1→ β(sk)
αk+1→ sk+2

αk+2→ . . . .

B2 Some β ∈ ample(s0) is independent of all the transitions in ηi. Then there
is a path

ξ = s0
β→ β(s0)

α0→ β(s1)
α1→ β(s2)

α2→ . . . .

In both cases σi+1 = σi ◦ (s0
β→ β(s0)) and ηi+1 is obtained from ξ by removing

the first transition s0
β→ β(s0).

Please note that the above construction uses conditions C0 and C1.

Lemma 7.6. For every 0 ≤ i ≤ j it holds that:

1. πi ∼AP(ϕ) πj.

2. vis(tr(πi)) = vis(tr(πj)).

3. Let ξi, ξj be prefixes of πi, πj such that vis(tr(ξi)) = vis(tr(ξj)). Then

L(last(ξi)) ∩AP(ϕ) = L(last(ξj)) ∩AP(ϕ).

Proof. It is sufficient to consider the case where j = i+ 1. The proof is trivial if πi+1

was constructed according to the case A as πi = πi+1. The proof for the cases B1 and
B2 are straightforward.

The following lemma is obvious.
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Lemma 7.7. Let σ be the infinite path constructed as the limit of the finite paths σi.
Then σ belongs to the reduced structure K′.

Now it remains to prove that the path σ is stutter equivalent to π. First we show
that σ contains all the visible transitions of π, and in the same order.

Lemma 7.8. Let α be the first transition of ηi. There exists j > i such that α is the
last transition of σj and, for all i ≤ k < j, α is the first transition of ηk.

Proof. If α is the first transition of ηk then it is clearly the last transition of σk+1 (case
A) or the first transition of ηk+1 (case B). The condition C3 implies that the second
case cannot hold for all k ≥ i.

Lemma 7.9. Let γ be the first visible transition on ηi and prefixγ(ηi) be the maximal
prefix of tr(ηi) that does not contain γ. Then one of the following holds:

• γ is the first action of ηi and the last transition of σi+1, or

• γ is the first visible transition of ηi+1, the last transition of σi+1 is invisible, and
prefixγ(ηi+1) v prefixγ(ηi).

Proof. If πi+1 was constructed from πi by the case A, then the first case of the lemma
holds: if the first action of ηi is visible, then ample(s0) = enabled(s0) due to C2 and
hence γ ∈ ample(s0).

Now assume that πi+i was constructed according to B, i.e. there exists another
action β that is appended to σi to form σi+1. Due to C2, β is invisible. There are
three cases:

1. β appears in ηi before γ (case B1)

2. β appears in ηi after γ (case B1)

3. β is independent of all transitions of ηi (case B2)

In case (1), prefixγ(ηi+1) < prefixγ(ηi) while prefixγ(ηi+1) = prefixγ(ηi) in cases (2)
and (3).

Lemma 7.10. Let v be a prefix of vis(tr(π)). Then there exists a path σi such that
v = vis(tr(σi)).

Proof. By induction on the length of v. The base case (|v| = 0) is trivial. Assume
that vγ is a prefix of vis(tr(π)) and there is a path σi such that vis(tr(σi)) = v. We
show that there is a path σj where j > i and vis(tr(σi)) = vγ, i.e. we show that γ is
eventually added to σj for some j > i and that no other visible transition is added to
σk for i < k < j. The construction implies that a visible transition can be added to
the end of σk to form σk+1 only if it is the first transition of ηk. Lemma 7.9 says that γ
remains the first visible transition in paths ηk for k > i unless it is being added to some
σj . Moreover the sequence of transitions before γ can only shrink. Lemma 7.8 says
that the sequence will eventually shrink. Thus, γ is eventually added to some σj .

Theorem 7.11. The structures K and K′ are stutter equivalent with respect to AP(ϕ).

Proof. It is sufficient to show that, for every path π of K starting from an initial
state, the path σ produced by the described construction is stutter equivalent to π
with respect to AP(ϕ). Note that σ starts from the same state as π, this state is also
an initial state in K′, and that σ is a path in K′ due to Lemma 7.7.

Lemma 7.10 implies that vis(tr(π)) = vis(tr(σ)). Let vi denote the prefix of
vis(tr(π)) = vis(tr(σ)) of length i. Let π|vi be the shortest prefix of π such that
vis(tr(π|vi)) = vi and let σ|vi be the shortest prefix of σ such that vis(tr(σ|vi)) =
vi. The definition of σ implies that σ|vi is a prefix of some πk. Lemma 7.6 (3)
says that L(last(π|vi)) ∩ AP(ϕ) = L(last(σ|vi)) ∩ AP(ϕ). Further, for every state s
reachable from last(π|vi) or last(σ|vi) by a sequence of invisible actions it holds that
L(s)∩AP(ϕ) = L(last(π|vi))∩AP(ϕ) = L(last(σ|vi))∩AP(ϕ). Hence, σ ∼AP(ϕ) π.
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7.4 Calculating ample sets

First we discuss the complexity of checking conditions C0 to C3. Conditions C0 and
C2 are local in the sense that their satisafaction in a state s depends just on sets
enabled(s) and ample(s). C0 can be checked in constant time while C2 can be checked
in linear time (with respect to the size of ample(s)). We focus on more complex
non-local conditions C1 and C3.

Theorem 7.12. Checking condition C1 for a state s and a set of transitions T ⊆
enabled(s) is at least as hard as checking reachability for the original structure.

Proof. It is easy to show that the problem whether a given state is reachable in a given
structure can be reduced to checking condition C1.

To avoid checking condition C1 for arbitrary subset of enabled transitions, we will
give a procedure computing a set of transitions that is guaranteed to satisfy C1. The
computed sets do not have to be optimal – there is a tradeoff between efficiency of
computation and amount of reduction.

Condition C3 is also non-local. In contrast to C1, C3 refers only to the reduced
structure. Instead of checking C3, we formulate a stronger condition which is easier
to check.

Lemma 7.13. Assume that C1 holds for all ample sets along a cycle in a reduced
structure. If at least one state along the cycle is fully expanded, then C3 hold for this
cycle.

Proof. Lemma 7.5 says that transitions in enabled(s) r ample(s) are all independent
of those in ample(s). Hence, every transition in enabled(s) r ample(s) for some state
s on a cycle is also enabled in the next state on the cycle. If the cycle contains a fully
expanded state, then it surely satisfies C3.

If we use depth-first search strategy to generate (and verify) a reduced structure,
we can use the fact that every cycle in the reduced structure has to contain a back
edge (i.e. an edge going to a state on the search stack) to replace C3 by the following
stronger condition.

C3’ If s is not fully expanded, then no transition in ample(s) may reach a state that
is on the search stack.

Now we give some heuristics for calculating ample sets. The algorithm depends on
the model of computation. We consider processes with shared variables and message
passing with queues. By pci(s) we denote the program counter of process Pi in a state
s. We use the following notation:

• pre(α) is a set including all transitions β such that there exists a state s for
which α 6∈ enabled(s) and α ∈ enabled(β(s)).

• dep(α) = {β | (β, α) ∈ D} is the set of all transitions that are dependent on α.

• Ti is the set of transitions of process Pi.

• Ti(s) = Ti ∩ enabled(s).

• current i(s) is the set of all transitions of Pi that are enabled in some s′ such
that pci(s) = pci(s

′). Hence, Ti(s) ⊆ current i(s).

In fact, we do not need to compute the sets pre(α) and dep(α) precisely. We preffer
to efficiently compute over-approximations of these sets.

We construct pre(α) as follows:

• pre(α) includes the transitions of the processes that contain α and that can
change a program counter to a value from which α can execute.
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• If the enabling condition for α involves shared variables, then pre(α) includes
all other transitions that can change these shared variables.

• If α sends or receives messages on some queue q, then pre(α) includes transitions
of other processes that receive or send data through q, respectively.

We construct dep(α) as follows:

• Pairs of transitions that share a variable, which is changed by at least one of
them, are dependent.

• Pairs of transitions belonging to the same process are dependent.

• Two send transitions that use the same message queue are dependent (sending a
message may cause the queue to fill). Two receive transitions are also dependent.

Note that a pair of send and receive transitions in different processes are independent
as they can potentially enable each other, but not disable.

An obvious candidate for ample(s) is Ti(s) (as transitions in Ti(s) are interdepen-
dent, ample(s) must include either all of them or none of them – see Lemma 7.5). To
compute ample(s), we check whether some Ti(s) 6= ∅ satisfies the conditions C1, C2,
and C3’. If there is no such Ti(s), we set ample(s) = enabled(s).

Assume that condition C1 is violated for ample(s) = Ti(s). This means that
some transitions independent of those in Ti(s) may be successively executed from
s, eventually enabling a transition α 6∈ Ti(s) dependent on Ti(s). The independent
transitions preceding α cannot be in Ti since all transitions of Pi are considered as
interdependent. There are two cases.

1. α ∈ Tj for some i 6= j. Then dep(Ti(s)) ∩ Tj 6= ∅.
2. α ∈ Ti. Let s′ be the state where α is enabled. The transitions executed on the

path from s to s′ are independent of Ti(s) and hence, are from other processes.
Therefore pci(s) = pci(s

′) and this implies α ∈ current i(s). As α 6∈ Ti(s), we
get α ∈ current i(s) r Ti(s). As α 6∈ Ti(s), there has to be a transition of pre(α)
included in the sequence from s to s′. Hence, pre(current i(s) r Ti(s)) includes
transitions of processes other than Pi.

The following function checks whether ample(s) = Ti(s) satisfies C1. More pre-
cisely, if the function returns true, then C1 holds. Unfortunately, it may return false
even if Ti(s) satisfies C1.

function checkC1(s, Pi)
forall Pi 6= Pj do

if dep(Ti(s)) ∩ Tj 6= ∅ or pre(current i(s) r Ti(s)) ∩ Tj 6= ∅ then
return false

return true
end function

Functions for checking C2 and C3’and for calculating ample(s) are straightforward.

function checkC2(X)
forall α ∈ X do

if visible(α) then return false
return true

end function

function checkC3’(s,X)
forall α ∈ X do

if onStack(α(s)) then return false
return true

end function

function ample(s)
forall Pi such that Ti(s) 6= ∅ do

if checkC1(s, Pi) and checkC2(Ti(s)) and checkC3’(s, Ti(s)) then return Ti(s)
return enabled(s)

end function
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8 LTL model checking of pushdown systems

In this section we demostrante the decidability of (state-based) LTL model checking
problem for pushdown systems. Let us note that these systems can be used to precisely
model sequential programs with procedure calls, recursion, and both local and global
variables. This section is based on [EHRS00, Sch02].

Definition 8.1. A Pushdown system is a triple P = (P,Γ,∆), where

• P is a finite set of control locations,

• Γ is a finite stack alphabet,

• ∆ ⊆ (P × Γ)× (P × Γ∗) is a finite set of transition rules.

We write 〈q, γ〉 ↪→ 〈q′, w〉 instead of ((q, γ), (q′, w)) ∈ ∆. Notice that we do not
consider any input alphabet as we do not use pushdown systems as language acceptors.

A configuration of P is a pair 〈p, w〉 ∈ P × Γ∗, where w is a stack content (the
topmost symbol is on the left). The set of all configurations is denoted by C. An
immediate successor relation on configurations is defined in standard way. Reachability
relation ⇒⊆ C × C is the reflexive and transitive closure of the immediate successor

relation, while
+⇒⊆ C × C is the transitive closure of the immediate successor relation.

Given a set C ⊆ C of configurations, we define the set of their predecessors as pre∗(C) =
{c ∈ C | ∃c′ ∈ C . c⇒ c′}.

We use a sort of finite automata to represent sets of configurations. These automata
use Γ as an alphabet and P as a set of initial states (there is one initial state for every
control location of the pushdown system). Formal definition follows.

Definition 8.2. Given a pushdown system P = (P,Γ,∆), a P-automaton (or simply
automaton) is a tuple A = (Q,Γ, δ, P, F ) where

• Q is a finite set of states such that P ⊆ Q,

• δ ⊆ Q× Γ×Q is a set of transitions,

• F ⊆ Q is a set of final states.

A (reflexive and transitive) transition relation →⊆ Q× Γ∗ ×Q is again defined in
a standard way. P-automaton A represents the set of configurations

Conf (A) = {〈p, w〉 | ∃q ∈ F . p w→ q}.

A set of configurations of P is called regular if it is recognized by some P-automaton.
In the rest of this section, we use symbols p, p′, p′′, . . . to denote initial states of

an automaton (i.e. elements of P ). Non-initial states are denoted by s, s′, s′′, . . ., and
arbitrary states (initial or not) by q, q′, q′′, . . ..

8.1 Computing pre∗(C) for a regular set C

We show that, given a P and a P-automaton A defining a regular set C of configura-
tions, then the set pre∗(C) is again regular and the corresponding automaton Apre∗ is
effectively constructible.

Without loss of generality we assume that A has no transition leading to an ini-
tial state. The automaton Apre∗ is obtained from A by addition of new transitions
according to the following saturation rule:

If 〈p, γ〉 ↪→ 〈p′, w〉 and p′
w→ q in the current automaton, add a transition (p, γ, q).
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∆ = { 〈p0, γ0〉 ↪→ 〈p1, γ1γ0〉, 〈p2, γ2〉 ↪→ 〈p0, γ1〉,
〈p1, γ1〉 ↪→ 〈p2, γ2γ0〉, 〈p0, γ1〉 ↪→ 〈p0, ε〉 }

Figure 19: Automata A (left) and Apre∗ .

We apply this rule repeatedly until we reach a fixpoint (there is a fixpoint as the number
of possible new transitions is finite). The resulting P-automaton is Apre∗ . Figure 19
provides an example of a P-automaton A and the resulting automaton Apre∗ .

A pushdown system is in normal form if every rule 〈p, γ〉 ↪→ 〈p′, ω〉 satisfies |w| ≤ 2.
The efficient algorithm given in Figure 20 works only with pushdown systems in normal
form. This is not a real restiction as any pushdown system can be put into this form
with only linear size increase.

The algorithm computes just transitions of Apre∗ . The rest of the automaton
is identical to A. The algorithm uses sets rel and trans containing the transitions
that are known to belong to Apre∗ : the set rel contains transitions that have already
been examined. No transition is examined more than once. When we have a rule
〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 and transitions t1 = (p′, γ′, q′) and t2 = (q′, γ′′, q′′) (where q, q′ are
arbitrary states), we have to add transition (p, γ, q′′). We do it in such a way that

Input: a pushdown system P = (P,Γ,∆) in normal form
a P-automaton A = (Q,Γ, δ, P, F ) without transitions into P

Output: the set of transitions of Apre∗

1 rel := ∅; trans := δ; ∆′ := ∅;
2 forall 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do trans := trans ∪ {(p, γ, p′)};
3 while trans 6= ∅ do
4 pop t = (q, γ, q′) from trans;
5 if t 6∈ rel then
6 rel := rel ∪ {t};
7 forall 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ (∆ ∪∆′) do
8 trans := trans ∪ {(p1, γ1, q

′)};
9 forall 〈p1, γ1〉 ↪→ 〈q, γγ2〉 ∈ ∆ do
10 ∆′ := ∆′ ∪ {〈p1, γ1〉 ↪→ 〈q′, γ2〉};
11 forall (q′, γ2, q

′′) ∈ rel do
12 trans := trans ∪ {(p1, γ1, q

′′)};
13 return rel

Figure 20: Algorithm for computing pre∗(C).
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whenever we examine t1, we check whether there is a corresponding t2 ∈ rel and we
add an extra rule 〈p, γ〉 ↪→ 〈q′, γ′′〉 to a set of such extra rules ∆′. This extra rule
guarantees that if a suitable t2 will be examined in the future, the transition (p, γ, q′′)
will be added.

Theorem 8.3. Let P = (P,Γ,∆) be a pushdown system and A = (Q,Γ, δ, P, F ) be
a P-automaton. There exists an automaton Apre∗ recognizing pre∗(Conf (A)). More-
over, Apre∗ can be constructed in O(|Q|2 · |∆|) time and O(|Q| · |∆|+ |δ|) space.

Proof. We can assume that every transition is added to trans at most once. This can
be done (without asymptotic loss of time) by storing all transitions which are ever
added to trans in an additional hash table.

Further, we assume that there is at least one rule in ∆ for every γ ∈ Γ (transitions
of A under some γ not satisfying this assumption can be moved directly to rel).

The number of transitions in δ as well as the number of iterations of the while-loop
is bounded by |Q|2 · |∆|.

Line 10 is executed for each combination of a rule 〈p1, γ1〉 ↪→ 〈q, γγ2〉 and a transi-
tion (q, γ, q′) ∈ trans, i.e. at most |Q| · |∆| times. Hence, |∆′| ≤ |Q| · |∆|. For the loop
starting at line 11, q′ and γ2 are fixed. Thus, line 12 is executed at most |Q|2 · |∆|
times.

Line 8 is executed for each combination of a rule 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ (∆ ∪∆′) and
a transition (q, γ, q′) ∈ trans. We already know that |∆′| ≤ |Q| · |∆|, hence line 8 is
executed at most O(|Q|2 · |∆|) times.

As a conclusion, the algorithm takes O(|Q|2 · |∆|) time.
Memory is needed for storing rel , trans, and ∆′. The size of ∆′ is in O(|Q| · |∆|).

Line 1 adds |δ| transitions to trans. Line 2 adds at most |∆| transitions to trans. In
lines 8 and 12, p1 and γ1 are given by the head of a rule in ∆ (note that every rule in
∆′ have the same head as some rule in ∆). Hence, lines 8 and 12 add at most |Q| · |∆|
different transitions.

We directly get that the algorithm needs O(|Q| · |∆|+ |δ|) space. As this is also the
size of the result rel , the algorithm is optimal with respect to the memory usage.

8.2 LTL model checking

This subsection deals with the global state-based model checking problem for LTL and
pushdown processes, i.e.

to compute the set of all configurations of a given pushdown system P
that violate a given LTL formula ϕ (where a configuration c violates ϕ if
there is a path starting from c and not satifying ϕ).

To talk about LTL properties, we need to enrich the formalism of pushdown systems
with a labelling function L : (P × Γ) → 2AP assigning to each pair (p, γ) of a control
location and a stack symbol a set of atomic propositions that are true of it. The
labelling function can be directly extended to configurations such that L(〈p, γw〉) =
L(p, γ). In other words, the set of atomic propositions valid in a configuration is
determined by the control location and the topmost stack symbol. Definition of a
Kripke structure induced by a pushdown system enriched with a labelling function is
now straightforward (the set of initial states is not important as we are interested in
global model checking problem).

To show that the problem is decidable, we reduce it to accepting run problem first.
As in the automata-based approach to LTL model checking of finite-state systems, we
first translate ¬ϕ into a corresponding Büchi automaton B = (2AP(ϕ), Q, δ, q0, F ) and
then we make a product of this automaton and the pushdown system. The result of
the product is called Büchi pushdown system, which is basically a pushdown system
extended with a set of accepting control locations. The Büchi pushdown system given
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as product of a pushdown system P = (P,Γ,∆) with a labelling function L, and a
Büchi automaton B = (2AP(ϕ), Q, δ, q0, F ), is defined as BP = ((P × Q),Γ,∆′, G),
where

〈(p, q), γ〉 ↪→ 〈(p′, q′), w〉 ∈ ∆′ if 〈p, γ〉 ↪→ 〈p′, w〉 ∈ ∆ and q′ ∈ δ(q, L(p, γ) ∩AP(ϕ))

and G = P × F . An accepting run of a BP is a path passing through some accepting
control location infinitely often. Clearly, a configuration 〈p, w〉 of P violates ϕ if BP
has an accepting run starting from 〈(p, q0), w〉.

Hence, it is sufficient to solve the following accepting run problem:

Compute the set Ca of configurations c of BP such that BP has an ac-
cepting run starting from c (i.e. a run which visits infinitely often config-
urations with control locations in G).

Now we define some terms useful for characterization of the configurations from
which there are accepting runs.

Definition 8.4. Let BP = (P,Γ,∆, G) be a Büchi pushdown system. The relation
r⇒

between configurations of BP is defined as follows: c
r⇒ c′ if c⇒ 〈g, u〉 +⇒ c′ for some

configuration 〈g, u〉 with g ∈ G.
The head of a transition rule 〈p, γ〉 ↪→ 〈p′, w〉 is the configuration 〈p, γ〉. A head

〈p, γ〉 is repeating if there exists v ∈ Γ∗ such that 〈p, γ〉 r⇒ 〈p, γv〉. The set of repeating
heads of BP is denoted by R.

Lemma 8.5. Let c be a configuration of a Büchi pushdown system BP = (P,Γ,∆, G).
BP has an accepting run starting from c if and only if there exists a repeating head
〈p, γ〉 such that c⇒ 〈p, γw〉 for some w ∈ Γ∗.

Proof. The implication “⇐=” is obvious. Let us now assume that BP has an accepting
run starting from from c and going through configurations 〈p0, w0〉, 〈p1, w1〉, 〈p2, w2〉, . . ..
We construct a strictly increasing sequence of indices i0, i1, . . . as follows:

• |wi0 | = min{|wj | | j ≥ 0}
• |wik | = min{|wj | | j > ik−1} for k > 0

In other words, once a configuration 〈pik , wik 〉 is reached, the rest of the run never
looks at or changes the bottom |wik |−1 stack symbols. Let γik be the topmost symbol
of wik for each k ≥ 0. As the number of pairs (pik , γik ) is bounded by |P × Γ|, there
has to be a pair (p, γ) repeated ininitely many times. Moreover, since some g ∈ G
becomes a control location infinitely often, we can select two indeces j1 < j2 out of
i0, i1, . . . such that

〈pj1 , wj1〉 = 〈p, γw〉 r⇒ 〈pj2 , wj2〉 = 〈p, γvw〉

for some w, v ∈ Γ∗. As w is never looked at or changed in the rest of the run, we have
that 〈p, γ〉 r⇒ 〈p, γv〉. This proves the implication “=⇒”.

The lemma directly implies that the set of all configurations violating the con-
sidered formula ϕ can be computed as pre∗(RΓ∗), where RΓ∗ = {〈p, γw〉 | 〈p, γ〉 ∈
R,w ∈ Γ∗}. As the set R of repeating heads is finite, the set RΓ∗ is clearly regular. As
we already have an algorithm computing pre∗(C) for a given regular set C, the only
remaining step to solve the global model checking problem is the algorithm computing
the set R.

The problem of finding the repeating heads is reduced to a graph-theoretic problem.
Given a BP = (P,Γ,∆, G), we construct a head reachability graph G = (P × Γ, E)
whose nodes are the heads of BP. The set of edges E ⊆ (P × Γ) × {0, 1} × (P × Γ)
corresponds to the reachability relation between heads. We define G(p) = 1 if p ∈ G
and G(p) = 0 otherwise. E consists of the following edges:
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If 〈p, γ〉 ↪→ 〈p′′, v1γ
′v2〉 and 〈p′′, v1〉 ⇒ 〈p′, ε〉 then ((p, γ), G(p), (p′, γ′)) ∈ E.

Moreover, if 〈p′′, v1〉
r⇒ 〈p′, ε〉 then ((p, γ), 1, (p′, γ′)) ∈ E.

The instances satisfying 〈p′′, v1〉 ⇒ 〈p′, ε〉 or 〈p′′, v1〉
r⇒ 〈p′, ε〉 can be found with the

algorithm for pre∗({〈p′, ε〉}) or its small modification, respectively.
Once the graph G is constructed, R can be computed by exploiting the fact that

some head 〈p, γ〉 is repeating if and only if (p, γ) is part of a strongly connected
component of G which has an internal edge labelled with 1.

WVUTPQRSp0, γ0

0 //WVUTPQRSp1, γ1

1
oo

0
��

WVUTPQRSp0, γ1 WVUTPQRSp2, γ2
1oo

∆ = { 〈p0, γ0〉 ↪→ 〈p1, γ1γ0〉, 〈p2, γ2〉 ↪→ 〈p0, γ1〉,
〈p1, γ1〉 ↪→ 〈p2, γ2γ0〉, 〈p0, γ1〉 ↪→ 〈p0, ε〉 }

Figure 21: The graph G for BP = ({p0, p1, p2}, {γ0, γ1, γ2},∆, {p2}).

Figure 21 provides a graph G constructed for the Büchi pushdown system BP =
({p0, p1, p2}, {γ0, γ1, γ2},∆, {p2}). The repeating heads are 〈p0, γ0〉 and 〈p1, γ1〉.

An efficient algorithm for computing the set R of repeating head is formulated in
Figure 22. This algorithm assumes that the BP on input is in normal form.

The algorithm runs in two phases. During the first phase, it computes the au-
tomaton Apre∗ recognizing the set pre∗({〈p, ε〉 | p ∈ P}). Every transition (p, γ, p′)
of Apre∗ signifies that 〈p, γ〉 ⇒ 〈p′, ε〉. As we also need the information whether
〈p, γ〉 r⇒ 〈p′, ε〉, we enrich the alphabet of Apre∗ : transitions of the form (p, γ, p′) are
replaced by (p, [γ, b], p′) where b is a boolean. The meaning of a transition (p, [γ, 1], p′)
should be that 〈p, γ〉 r⇒ 〈p′, ε〉.

The second phase of the algorithm constructs the graph G, identifies its strongly
conected components (e.g. using Tarjan’s algorithm [Tar72]), and determines the set
of repeating heads.

Theorem 8.6. Let BP = (P,Γ,∆, G) be a Büchi pushdown system. The set of re-
peating heads R can be computed in O(|P |2 · |∆|) time and O(|P | · |∆|) space.

Proof. The first part of the algorithm is essentially the same as the algorithm com-
puting Apre∗ . The size of G is in O(|P | · |∆|). Determining the strongly connected
components takes linear time in the size of the graph [Tar72]. The same holds for
searching each component for an internal 1-edge.

Now we have all necessary components to solve the global model checking problem.

Theorem 8.7. Let P be a pushdown system and ϕ be an LTL formula. The global
model checking problem can be solved in O(|P|3 · |B|3) time and O(|P|2 · |B|2) space,
where B is a Büchi automaton corresponding to ¬ϕ.

Proof. For proof see [Sch02].
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Input: a Büchi pushdown system BP = (P,Γ,∆, G) in normal form
Output: the set of repeating heads in BP

1 rel := ∅; trans := ∅; ∆′ := ∅;
2 forall 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do
3 trans := trans ∪ {(p, [γ,G(p)], p′)};
4 while trans 6= ∅ do
5 pop t = (p, [γ, b], p′) from trans;
6 if t 6∈ rel then
7 rel := rel ∪ {t};
8 forall 〈p1, γ1〉 ↪→ 〈p, γ〉 ∈ ∆ do
9 trans := trans ∪ {(p1, [γ1, b ∨G(p1)], p′)};
10 forall 〈p1, γ1〉

b′

↪−→ 〈p, γ〉 ∈ ∆′ do
11 trans := trans ∪ {(p1, [γ1, b ∨ b′], p′)};
12 forall 〈p1, γ1〉 ↪→ 〈p, γγ2〉 ∈ ∆ do

13 ∆′ := ∆′ ∪ {〈p1, γ1〉
b∨G(p1)
↪−→ 〈p′, γ2〉};

14 forall (p′, [γ2, b
′], p′′) ∈ rel do

15 trans := trans ∪ {(p1, [γ1, b ∨ b′ ∨G(p1)], p′′)};
16
17 R := ∅;E := ∅;
18 forall 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ do E := E ∪ {((p, γ), G(p), (p′, γ′))};
19 forall 〈p, γ〉 b

↪−→ 〈p′, γ′〉 ∈ ∆′ do E := E ∪ {((p, γ), b, (p′, γ′))};
20 forall 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ do E := E ∪ {((p, γ), G(p), (p′, γ′))};
21 find all strongly connected components in G = ((P × Γ), E);
22 forall components C do
23 if C has a 1-edge then R := R ∪ C;
24 return R

Figure 22: Algorithm for computing the set of repeating heads.

8.3 Notes

Similarly to the definition of pre∗(C), we can also define the set post∗(C) of successor
of configurations in C. If C is regular, then post∗(C) is regular as well.

Theorem 8.8. Let P = (P,Γ,∆) be a pushdown system and A = (Q,Γ, δ, P, F )
be a P-automaton. There exists an automaton Apost∗ recognising post∗(Conf (A)).
Moreover, Apost∗ can be constructed in O(|P | · |∆| · (|Q| + |∆|) + |P | · |δ|) time and
space.

9 Abstraction

Please use slides as the study material for this topic.
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