
Designing and Reporting on Computational

Experiments with Heuristic Methods

Richard S. Barr� Bruce L. Goldeny James P. Kellyz

Mauricio G.C. Resendex William R. Stewart{

June 27, 1995

Abstract

This report discusses the design of computational experiments to test

heuristic methods and provides reporting guidelines for such experimen-

tation. The goal is to promote thoughtful, well-planned, and extensive

testing of heuristics, full disclosure of experimental conditions, and in-

tegrity in and reproducibility of the reported results.1

�Departmentof Computer Science andEngineering, SouthernMethodistUniversity,Dallas,
TX 75275-0122, email: barr@seas.smu.edu, phone: (214) 768-2605, fax: (214) 768-3085

yCollege of Business and Management, University of Maryland, College Park, MD 20742,
email: bgolden@umdacc.umd.edu

zCollege of Business and Administration, University of Colorado at Boulder, Boulder, CO

80309, email: james.kelly@colorado.edu
xMathematical SciencesResearch Center, AT&T Bell Laboratories,Murray Hill, NJ 07974-

2040, email: mgcr@research.att.com
{School of Business Administration, The College of William and Mary, Williamsburg, VA

23185, email: wrstew@mail.wm.edu
1Keywords: heuristics, algorithms, experimental design, computational testing

1



While heuristic methods have always been a part of human problem-solving,

the mathematical versions are growing in their range of application as well

as their variety of approach. New heuristic technologies are giving operations

researchers, computer scientists, and practitioners the ability to routinely solve

problems that were too large or complex for previous generations of algorithms.

The e�ectiveness of any proposed methodology for solving a given class of

problems can be demonstrated by theoretical analysis and empirical testing.

This report focuses on the issues involved in designing computational experi-

ments to test heuristic methods and gives guidelines for reporting on the ex-

perimentation. When a new heuristic is presented in the computational and

mathematical sciences literature, its contributions should be evaluated scientif-

ically and reported in an objective manner, and yet this is not always done.

We follow in the footsteps of those pioneers who have championed high-

quality reporting of computational experiments with mathematical program-

ming software. These e�orts began in the late 1970s with Crowder et al. [1980],

Gilsinn et al. [1977], Jackson and Mulvey [1978], with additional writing on

the subject appearing more recently in Ahuja et al. [1993], Barr and Hickman

[1993], Golden et al. [1986], Greenberg [1990], Jackson et al. [1990].

Reporting on experimentation with heuristic methods involves many of the

same concerns as with optimization algorithms, but has its own distinctive is-

sues. While some elements of this topic have been explored elsewhere [Lin &

Rardin, 1979; Golden & Stewart, 1985; Nance et al., 1987; Barr & Hickman,

1993; Golden et al., 1986; Reeves, 1993a], this paper takes a comprehensive view

of the issues involved and provides directions for researchers in this important

and expanding area.

1 Heuristic Methods

A heuristic method (also called an approximation algorithm, an inexact proce-

dure, or, simply, a heuristic) is a well-de�ned set of steps for quickly identifying

a high-quality solution for a given problem, where a solution is a set of values for

the problem unknowns and \quality" is de�ned by a stated evaluation metric

or criterion. Solutions are usually assumed to be feasible, meeting all problem

constraints. The purpose of heuristic methods is to identify problem solutions

where time is more important than solution quality, or the knowledge of quality.

Some heuristic methods are associated with problems for which an optimal,

correct, or exact solution exists and be computed by an optimization or exact

algorithm. Heuristic methods are often used to identify \good," approximate

solutions to such problems in less time than is required for an exact algorithm

to uncover an exact solution. Embedded heuristics are those used within exact

algorithms to expedite the optimization process.

Heuristics can be straightforward or more complex. Straightforward algo-

rithms tend to have well-de�ned termination rules, as with greedy and local-

2



neighborhood-search methods, which stop at a local optimum. More complex

algorithms may not have standard termination rules and typically search for

improved solutions until an arbitrary stopping point is reached (see Figure 1).

Most metaheuristics|such as tabu search, simulated annealing, genetic algo-

rithms, neural nets, and GRASP|are examples of more complex algorithms.

It is essential that the experimenter fully specify the steps and stopping rules

of new methods, especially complex ones.

2 Computational Experiments with Heuristics

Since an algorithm is an abstraction, it is evaluated indirectly by experimenting

with a speci�c implementation. An experiment is a set of tests run under con-

trolled conditions for a speci�c purpose: to demonstrate a known truth, to check

the validity of a hypothesis, or examine the performance of something new. In-

vestigators in all �elds of study perform experiments to demonstrate theory, to

uncover knowledge about a particular process, and to measure the e�ect of one

or more factors on some phenomena. A factor is any controllable variable in an

experiment that inuences the outcome or result of an experiment.

In the computational testing of an algorithm, an experiment consists of

solving a series of problem instances using a computer implementation. The

experimenter has great latitude in selecting the problems, implementing the al-

gorithm, choosing a computing environment, selecting performance measures,

setting algorithm options, and reporting the results. The choice made for each

factor can have a substantial e�ect on the results and signi�cance of the ex-

periment. Therefore, to ensure that the reported information is meaningful,

the researcher should document and use an experimental design that considers

as many factors as possible and practicable and that e�ectively measures their

impacts on the results.

Experimentation is a process whose steps can be viewed as in Figure 2

(adapted from Montgomery [1984]). In the following sections we address the

heuristic-testing issues associated with each step and recommend approaches to

each.

3 Setting Experimentation Goals

A research experiment should have a purpose, stated clearly and de�ned prior

to the actual testing. This is a statement of the questions to be answered and

the reasons that experimentation is required. This purpose can guide and focus

the e�orts of the investigator, and help identify: the type of results to seek, the

hypotheses to test, the tests to run, the factors to explore, the measures to use,

and the data needed to support all of the above.

The purpose of the research should be related to the ultimate goal of heuristic

3



45 55 65 75 85 95 102
110

120
130

140

Best Cost

Current Cost

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

13000

13250

13500

13750

14000

14250

14500

14750

15000

O
bj

ec
tiv

e 
V

al
ue

Iteration

Figure 1: Current and best-found solution quality vs. iteration number for

a tabu search metaheuristic, as it visits six local optima (adapted from Knox

[1994])

4



1. De�ne the goals of the experiment.

2. Choose measures of performance and factors to explore.

3. Design and execute the experiment.

4. Analyze the data and draw conclusions.

5. Report the experiment's results.

Figure 2: Experimentation Steps

methods: fast, high-quality solutions to important problems. Although no set

standards exist for publishable algorithmic research, it is generally accepted that

a heuristic method makes a contribution if it is:

� Fast|producing high-quality solutions quicker than other approaches;

� Accurate|identifying higher-quality solutions than other approaches;

� Robust|less sensitive to di�erences in problem characteristics, data qual-

ity, and tuning parameters than other approaches [Hop�eld & Tank, 1985];

� Simple|easy to implement [Dyer & Frieze, 1985; Lin & Kernighan, 1973];

� High-impact|solving a new or important problem faster and more ac-

curately than other approaches [Rothfarb et al., 1970];

� Generalizeable|having application to a broad range of problems [Feo

& Resende, 1995; Glover, 1989; Holland, 1975; Metropolis et al., 1953];

� Innovative|new and creative in its own right.

In addition, research reports about heuristics are valuable if they are:

� Revealing|o�ering insight into general heuristic design or the problem

structure by establishing the reasons for an algorithm's performance and

explaining its behavior;

� Theoretical|providing theoretical insights, such as bounds on solution

quality [Held & Karp, 1970, 1971; Hochbaum & Shmoys, 1985; Johnson

& Papadimitriou, 1985].

Whatever the contribution of the heuristic being reported, some computational

experimentation will be necessary to demonstrate that the procedure does what

the author claims it will do.

5



Computational experiments with algorithms are usually undertaken (a) to

compare the performance of di�erent algorithms for the same class of problems

or (b) to characterize or describe an algorithm's performance in isolation. While

these goals are somewhat interrelated, the investigator should identify what,

speci�cally, is to be accomplished by the testing (e.g., what questions are to be

answered, what hypotheses are to be tested). Since comparative and descriptive

experiments di�er in their primary goals, their testing concerns di�er as well.

3.1 Comparing Algorithms

The most prevalent computational experiment concerns the relative \e�ective-

ness" (in terms of stated performance measures such as computational e�ort or

quality of solution) of di�erent heuristic methods in solving speci�c classes of

problems. At this initial stage in the process, the investigator must choose or

develop the algorithms and computer codes for study and the problem classes

to address.

In selecting a problem class, e�ective solution methods for general classes

are more highly prized than those for special cases or problems with a prede-

termined structure. The more specialized the problem structure, the greater

the e�ciencies that should result and the heavier the investigator's burden to

demonstrate relevance and contribution.

Often, the experimental goal is to compare a new approach to established

techniques. In general, algorithms should be tested against their best com-

petition. Also, well-known or published heuristics provide valuable points of

reference (even if they are not the state of the art) and a new heuristic should

be compared with them. Rather than making comparisons with published re-

sults on di�erent problems and machines, it is preferable to obtain (or create,

if necessary) software for the competing methods and make comparisons within

the same computing environment.

If other methods do not exist, then a more general method, such as one

based on linear or integer programming, or a simple greedy approach should

serve as a baseline. Some heuristics based on probabilistic elements (such as

GRASP, genetic algorithms, and probabilistic tabu search) may be compared

with a simple random re-start procedure, in the absence of other alternatives.

This procedure should use the same neighborhood employed by the heuristic

being tested to �nd local optima, starting from a randomly generated initial

point. The proposed heuristic should perform \signi�cantly better" than this

simple-minded approach as one demonstration of its e�ectiveness.

3.2 Describing Algorithm Performance

Descriptive experiments are created to characterize a given algorithm, rather

than compare it with others. The objective is to gain understanding of the

behavior of the methodology, and the factors that inuence that behavior.

6



One category of descriptive experimentation is the use of simulation to char-

acterize algorithm performance [Hooker, 1995; McGeoch, 1995]. With this ap-

proach, a mathematical model of the algorithm is built and a controlled ex-

periment is carried out to determine the e�ect of one or more factors on the

performance of the algorithm. To gain insight into the e�ect of speci�c factors

on an algorithm, one tests two codes that are identical except for the singled

out factor within a well-designed experiment, such as a factorial design, using

techniques, such as analysis of variance, to determine the e�ect of the factor on

speci�c algorithm performance measures.

4 Choosing Performance Measures and Factors

Within a computational experiment there is a set of dependent variables|the

performance measures or results|that are a�ected by a set of independent

variables|the problem, algorithm, and test environment factors. Since the

goals of the experiment are achieved by analyzing observations of these factors

and measures, they must be chosen with that end in mind.

4.1 Measuring Performance

Perhaps the most important decision one makes in an experimental study of

heuristics is the de�nition, or characterization, of algorithm performance. The

literature contains a variety of criteria for evaluating a heuristic method and the

choice of performance measures is a critical one. Essentially, most researchers

and practitioners wish to answer the following questions when testing a given

heuristic on a speci�c problem:

1. What is the quality of the best solution found?

2. How long does it take to determine the best solution?

3. How quickly does the algorithm �nd good solutions?

4. How robust is the method?

5. How \far" is the best solution from those more easily found?

6. What is the tradeo� between feasibility and solution quality?

As these questions might suggest, performance measures have tended to

cluster in three areas: solution quality, computational e�ort, and robustness.

Measures from each category should be used in a well-rounded study so that a

key dimension is not ignored. And, as detailed in the following sections, there

are numerous metrics in each area that can be employed.

Note that the third and sixth questions involve tradeo�s between two of these

dimensions. Perhaps the most popular and illuminating exhibits of heuristic

7



170

180

190

200

210

220

230

240

10 100 1000 10000

edges

time (secs)

grasp r

r

r
r

r

r

r
r

r

r
r

r
r

r
r

r
r

r

r

greedy b

b
b

b

b

b
b

b

b

Figure 3: Quality-versus-time comparison of grasp and pure greedy heuristics

to maximize the number of edges in a planar subgraph of a graph (from Resende

and Ribeiro [1995])

performance is a graph of solution quality as a function of time, as illustrated

in Figure 3. The shape of this graph clearly reects the power of a heuristic and

is useful to practitioners as well as researchers.

4.1.1 Quality of Solutions

When testing an algorithm that �nds an optimal solution to a given problem,

the important issues are speed and rate of convergence to the optimal solution.

For heuristics, the additional consideration of how close the heuristic solution

comes to optimality is generally the primary concern of the researcher. When

possible, the heuristic solutions obtained should be compared to the optimal

solutions. Generally the percent deviation from optimality is reported.

When the optimal solution is unavailable, the percent deviation from a tight

lower (upper) bound can be an e�ective measure of the quality of solution, as

depicted in Figure 4. (For good examples of tight bounds, see Cornuejols et al.

[1991], Golden et al. [1986], Held and Karp [1970, 1971], Johnson [1990], Kelly

et al. [1992], Martello and Toth [1990].) Of course, a gap of 20-30% between the

bound and the heuristic solution is probably not tight enough to convey useful

information (e.g., minimal-spanning-tree value as a lower bound for the optimal

traveling-salesman tour-length).

8



1
0

2
0

3
0

4
0

5
0

CCA CHCI FI FA+ CW CHR ACH RI CHGA RA+ CL GR CI KP DENN NI NA+ SP NN DST ST DMST FRP

Algorithm

P
E
R
C
E
N
T

E
X
C
E
S
S

Figure 4: Boxplots for 23 heuristics showing percent excess over Held-Karp lower

bound on 100-city traveling-salesman problems (from Johnson et al [1994])

9



For most standard problems, heuristic results exist in the open literature

and direct comparison of a heuristic algorithm's performance to earlier heuristic

solutions should be made in much the same way as comparisons are made to

optimal solutions (see Aarts et al. [1994], Gendreau et al. [1994].)

4.1.2 Computational E�ort

While heuristics that produce superior solutions are important, the speed of

computation is a key factor. There are many portions of the process that should

be timed, including:

� Time to best-found solution. This is the time required for the heuristic

to �nd and report the solution the author is using in assessing the quality

of the heuristic. This timing should include all processing involved (e.g.,

computation of distance matrices, etc.) along with all preprocessing.

� Total run time. This is the algorithm's execution time prior to termination

by its stopping rule. Since some complex heuristics have no standard

termination criteria and can be allowed to run for an inde�nite period of

time, care must be given to reporting both the time required to produce the

best-found solution and the total time of the run that produced it. Readers

are naturally skeptical of results in which good solutions are identi�ed

shortly before the reported termination point.

� Time per phase. Where the heuristic is multi-phase, or composite (i.e.,

initial solution, improved solution, �nal solution), the timing of each phase

and the quality of solution at the end of each phase should also be reported.

What is the \bang for buck" contribution of each phase?

All reported times should be for either a single set of algorithm parameter

values or a speci�c rule that establishes the parameter values for each instance.

When the best solution is reported from a set of runs with di�erent parameter

values, this should be clearly reported.

The rate at which heuristics converge to a solution close in value to that

of the \best found" solution should be measured. A graph of the quality of

solution versus the time expended, per Figure 3, illustrates this classic tradeo�.

The quality-e�ort relationship can also be captured with descriptive measures,

such as the ratio of time to produce a solution within 5 percent of the best-found

solution value to the time to produce that best:

r0:05 =
time to within 5% of best

time to best found
:

Note that on di�erent systems there may be several ways to measure time:

including user, system, and real time. Parallel implementations introduce addi-

tional timing complications (see Barr and Hickman [1993] for guidelines in this

situation).

10



Running times, however, may not translate well from one computing system

to another, so other measures of computational e�ort may be appropriate|

especially in descriptive experiments. Combinatorial measures, such as data

structure updates and nodes in the search tree, sometimes correlate well with

running times and are more system- and programmer- independent [Ahuja et al.,

1993; Hooker, 1995; McGeogh, 1992]. Counting operations, major subtasks, and

memory requirements mimics the traditional theoretical analysis of algorithms

[Garey & Johnson, 1979]. The bene�ts of this approach are many, producing

experiments in which factors such as programming skills, timing, tuning, and

test set selection are all irrelevant. In theory, however, results are asymptotic

and often one needs very large instances to achieve these results experimentally.

4.1.3 Robustness

Clearly, a heuristic that can only obtain an excellent solution for one instance of

a problem is not robust and arguably not very interesting. Generally, robustness

is based on the ability of a heuristic to perform well over a wide range of test

problems, and is usually captured through measures of variability. For example

the quality-versus-time graph in Figure 5 also includes standard deviation bars

with the average quality points.

Furthermore, heuristic strategies and parameters should either remain con-

stant over the set of test problems or should be automatically set using indi-

vidual test problem attributes. Robustness should be demonstrated prior to

�ne-tuning a heuristic for a single problem instance. Where parameter values

are chosen, some measure of the sensitivity of the heuristic performance to small

changes in parameter settings will indicate algorithm robustness and should be

included (see Stewart et al. [1995]).

Authors are encouraged to report negative results. For example, if a heuristic

performs well over a wide range of problems but fails on a speci�c type, then

the authors should report, rather than hide, these results. Alternatively, if a

heuristic does not guarantee feasibility (e.g., see Gendreau et al. [1994], Kelly

et al. [1992, 1993]), the authors should report on those cases where the heuristic

does not generate a feasible solution.

4.1.4 Selection of Measures

How performance is measured and ultimately computed is as important as the

measure itself. McGeoch [1995] notes that reliable prediction of running times

as a function of di�erent performance measures over a wide spectrum of com-

puting systems remains an open problem. She o�ers a list of guidelines for

�nding good performance measures, including: look at data representing di�er-

ences as well as ratios, since these often have di�erent properties; use measures

that have a small variance within a sampling point as compared to the vari-

ance observed between di�erent sampling points; and apply variance reduction

11



0

20

40

60

80

100

100 1000 10000

%
D

ev
ia

ti
o

n

FAST-SA

RTS

SLOW-SA

RLMS

Figure 5: Average quality percent deviation from optimal versus computational

e�ort for various heuristics on a QAP, with sigma bars (adapted from Battini

and Tecchiolli [1994])

12



techniques [Bratley et al., 1983; McGeogh, 1992] to suggest measure choices.

4.2 Factors to Study

There are three main categories of factors that a�ect the performance of al-

gorithms in computational experiments: problem, algorithm, and test envi-

ronment. Since each category contains a multiplicity of inuences on the test

results, the investigator must be judicious in selecting:

� which factors to study (e.g., problem size, heuristic method, number of

processors),

� which to �x at some level (e.g., problem class, stopping rule, computing

environment), and

� which to ignore, and hope that they will not inuence the experimental

results (e.g., distribution of problem costs, system job mix).

The choice of experimentation factors is central to both comparative and

descriptive experiments. We urge researchers to carefully consider this decision

in designing an experiment. All factors, studied or otherwise, will need to be

documented and addressed at the reporting stage.

4.2.1 Problem Factors

A variety of problem characteristics|such as dimensions, structure, parametric

distributions|can a�ect the results of a given observation. Their e�ects, if any,

are important for assessing a code's robustness.

At a minimum, the e�ect of problem sizes (e.g., number of variables and

equations) should be included, but many other problem characteristics can have

a signi�cant impact as well, such as problem parameter distributions [Glover

et al., 1974] and data presentation order in neural networks. Some factors can be

controlled easily, as when certain problem generators are used (see Section 5.2),

and can be analyzed accurately with statistical experimental design techniques.

It is important to \stress test" the codes by running as large instances as pos-

sible. Many factors do not show up on small instances, and running on smaller

sizes may not yield accurate predictions for larger, more realistic problems.

4.2.2 Algorithm Factors

Algorithm factors include the selection of heuristics and computer codes to test

(in comparative experiments) and the internal control settings to use. Well-

known codes provide helpful baselines and should be included where relevant

and feasible.

The application of a heuristic method usually involves algorithm-speci�c

choices, since a heuristic typically contains multiple strategies and multiple

13



parameters that control these strategies (such as initial-solution-construction

procedures and associated search parameters). Readers are not only interested

in the �nal results but in the relative contributions of the various strategies.

Computational testing should demonstrate the contribution and computational

burden of each strategy within a complex heuristic, so as to identify innovative

ideas that may be used in other contexts.

Values of any parameters employed by the heuristic should be de�ned and,

where problem-dependent, the rules for establishing appropriate values should

be speci�ed. Whether these values are �xed or computed, there should be a

reliable way of determining e�ective parameter settings for a new instance of

the same problem class.

Since performance is tied to the strategy and parameter choices, much re-

search e�ort can be spent in choosing the appropriate options and parameter

settings. The process used to make these choices is of interest to the reader and

should be documented. The process may involve some sampling and statistical

analysis (e.g., design optimization methodologies [Barton & Ivey, Jr., 1996; Box

& Draper, 1969; Mason et al., 1989; Nelder & Mead, 1965; Taguchi & Wu,

1979]) or machine learning [Nygard et al., 1990]. Robust heuristics which per-

form well over a range of parameter values are generally superior to heuristics

that require unique settings for every problem instance, unless the heuristic is

designed to self-adjust based on problem characteristics. Parameter sensitivity

analyses are useful in evaluating robustness.

One algorithmic factor of this type that must be addressed is the stop-

ping rule. Since many techniques do not have a generally accepted termination

criterion, the investigator has great discretion in selecting one. An unethical

approach is to make lengthy runs of the code, and then devise a self-serving

rule. Documenting the process used to devise the criterion will help justify its

use.

4.2.3 Test Environment Factors

Ideally, competing algorithms would be coded by the same expert programmer

and run on the same test problems on the same computer con�guration. The

results of these runs in terms of time to solution and quality of the solution

produced on each problem instance would be directly comparable for the two

heuristics.

In this manner, the wide range of environmental factors could be controlled,

including: hardware (brand, model, size of memory, CPU speed, number of

processors, processor communication scheme), software (operating system, lan-

guage, compiler, compiler settings), system (job mix), and programmer (coding

expertise, tuning ability) factors. Since this is often not the case, the exper-

imenter must determine the e�ect of those factors that are not held uniform

across the runs or, at a minimum, identify those that vary and might inuence

the results.

14



5 Designing and Executing the Experiment

Experimental design is the process of planning an experiment to ensure that

the appropriate data will be collected. A good experimental design is unbi-

ased, achieves the experimental goals, clearly demonstrates the performance of

the tested process, uncovers reasons for performance, has a justi�able rationale,

generates supportable conclusions, and is reproducible. All of these character-

istics are of particular value in the testing of heuristic methods.

5.1 Choosing an Experimental Design

The best means of achieving such results are through the use of well-known

statistical experimental design methods [Mason et al., 1989; Montgomery, 1984].

Statistical design of experiments (DOE) is an approach to experimental design

that ensures that the collected data can be analyzed by statistical methods to

reach valid and objective conclusions. DOE is a process for collecting data

and analyzing it with an established statistical model, such as full-factorial or

Latin-squares. When an experiment's results can vary with the test conditions

(problems solved, computer, parameter settings), statistical methodology is the

only objective approach to analysis. Hence, the design of the experiment and

the statistical analysis of the data are interrelated.

DOE is a simple process for structuring and analyzing experiments, and is

designed to minimize the testing e�ort and maximize the information acquired.

It is based on the principles of replication (repeating tests), randomization (per-

forming tests in random order to o�set unincluded factors), and blocking (elim-

inating the inuence of known, but extraneous, factors). DOE also has the side

bene�t of automatically constructing a model of the process or algorithm being

examined, thus it is useful for descriptive studies. See Amini and Barr [1990]

for a concise introduction to this methodology for operations researchers.

In the physical sciences, engineering, and medicine, DOE is employed rou-

tinely. Standards for empirical testing in the computing and mathematical

sciences have been much less rigorous, and there is a broad range of accepted

practice. Despite exhortations for high standards in reporting, demonstration

or proof-of-concept studies with minimal or ad hoc testing are more the norm

than carefully constructed experimental designs with statistically validated con-

clusions. (As a step towards changing this, it is our opinion that all doctoral

students of operations research should receive training in DOE and employ it in

any empirical research.) However, see Amini and Barr [1990], Barton and Ivey,

Jr. [1996], Lin and Rardin [1979], Nance et al. [1987] for examples of using DOE

to test optimization and heuristic algorithms.

Results on standard benchmark problems and problems of practical interest

should always be a part of an algorithmic experiment, even though they are

not part of a formal design. These results provide valuable points of reference,

even in non-comparative settings. However, as observed in Hooker [1995], the

15



de�nition of \standard" should be extended. We will comment on this more

later.

5.2 Selecting Test Problems

The choice of test problems follows directly from the experimental design. Prob-

lem sets may be drawn from practical settings or created by a researcher with

problem generation software.

Real-world problems reect the ultimate purpose of heuristic methods, and

are important for assessing the e�ectiveness of a given approach. Of particular

value are instances that are representative, in some manner, of those encoun-

tered in a given problem domain. If the situation permits, problems should be

collected with factors controlled per some statistical experimental design.

However, in some cases it can be important to develop special test prob-

lems to test particular performance features and particular response patterns of

a method. Although \arti�cial" problems are occasionally criticized for being

\unrealistic" and more di�cult to solve than \real" ones [O'Neill, 1982; Rardin

& Lin, 1982], problem-generation software has some de�nite advantages. Gen-

erators typically give the user control over problem characteristics [Arthur &

Frendewey, 1994; Klingman et al., 1974], thereby allowing creation of instances

with a speci�c con�guration of experimental design factors [Klingman & Mote,

1987]. Some codes supply an optimal solution or its value [Arthur & Frendewey,

1988; Lin & Rardin, 1977]. If written for machine independence and portabil-

ity, generators also provide an e�cient means of distributing and reproducing

problems.

If problems are created by the developer, then the generation process should

be clearly described and the newly generated problems should be archived (or

the process for generating them should be reproducible) for use by other re-

searchers. A variety of di�erent types of problems should be generated to re-

ect the diversity of factors that could be encountered. Generated problem

instances should be representative of problems likely to be found in the �eld,

or designed to explore key hypotheses. The investigator should also attempt to

assess the overall di�culty of the problems created since, in some cases, problem

characteristics make problems easy to solve by just about any heuristic.

For many classes of problems (e.g., traveling salesman, bin packing, set cov-

eringi, global optimization [Floudas & Pardalos, 1990]) well-studied test suites

are available in the literature and in electronic form (e.g., TSPLIB [Reinelt,

1991]). A new heuristic should be tested on all \standard" problems, whether

generated or drawn from practice, for which it was designed. This permits

comparison with other published results, even with descriptive experiments.

In general, the more test problems evaluated, the more informative the study.

Of interest are instances which stress, or test the limits of, the software or cause

it to fail.

16



5.3 Executing the Experiment

This is the data-collection step in the process, where speci�c computer runs

are made. The investigator must ensure that the experimental design is being

followed, and that the relevant process details are documented. Of particular

concern are:

� randomization|performing the tests in the designated random order,

� uniform computing environment|maintaining as uniform a state of

the test environment as possible if it can have an e�ect on the performance

measures, such as job execution times.

These elements help reduce variability and the inuence of unknown factors.

For example, if solution times vary with the system's job mix, data should be

collected during lightly loaded, or dedicated, periods.

6 Analyzing the Results and Drawing Conclu-

sions

This phase of the experiment converts the collected data into information through

analysis and interpretation. Data analysis refers to evaluating the recorded em-

pirical data with statistical and non-statistical techniques with respect to the

experiment's purpose and goals. At this point, the requisite data should be

available to test the hypotheses, estimate population parameters, uncover per-

tinent relationships, verify assumptions, and measure variability.

Analysis should address the experimental goals and the questions they pose,

such as those in section 4.1. In particular, consider the key tradeo�s (e.g.,

solution quality versus time, speed versus robustness) and attempt to identify

the factors or factor combinations that seem to contribute to (are correlated

to) performance. For example, the rate at which time grows with problem size,

can be quite useful in assessing how a heuristic will perform on large problem

instances. A regression model that relates run times to problem size may be

used to characterize this empirical growth [Stewart, 1987].

Data analysis tools include general statistical packages, DOE software (if

a standard experimental design model was used), data visualization software,

as well as manual methods and human pattern recognition. Graphical displays

can provide especially persuasive insight into the data and the relationships that

they contain. Graphics o�er a means of visualizing all of the data, and greater

understanding can come from examining the entire data set rather than just

summary statistics.

Statistical methods should be employed wherever possible to indicate the

strength of relationships between di�erent factors and performance measures

(e.g., see Amini and Barr [1990], Golden et al. [1986], Lin and Rardin [1979],

17



McGeoch [1995], Nance et al. [1987]). While they cannot prove causality, these

methods do indicate the reliability and validity of the results. If testing involved

benchmark problems that were not part of a designed experiment, there is no

standard statistical means of analyzing the data (see Barton and Ivey, Jr. [1996],

Golden and Stewart [1985] for representative approaches to this issue), although

visual analysis can always be employed.

Once the data has been analyzed, the results are interpreted as a series of

conclusions and inferences, deduced from the collected evidence. The statis-

tical and practical signi�cance of these conclusions should be addressed, their

implications evaluated, and recommendations made. The recommendations of-

ten include further experiments to answer questions suggested by the data.

Experimentation tends to be an iterative process, with each round expanding

knowledge of the algorithm, but leading to new questions and, sometimes, the

need for new performance measures.

The analysis and interpretation steps are the culmination of all the planning

and implementation activities and, in the end, determine the overall merit of the

work. The �nal reporting step is needed to document the experimental details

and �ndings and communicate them to the research and practice communities.

7 Reporting on Computational Experiments with

Heuristics: Guidelines for Investigators

What should be reported? Enough information to convince a reader that the

experiment has scienti�c merit, is reproducible, and answers the important ques-

tions posed at its outset. In testing a new heuristic, the researcher often wishes

to demonstrate that it makes a contribution as described in Section 3.

In this section, we provide guidelines to help authors report on their com-

putational testing, and referees and editors evaluate it. Figure 6 summarizes

the main points, which are detailed below. In a nutshell, we ask the conscien-

tious researcher to thoroughly document the experimentation and all relevant

factors, carefully analyze the resulting data, and present unbiased, supportable

conclusions.

Reproducibility. An essential ingredient of scienti�c research is repro-

ducibility, and experimental results that cannot be independently veri�ed are

given little credence in the scienti�c community. To be reproduced, an exper-

iment must be thoroughly documented. Hence, when reporting on heuristic

testing, the algorithm and its implementation (the code) should be described in

su�cient detail to allow replication, including any parameters, pseudo-random

number streams, and nontrivial data structures employed. The sources and

characteristics of problem instances should be documented|including all de-

tails of any generation scheme|and unproprietary problems made available to

other researchers. Making available to researchers any developed code will also

18



1. Reproducibility is essential: document to allow substantial

reproductions of results.

2. Specify all inuential factors in detail: heuristic, code, pa-

rameters, pseudo-random numbers, input data, nontrivial

data structures, and computing environment.

3. Be precise about timing.

4. Show how algorithm parameters are set.

5. Use statistical experimental design techniques.

6. Compare the heuristic with other methods.

7. Reduce variability of results.

8. Produce a comprehensive report of the results.

Figure 6: Guidelines for reporting computational results

enhance the scienti�c merit of the work.

Computing Environment. Many test-environment factors can inuence

the empirical performance of a heuristic method, and should be documented,

including:

� Model and make of the computer,

� Number, types, and speeds of processors,

� Size and con�guration of main, cache, and swap memories,

� Inter-processor scheme and communication times,

� Operating system name, vendor, and version,

� Programming languages and compilers along with compiler settings and

libraries linked to the load module,

� System load, where applicable.

Also detailed should be the computing resources|notably time and primary and

secondary memory|required by the algorithm itself, expressed as a function of

problems parameters, such as size. If the machine is not well-known, a rough

comparison of its speed against popular systems is useful.

19



Timing. As mentioned in earlier sections, heuristic methods are used in-

stead of exact methods because of their ability to produce usable albeit non-

optimal solutions considerably faster than exact methods. Therefore, accurate

reporting of timings for experiments is of the utmost importance. How times

are measured should be documented. Authors should di�erentiate between user,

system, and real (wall clock) times, and report system and real times if system

time is signi�cant or real time is much greater than the sum of user and system

times. The reader should understand at what points in the code the timings

were recorded. Authors should keep in mind that system clock routines usually

have a much coarser resolution than the internal processor clock.

When reporting times, authors should be clear about which operations are

included and which, if any, are excluded. In general, times should be reported

for:

� \Overhead" operations required by the algorithm, such as problem setup

and preprocessing of data. Many problems involve substantial computa-

tions (e.g., distance matrix calculation) before the heuristic is started.

� Each stage of a heuristic when there are multiple phases such as occur

when the heuristic calculates an initial feasible solution and searches lo-

cally for improvement.

� Total time and time to the best solution. When there is a probabilistic

component to a heuristic (e.g., random starting points), the times for

all runs, those that produced the solutions being reported along with all

others, should be included as part of the time required to �nd the best

solution. The total time that a complex heuristic is allowed to run before

termination should be included with the time before the best solution.

� Calibration routines. If standard timing codes are available and appropri-

ate, their results in the experimental computing environment should be

documented.

Quality of Solution. Even if the main thrust of the experiment is descrip-

tive, the author must, when possible, measure the closeness of the heuristic's

solution to the optimal solution. While this can be demonstrated by a theoreti-

cal worst-case analysis [Fisher, 1980], the usual thrust of computational testing

is the demonstration of an algorithm's typical or average solution quality, rela-

tive to the optimal solution value, and the consistency of its behavior.

� Where the optimal solution is known, the heuristic solution can be directly

compared as a measure of the e�ectiveness of the heuristic.

� Where optimal solutions are unknown or unobtainable by current meth-

ods, some other benchmark of performance should be o�ered by the au-

thor, such as a comparison to a tight lower (upper) bound (see Johnson

20



[1990], Johnson et al. [1995]), or comparison to published solution values

on publicly available test problems.

� Where possible, some insight should be provided as to how the quality

of solution holds up as problem instances grow in size and/or complexity.

This is a complementary measure to the time/size characterization func-

tion discussed under the \Timing" heading just above. The performance

of some heuristic procedures (e.g., per cent above optimality) deteriorate

as the problem size grows.

Parameter Selection. If the code allows for di�erent choices of algorithm

control (tuning) parameters, the report should specify the parameter settings

and how they were chosen. In particular, the values for any parameters associ-

ated with a stopping rule must be documented and justi�ed. Other issues to be

addressed include:

� The parameter values, or computation rule, used in solving each reported

problem instance. Fixing the values or rules is preferable to ad hoc tuning

for each problem.

� The process by which the parameter values were selected. Generally, some

experimentation and statistical analysis is appropriate in this undertaking.

� Where parameter values di�er for di�erent problem instances, the reason

for these di�erences. If there is a rule for deriving parameter settings from

the characteristics of a problem instance, that rule needs to be speci�ed

and justi�ed. Where the solutions reported represent the best solution

observed from runs with several di�erent parameter settings, the run times

reported for each problem instance should be either (a) the average of the

run times for all parameter settings applied to that problem, or (b) the

times from both \standard" and \hand-tuned" settings.

� Evidence that the parameter values presented are generalizeable to other

problem instances and are insensitive to minor changes in their values.

This is used to assess the robustness of a parameter-driven heuristic. When

more than one parameter is present, the reported analysis should assess

the importance of each to the performance of the heuristic, and their

degree of interaction.

� An estimate of the time required to �ne-tune the algorithm. This estimate

should give an idea of the e�ort required to develop the heuristic versus the

time needed to �nd robust parameter values. For example, some heuristics

may be conceived or implemented relatively quickly (in one or two weeks),

but require substantial time to �ne-tune (one or two months).

The selection of parameter values that drive heuristics is itself a scienti�c

endeavor, and deserves more attention than it has received in the operations

21



research literature. This is an area where the scienti�c method and statistical

analysis could and should be employed.

Statistics. Statistical experimental design techniques are powerful, often

neglected methodologies that can highlight those factors that contribute to the

results, as well as those that do not. To help readers better understand the e�ect

of these factors on the output measure (e.g., running time, solution quality), ex-

periments should be well-planned, and standard experimental design techniques

adopted.

Where the main thrust of the research is to demonstrate that a particular

heuristic outperforms another in one or more dimensions, a statistical compar-

ison of results should be included. Where sample sizes are large enough, these

may take the form of t-tests or analysis of variance. When the assumptions for

parametric tests fail to hold, there are a host of nonparametric techniques (e.g.,

sign test) that can and should be employed to make the author's arguments,

even if the result is that there is no statistical di�erence between the quality of

the solutions produced by the heuristics under study (e.g., Golden and Stewart

[1985]).

Since more information can be conveyed if results obtained are contrasted

with other methods, authors are encouraged to identify points of reference to

make such comparisons. Whenever possible, the \best" competing codes should

be used. Published results can be used, but if well-known (publicly released)

codes are available, it is preferable to repeat the experiment, even if this requires

conducting runs on di�erent computing environments. If no publicly released

code exists or can be obtained, authors are encouraged to implement another

method, be it a previously described heuristic, or a simple-minded heuristic

(such as a greedy method) to make the contrast.

Variability. Experiments should be designed to reduce variability of the

measured results, either by running longer experiments (producing more data

points) or running the �nal experiments on a dedicated, or lightly loaded ma-

chine. Experiments should be conducted on a variety of problem classes, and

on many instances in each class. If pseudo-random number generators are used,

the code should be tested on each instance with di�erent seed initializations.

Analysis and Interpretation. Reporting should not only present the ex-

perimental results, but give an analysis and state the investigator's conclusions.

For example, it is not su�cient to present tables of running times for the reader

to interpret. The analysis should describe the e�ects of factors, individually and

in combination, on the chosen performance measures. The conclusions should

address the questions posed and hypotheses tested, and indicate the signi�cance

and impact of the experimental outcomes.

In particular, the central tradeo�s should be explored, especially solution

quality versus computational e�ort (see Figure 7). Other tradeo�s, such as

time versus problem size (per Figure 8) and robustness versus quality, lend in-

sight into the behavior of the algorithm(s) (see Golden and Stewart [1985]).

Researchers are also interested in bene�t{cost analyses, such as time and mem-

22



50 100 200

3

4

5

6

N2-80N2-40
N2-20

N2-10

N3-10

N3-20*

N3-20 N3-40

N3-40*

N3-80

O2-M1

O2-M8

O2-MCO2-MK

O2-20,8

O3-20,8O3-M1
O3-M8

O3-MC O3-MK

SGI Challenge Time in Seconds

P
E
R
C
E
N
T

E
X
C
E
S
S

Figure 7: Average quality, in percent over lower bound, versus time for 20

heuristics on 10,000-city TSPs (from Johnson et al [1995])

ory tradeo�s and the contribution of individual stages in a multi-stage heuristic.

In discussing their data, authors should highlight unexpected or anomalous

results. Where possible they should attempt to explain these (ideally by more

focussed experimentation, perhaps based on other performance measures), oth-

erwise they should be left as problems worthy of further investigation.

Report. A comprehensive report of the results of computational testing

should include most of the aforementioned information. Results should be sum-

marized using measures of central tendency and variability. Some attention

should be given to a presentation of cost e�ectiveness of the heuristic method,

such as a plot of the quality of solution versus either time or algorithmic itera-

tions. The ratios mentioned in Section 4 o�er a numerical measure of the rate

of convergence of a heuristic method.

23



10ˆ2 10ˆ3 10ˆ4 10ˆ5 10ˆ6

0
.
0

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

Number of Cities N

N
O
R
M
A
L
I
Z
E
D

R
U
N
N
I
N
G

T
I
M
E

FI

ACH

CW

3OPT

2OPT

Figure 8: Running time (normalized by N logN ) versus problem size, N , for

�ve TSP heuristics (from Johnson et al [1995])

24



In presenting results, graphic displays can be highly e�ective and inviting

to the reader. Good graphics software with a wide range of output styles is

available to most researchers. So, be creative and consider new means of com-

municating the results (see Tufte [1983] for inspiration).

In addition to including as much information as possible in the published

paper, supplementary material should be made available to other researchers via

working papers, preferably in machine-readable format via the Internet. This

includes: source codes, input and output �les, and complete solutions to the

problem instances reported in the paper, particularly when reporting on new

problem classes or improved solutions for standard test problems2 (see Gendreau

et al. [1994], Stewart et al. [1995]).

8 Conclusions and Future Directions

This paper considered the issue of reporting experimental (i.e., computational)

research with heuristics. Rigorous reporting of experimental studies in comput-

ing and the mathematical sciences is still in its infancy and much progress is

needed to achieve the level of quality commonly observed in more established

experimental sciences. We have provided some thoughts on how such a path

to rigorous experimental research and reporting can be established, listing a

preliminary set of guidelines that may help authors carry out and report their

research, and editors and referees evaluate it.

In recent years, a need for a rigorous empirical science of algorithms has been

recognized [Bland et al., 1993; Hooker, 1994; McGeoch, 1986]. The growth of

the Internet has helped to promote the interchange of information and sharing

of data and codes by researchers. On-line repositories of test problems have

come into existence (e.g., TSPLIB, QAPLIB, Netlib, MIPLIB, libraries of the

DIMACS Algorithm Implementation Challenges, and OR-Library). However, a

need for larger, more accessible, computer-based archives of benchmark prob-

lems, test beds, and codes is needed.

We encourage the Journal of Heuristics to provide authors with support for

experimental research on heuristics. This support could consist of aWorld Wide

Web site on which researchers could have direct or linked access to:

� libraries of standard test problems,

� source codes of publicly released implementations of heuristics and other

algorithms,

� benchmark routines for system clock calibration.

2This recommendation is based on the following. There are several heuristic results re-
ported in the literature that researchers have been unable to replicate. Unfortunately, the
solutions that purportedly produced these objective function values are unavailable, and there

is no way of determining whether the reported values are correct or are simply the result of
typos or transposed digits.

25



The study of heuristic methods is a ourishing and fruitful area for algo-

rithmic research (see Zanakis et al. [1989], Reeves [1993b]). We feel that con-

scientious reporting is at the heart of real progress, and hope that the thoughts

collected here will encourage all researchers to advance the practice of experi-

mentation and reporting in this exciting �eld.

Acknowledgements

We appreciate the contributions of David Johnson and Manuel Laguna in

the preparation of this paper. We also thank the creators of the �gures for

allowing us to include their works, and Fred Glover for the opportunity to be a

part of this important new journal.

26



Reference

Aarts, E., van Laarhoven, P., Lenstra, J., & Ulder, N. [1994]. A computational

study of local search algorithms for job shop scheduling. ORSA Journal

on Computing, 6 (2), 118{125.

Ahuja, R., Magnanti, T., & Orlin, J. [1993]. Network Flows: Theory, Algo-

rithms, and Applications. Prentice Hall, Englewood Cli�s, NJ.

Amini, M., & Barr, R. [1990]. Network reoptimization algorithms: A statisti-

cally designed comparison. ORSA Journal on Computing, 5 (4), 395{409.

Arthur, J., & Frendewey, J. [1988]. Generating traveling salesmen problems

with known optimal tours. Journal of the Operational Research Society,

39 (2), 153{159.

Arthur, J., & Frendewey, J. [1994]. An algorithm for generating minimum

cost network ow problems with speci�c structure and known optimal

solutions. Networks, 24 (8), 445{454.

Barr, R., & Hickman, B. [1993]. Reporting computational experiments with par-

allel algorithms: Issues, measures, and experts' opinions. ORSA Journal

on Computing, 5 (1), 2{18.

Barr, R., & Hickman, B. [1994]. Parallelization strategies for the network sim-

plex algorithm. Operations Research, 42 (1), 2{18.

Barton, R., & Ivey, Jr., J. [1996]. Nelder-mead simplex modi�cations for sim-

ulation optimization. Tech. rep., Department of Industrial and Systems

Engineering, Pennsylvania State University, University Park, PA. To ap-

pear in Management Science.

Battiti, R., & Tecchiolli, G. [1994]. Simulated annealing and tabu search in the

long run: A comparison on qap tasks. Computers and Mathematics with

Applications, 28 (6), 1{8.

Bland, R., Cheriyan, J., Jensen, D., & Lad�anyi, L. [1993]. An empirical study of

min cost ow algorithms. In Johnson, D., & McGeoch, C. (Eds.), Network

Flows and Matching: First DIMACS Implementation Challenge, Vol. 12

of DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, pp. 119{156. American Mathematical Society, Providence, RI.

Box, G., & Draper, N. [1969]. Evolutionary Operation, A Statistical Method for

Process Improvement. John Wiley & Sons, New York.

Bratley, P., Fox, B., & Schrage, L. [1983]. A Guide to Simulation. Springer-

Verlag, New York.

27



Cornuejols, G., Sridharan, R., & Thizy, J. [1991]. A comparison of heuristics

and relaxations for the capacititated plant location problem. European

Journal of Operational Research, 50, 280{297.

Crowder, H., Dembo, R., & Mulvey, J. [1980]. On reporting computational

experiments with mathematical software. ACM Transactions on Mathe-

matical Software, 5, 193{203.

Dyer, M., & Frieze, A. [1985]. A simple heuristic for the p-centre problem.

Operations Research Letters, 3 (6), 285{288.

Feo, T., & Resende, M. [1995]. Greedy randomized adaptive search procedures.

Journal of Global Optimization, 6, 109{133.

Fisher, M. [1980]. Worst-case analysis of heuristic algorithms. Management

Science, 26 (1), 1{17.

Floudas, C., & Pardalos, P. [1990]. Collection of Test Problems for Constrained

Global Optimization Algorithms, Vol. 455 of Lecture Notes in Computer

Science. Springer-Verlag.

Garey, M., & Johnson, D. [1979]. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman.

Gendreau, M., Hertz, A., & Laporte, G. [1994]. A tabu search heuristic for the

vehicle routing problem. Management Science, 40 (10), 1276{1290.

Gilsinn, J., Ho�man, K., Jackson, R., Leyendecker, E., Saunders, P., & Shier,

D. [1977]. Methodology and analysis for comparing discrete linear l1 ap-

proximation codes. Communications in Statistics, 136, 399{413.

Glover, F. [1989]. Tabu search|part i. ORSA Journal on Computing, 1 (3),

190{206.

Glover, F., Karney, D., Klingman, D., & Napier, A. [1974]. A computational

study on start procedures, basis change criteria, and solution algorithms

for transportation problems. Management Science, 20, 793{813.

Golden, B., Assad, A., Wasil, E., & Baker, E. [1986]. Experimentation in

optimization. European Journal of Operational Research, 27, 1{16.

Golden, B., & Stewart, W. [1985]. Empirical analysis of heuristics. In Lawler, E.,

Lenstra, J., Kan, A. R., & Shmoys, D. (Eds.), The Travelling Salesman

Problem, A Guided Tour of Combinatorial Optimization, pp. 207{249.

John Wiley & Sons, Chichester (U.K.).

Greenberg, H. [1990]. Computational testing: Why, how and how much. ORSA

Journal on Computing, 2, 7{11.

28



Held, M., & Karp, R. [1970]. The travelling-salesman problem and minimum

spanning trees. Operations Research, 18, 1138{1162.

Held, M., & Karp, R. [1971]. The travelling-salesman problem and minimum

spanning trees: Part ii. Mathematical Programming, 1, 6{25.

Hochbaum, D., & Shmoys, D. [1985]. A best possible heuristic for the k-center

problem. Mathematics of Operations Research, 10 (2), 180{184.

Holland, J. [1975]. Adaptation in Natural and Arti�cial Systems. University of

Michigan Press, Ann Arbor, MI.

Hooker, J. [1994]. Needed: An empirical science of algorithms. Operations

Research, 42 (2), 201{212.

Hooker, J. [1995]. Testing heuristics: We have it all wrong. Journal of Heuristics,

1 (1).

Hop�eld, J., & Tank, D. [1985]. Neural computation of decisions in optimization

problems. Biological Cybernetics, 52, 141.

Jackson, R., Boggs, P., Nash, S., & Powell, S. [1990]. Report of the ad hoc com-

mittee to revise the guidelines for reporting computational experiments in

mathematical programming. Mathematical Programming, 49, 413{425.

Jackson, R., & Mulvey, J. [1978]. A critical review of comparisons of mathe-

matical programming algorithms and software (1953{1977). J. Research

of the National Bureau of Standards, 83, 563{584.

Johnson, D. [1990]. Local optimization and the traveling salesman problem.

In Proceedings of the 17th Colloquium on Automata, Languages and Pro-

gramming, pp. 446{461. Springer-Verlag.

Johnson, D., Bentley, J., McGeoch, L., & Rothberg, E. [1995]. Near-optimal so-

lutions to very large traveling salesman problems. Tech. rep., monograph.

in preparation.

Johnson, D., & Papadimitriou, C. [1985]. Performance guarantees for heuristics.

In Lawler, E., Lenstra, J., Kan, A. R., & Shmoys, D. (Eds.), The Travelling

Salesman Problem, A Guided Tour of Combinatorial Optimization, pp.

145{180. John Wiley & Sons, Chichester (U.K.).

Kelly, J., Golden, B., & Assad, A. [1992]. Cell suppression: Disclosure protection

for sensitive tabular data. Networks, 22 (4), 397{417.

Kelly, J., Golden, B., & Assad, A. [1993]. Large-scale controlled rounding using

tabu search and strategic oscillation. Annals of Operations Research, 41,

69{84.

29



Klingman, D., & Mote, J. [1987]. Computational analysis of large-scale pure

networks.. Presented at the Joint National Meeting of ORSA/TIMS, New

Orleans.

Klingman, D., Napier, A., & Stutz, J. [1974]. Netgen: A program for generating

large scale capacitated assignment, transportation, and minimumcost ow

network problems. Management Science, 20, 814{821.

Knox, J. [1994]. Tabu search performance on the symmetric travelling salesman

problem. Computers & Operations Research, 21 (8), 867{876.

Lawler, E., Lenstra, J., Kan, A. R., & Shmoys, D. [1985]. The Travelling

Salesman Problem, A Guided Tour of Combinatorial Optimization. John

Wiley & Sons, Chichester (U.K.).

Lin, B., & Rardin, R. [1977]. Development of a parametric generating procedure

for integer programming test problems. Journal of the ACM, 24, 465{472.

Lin, B., & Rardin, R. [1979]. Controlled experimental design for statistical com-

parison of integer programming algorithms.Management Science, 25 (12),

33{43.

Lin, S., & Kernighan, B. [1973]. An e�ective heuristic algorithm for the

traveling-salesman problem. Operations Research, 21 (2), 498{516.

Martello, S., & Toth, P. [1990]. Knapsack Problems. John Wiley & Sons,

Chichester (U.K.).

Mason, R., Gunst, R., & Hess, J. [1989]. Statistical Design and Analysis of

Experiments. John Wiley & Sons, New York.

McGeoch, C. [1986]. Experimental Analysis of Algorithms. Ph.D. thesis, Com-

puter Science Department, Carnegie Mellon University, Pittsburgh, PA.

McGeoch, C. [1995]. Toward an experimental method for algorithm simulation.

ORSA Journal on Computing, to appear.

McGeogh, C. [1992]. Analyzing algorithms by simulation: Variance reduction

techniques and simulation speedups. ACM Computing Surveys, 24 (5),

195{212.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. [1953].

Equation of state calculation by fast computing machines. Journal of

Chemical Physics, 21, 1087{1091.

Montgomery, D. [1984]. Design and Analysis of Experiments. John Wiley, New

York.

30



Mulvey, J. [1982]. Evaluating Mathematical Programming Techniques. Springer-

Verlag, Berlin.

Nance, R., Moose, Jr., R., & Foutz, R. [1987]. A statistical technique for com-

paring heuristics: An example from capacity assignment strategies in com-

puter network design. Communications of the ACM, 30 (5), 430{442.

Nelder, J., & Mead, R. [1965]. A simplex method for function minimization.

The Computer Journal, 7, 308{303.

Nygard, K., Juell, P., & Kadaba, N. [1990]. Neural networks for selecting vehicle

routing heuristics. ORSA Journal on Computing, 2 (4), 353{364.

O'Neill, R. [1982]. A comparison of real-world linear programs and their ran-

domly generated analogs. In Mulvey, J. (Ed.), Evaluating Mathematical

Programming Techniques, pp. 44{59. Springer-Verlag, Berlin.

Rardin, R., & Lin, B. [1982]. Test problems for computational experiments{

issues and techniques. In Mulvey, J. (Ed.), Evaluating Mathematical Pro-

gramming Techniques, pp. 8{15. Springer-Verlag, Berlin.

Reeves, C. [1993a]. Evaluation of heuristic performance. In Reeves, C. (Ed.),

Modern Heuristic Techniques for Combinatorial Problems. John Wiley,

New York.

Reeves, C. (Ed.). [1993b]. Evaluation of Heuristic Performance. John Wiley,

New York.

Reinelt, G. [1991]. Tsplib|a travelling salesman problem library. ORSA Jour-

nal on Computing, 3 (4), 376{384.

Resende, M., & Ribeiro, C. [1995]. A grasp for graph planarization. Tech. rep.,

AT&T Bell Laboratories, Murray Hill, NJ.

Rothfarb, B., Frank, H., Rosebaum, D., Steiglitz, K., & Kleitman, D. [1970].

Optimal design of o�shore natural gas pipeline systems. Operations Re-

search, 18, 992{1020.

Stewart, W., Kelly, J., & Laguna, M. [1995]. Solving vehicle routing prob-

lems using generalized assignments and tabu search. Tech. rep., Graduate

School of Business, College of William and Mary, Williamsburg, VA.

Stewart, W. [1987]. An accelerated branch exchange heuristic for the traveling

salesman problem. Networks, 17, 423{437.

Taguchi, G., & Wu, Y.-I. [1979]. Introduction to O�-Line Quality Control. Cen-

tral Japan Quality Control Association, Meieki Nakamura-Ku Magaya,

Japan.

31



Tufte, E. [1983]. The Visual Display of Quantitative Information. Graphics

Press, Cheshire, CN.

Zanakis, S., Evans, J., & Vazacopoulos, A. [1989]. Heuristic methods and appli-

cations: A categorized survey. European Journal of Operational Research,

43, 88{110.

32


