
University of Nottingham
School of Computer Science

1Heuristic Search Methods
Dr Dario Landa- Silva

Lecture 9 – Software Libraries for Heuristics

•Implementation Strategies
•Software Class Libraries
•Other Software Toolkits

Learning outcomes:
− List the various strategies that exist to develop heuristic algorithms

software.
− Identify advantages and disadvantages of code reuse for development of

heuristic algorithms.
− Recognise the different types of frameworks that exist for the

development of heuristic algorithms.
− Identify important analysis and visualisation aspects that should be

considered when implementing heuristic algorithms.

PA184 - Heuristic Search Methods

University of Nottingham
School of Computer Science

2Heuristic Search Methods
Dr Dario Landa- Silva

Implementation Strategies

The implementation of a heuristic method involves developing software
either: by writing code from scratch, by reusing software, or by
employing software frameworks.

Reusing software: includes taking someone else’s code and adapt it or
using dedicated software libraries.

Software frameworks: provide full control on the ‘invariant’ parts of
algorithms through the provision of algorithms components.

When selecting an implementation strategy, expertise of the developer
and software engineering principles should be taken into consideration.

Talbi (2009) suggests a number of desirable criteria that software
frameworks should satisfy (arguably all met in ParadisEO).

University of Nottingham
School of Computer Science

3Heuristic Search Methods
Dr Dario Landa- Silva

Since there is a great variety of optimisation problems, software reuse is
crucial to develop heuristic methods at least as a first approach to
assess the suitability of the algorithm to tackle the problem in hand.

solvers

moves operators

architectures

encodings
Heuristic

Method for
New Problem

In addition to faster development, libraries and frameworks facilitate the
testing of different heuristic variants and their tuning. Software reuse
often reduces the need to maintain complex data structures.

Mathematical programming frameworks are usually considered black
boxes because usually no details of the algorithms are apparent.

University of Nottingham
School of Computer Science

4Heuristic Search Methods
Dr Dario Landa- Silva

Software Class Libraries

Library of heuristic
components

Investigate relationships
between heuristic methods

and their hybridisations

Use/testing of heuristic
methods given the problem

specific abstractions

Libraries of heuristic routines can help to rapid development of an
application-specific heuristic method or solver.

There are usually 3 types of libraries (Voss and Woodruff, 2002):

− Callable routines
− Numerical libraries
− Component libraries

In general, a component library is software that permits to select,
possibly adapt and combine appropriate modules from a large set of
existing software components.

University of Nottingham
School of Computer Science

5Heuristic Search Methods
Dr Dario Landa- Silva

Localizer

Localizer was proposed by (Michel and Van Hentenryck, 1999) and
(Michel and Van Hentenryck, 2000) as a modelling language for the
implementation of local search methods.

It uses declarative expressions to define data structures for the problem
being solved and imperative expressions to define starting and restarting
states as well as transformations to those states.

It uses invariants as a tool to efficiently manage the incremental updates
of iterative procedures like objective function computations.

It allows the definition of different neighbourhood exploration strategies
such as best improvement, first improvement, random walk, etc.

Localizer is a predecessor of Comet, a constraint-based programming
language and system. See: http://www.comet-online.org/

University of Nottingham
School of Computer Science

6Heuristic Search Methods
Dr Dario Landa- Silva

Example 9.1 Implementation of a local improvement statement in
Localizer for the SAT problem.

move can be replaced by first move, best move, etc.
improvement can be replaced by noDecrease, etc.

University of Nottingham
School of Computer Science

7Heuristic Search Methods
Dr Dario Landa- Silva

iOpt Toolkit

iOpt was proposed by (Voudouris et al., 2001) at BTExact as a Java
based environment providing declarative programming capabilities for
specifying:
1.the problem modelling
2.the heuristic method
3.interactive visualisation
4.scheduling framework

Similar to Localizer, iOpt also uses invariants (one-way constraints) to
support heuristic search because invariants represent an efficient way to
evaluate incremental solutions changes.

The heuristic search framework (HSF) is part of the environment and
provides a number of components so that the designer can build a
complete algorithm.

Both single-solution and population-based heuristic methods can be
specified using the HSF.

University of Nottingham
School of Computer Science

8Heuristic Search Methods
Dr Dario Landa- Silva

Example 9.2 Implementation of a simple problem model in iOpt.

/*Create a simple problem model using invariants*/
Problem p = new Problem();
p.beginModelChanges(); // start changes to the problem model
RealVar x = new RealVar(10.0) // create a real variable x and set its initial value to 10.0
p.addDecisionVar(x); // set x to be a decision variable
p.addObjective(Inv.plus(x,5.0)); // add the term x+5.0 to the objective initially undefined
p.addConstraint(Inv.gt(x,5.0)); // set the constraint x > 5.0
p.endModelChanges();// end changes to the problem model

/*Change to the value of the decision variable*/
/*Similar operations are performed when local search is evaluating a move
 or the user modifies the solution through a GUI*/
p.beginValueChanges(); // start changes to the values of the decision variables
x.setValue(100.0); // set x to the new value of 100.00
p.endValueChanges(); // end changes to values of the decision variables
p.propagateValueChanges(); // the mark/sweep algorithm is updating the variables
p.saveValueChanges(); // we commit the changes, we may undo them instead

// in case of constraint violations or inferior cost

/*Dynamic addition of decision variables/objective to the problem model*/
RealVar y = new RealVar(15.0);
p.addDecisionVar(y);
p.addObjective(Inv.plus(y,10.0)); // the overall objective is now (x+5.0) + (y+10.0)
p.endModelChanges();

University of Nottingham
School of Computer Science

9Heuristic Search Methods
Dr Dario Landa- Silva

EasyLocal++

EasyLocal++ was proposed by (Di Gaspero and Schaerf, 2003) as an
object-oriented framework in C++ for the development and analysis of
local search algorithms. This framework is available from:

http://tabu.diegm.uniud.it/EasyLocal++/

runner t1 runner t2

runner t4 runner t3

EasyAnalizer was proposed by (Di Gaspero, Roli and Schaerf, 2007)
as an object-oriented framework for the experimental analysis of
algorithms that integrates with EasyLocal++ in order to aid the
understanding, study and tune stochastic local search algorithms.

EasyLocal++ allows the implementation of a
token-ring search strategy in which a set of
runners t1, t2,…,tq are executed in a circular
fashion with each runner starting from the best
solution found by the previous one.

University of Nottingham
School of Computer Science

10Heuristic Search Methods
Dr Dario Landa- Silva

EasyLocal++ incorporates 5 sets of classes:
1.Data Classes: input/output data, moves, search space states, etc.
2.Helpers: neighbourhood explorer, tabu list manager, output manager , weight handler,
etc.
3.Runners: hill-climbing, simulated annealing, tabu search, etc.
4.Solvers: generate initial solutions, control the sequence of runners (tandem, multi-start,
etc.)
5.Testers: users interface, algorithms analysis tools, etc.

University of Nottingham
School of Computer Science

11Heuristic Search Methods
Dr Dario Landa- Silva

Other Software Toolkits

SALSA was proposed by (Laburthe and Caseau, 2007) as a language
for local and global search algorithms based on the principles of
constraint programming offering an environment for combining algorithm
components.

VIZ was proposed by (Halim et al., 2006) as an interactive visual
analysis tool for illustrating the behaviour of local search algorithms. The
tool focuses on visualising the search trajectories and solution spaces
visited during the execution of the local search algorithm. There are 3
types of visualisations:

1.Local search visualisations: e.g. search trajectory, objective value, etc.

2.Algorithm specific visualisation: e.g. temperature, re-heat step, etc.

3.Problem specific visualisations: e.g. tours visualisations, etc.

Other toolkits include: HotFrame, OptQuest, Templar, OPL Studio, PISA,
GAMS, CODEA, etc.

University of Nottingham
School of Computer Science

12Heuristic Search Methods
Dr Dario Landa- Silva

Further Reading

S. Voss, D.L. Woodruff (eds). Optimization Software Class Libraries. Kluwer
Academic Publishers, 2002.

Laurent Michel, Pascal Van Hentenryck. Localizer: a modelling language for local
search. INFORMS Journal on computing, Vol. 11(1), pp. 1-14, 1999.

Laurent Michel, Pascal Van Hentenryck. Localizer. Constraints: an international
journal, Vol. 5, pp. 43-84, 2000.

P. Van Hentenryck, L. Michel. Constraint-Based Local Search. MIT Press, 2005.

C. Voudouris, R. Dorne, D Lesaint, A. Liret. iOpt: a Software Toolkit for Heuristic
Search Methods. In: T. Walsh (ed.): CP 2001, LNCS 2239, 716-729, 2001.

C. Voudouris, R. Dorne. Integrating Heuristic Search and One-way Constraints in
the iOpt Toolkit. In: S. Voss, D.L. Woodruff (eds.) Optimization Software Class
Libraries, Kluwer academic publishers, 177-191 , 2002.

University of Nottingham
School of Computer Science

13Heuristic Search Methods
Dr Dario Landa- Silva

Further Reading (cont.)

L. Di Gaspero, A. Shaerf. EasyLocal++: an Object Oriented Framework for
Flexible Design of Local Search Algorithms. Software - Practice and Experience,
33(8), 733-765, 2003.

L. Di Gaspero, A. Roli, A. Shaerf. EasyAnalyzer: an Object-oriented Framework for
the Experimental Analysis of Stochastic Local Search Algorithms. In: T. Stuetzle,
M. Birattari, H.H. Hoos (eds.): SLS 2007, LNCS 4638, 76-90, 2007.

F. Laburthe, Y. Caseau. SALSA: a Language for Search Algorithms. Constraints,
7, 255-288, 2002.

S. Halim, R.H. Yap, H.C. Lau. Viz: a Visual Analysis Suite for Explaining Local
Search Behavior. In: Proceedings of the 19th Annual ACM Symposium on User
Interface Software and Technology (UIST 2006), 57-66 , 2006.

Section 1.8 of (Talbi, 2009).

	PA184 - Heuristic Search Methods
	Implementation Strategies
	Slide 3
	Software Class Libraries
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Other Software Toolkits
	Slide 12
	Slide 13

