# **PA184 - Heuristic Search Methods**

Lecture 10 - New Ideas and Future Research

 $\cdot$ Self-adaptation

•Asynchronous Cooperation

 $\cdot Self\text{-}assembly$ 

## Learning outcomes:

- Get an insight into some recent new ideas proposed in the literature of heuristic search methods.
- Identify some examples of self-adaptation in meta-heuristic algorithms.
- Understand the main principles of asynchronous local search as a methodology to extend existitng single-solution approaches.
- Get an insight into the use of self-assembly as a tool for the automated design of heuristic methods. This is still a very new research direction with only promising results.

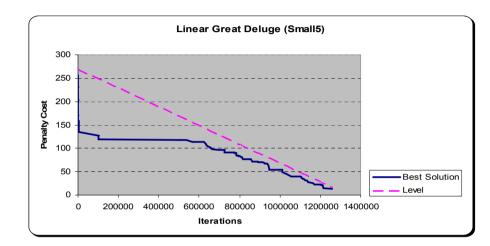
# **SELF-ADAPTATION**

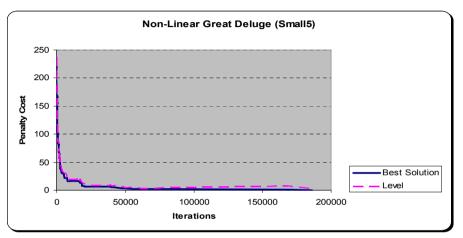
### **Non-linear Great Deluge with Reinforcement Learning**

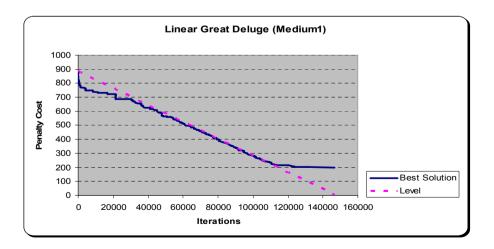
Contrary to the traditional linear form, the non-linear decay rate of the water level reacts to the value of the current best solution, i.e. the <u>decay</u> rate is driven by the search.  $B = B \times \left( \exp^{-\delta(rnd[\minmax])} \right) + \beta$ 

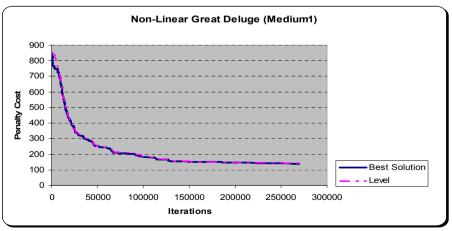
For a minimisation problem, candidate solutions are accepted if the objective function value is below the current water level.

The <u>adaptive water level</u> allows a more effective search for various difficult instances of the UCTT problem.



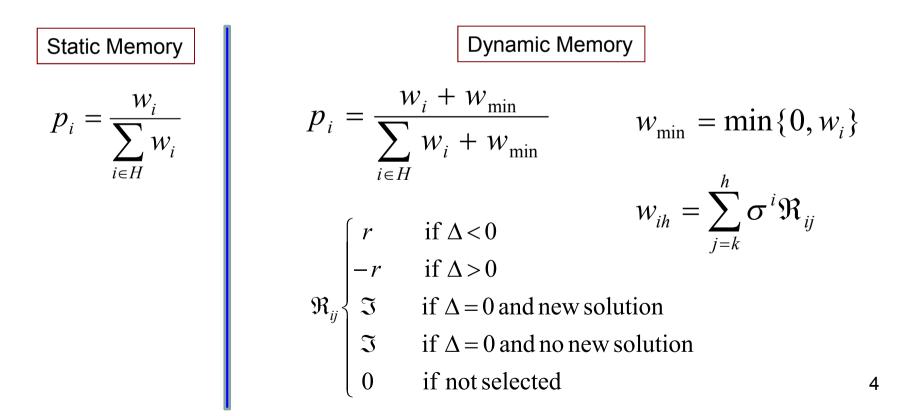






A <u>simple learning mechanism</u> guides the selection of low-level heuristics (local moves) during the search.

The learning mechanism tunes the priorities of the low-level heuristics as the search progresses in an <u>attempt to learn the low-level heuristic to</u> <u>use at each point of the search</u>.



The <u>non-linear and floating decay rate</u> and the <u>learning mechanism for</u> <u>low-level heuristic selection</u>, improve the performance of the Great Deluge algorithm when solving instances of the UCTT problem.

| Instance     | NLG                   | DHH-SM | NLG  | DHH-DM  | E    | GD    | NLGD | ENLGD | $\operatorname{GD}$ |
|--------------|-----------------------|--------|------|---------|------|-------|------|-------|---------------------|
|              | $\operatorname{Best}$ | Avg    | Best | Avg     | Best | Avg   | Best | Best  | Best                |
| S1           | - 0 -                 | 0.5    | - 0  | 2.5     | 0    | 0.8   | 3    | 0     | 17                  |
| S2           | - 0 -                 | 0.65   | - 0  | 1.9     | - 0  | 2     | 4    | 1     | 15                  |
| S3           | - 0 -                 | 0.20   | - 0  | 2.05    | - 0  | 1.3   | 6    | 0     | 24                  |
| S4           | - 0 -                 | 1.5    | - 0  | 2.85    | - 0  | 1     | 6    | 0     | 21                  |
| S5           | - 0 -                 | 0      | - 0  | 0.85    | - 0  | 0.2   | 0    | 0     | 5                   |
| M1           | 51                    | 60.1   | 54   | 139     | 80   | 101.4 | 140  | 126   | 201                 |
| M2           | 48                    | 59.05  | 67   | 78.2    | 105  | 116.9 | 130  | 123   | 190                 |
| M3           | 60                    | 83.9   | 84   | 115.45  | 139  | 162.1 | 189  | 185   | 229                 |
| M4           | 47                    | 54.9   | 60   | 72.05   | 88   | 108.8 | 112  | 116   | 154                 |
| M5           | 61                    | 84.15  | 93   | 112.8   | 88   | 119.7 | 141  | 129   | 222                 |
| $\mathbf{L}$ | 731                   | 888.65 | 917  | 1035.25 | 730  | 834.1 | 876  | 821   | 1066                |

The best results so far for most of these instances of the UCTT problem are obtained by the <u>NLGD with Reinforcement Learning.</u>

|    | LP = 1000 | LP = 2500 |     | LP = 5000 |  | 0   | NLGDHH-DM | Best Known |                  |
|----|-----------|-----------|-----|-----------|--|-----|-----------|------------|------------------|
| S1 | 0         |           | 0   |           |  | 0   |           | 0          | <b>0</b> (VNS-T) |
| S2 | 0         |           | 0   |           |  | 0   |           | 0          | <b>0</b> (VNS-T) |
| S3 | 0         |           | 0   |           |  | 0   |           | 0          | <b>0</b> (CFHH)  |
| S4 | 0         |           | 0   |           |  | 0   |           | 0          | <b>0</b> (VNS-T) |
| S5 | 0         |           | 0   |           |  | 0   |           | 0          | <b>0</b> (MMAS)  |
| M1 | 51        |           | 38  |           |  | 42  |           | 54         | 80 (EGD)         |
| M2 | 48        |           | 37  |           |  | 44  |           | 67         | 105 (EGD)        |
| M3 | 60        |           | 61  |           |  | 60  |           | 84         | 139 (EGD)        |
| M4 | 47        |           | 41  |           |  | 39  |           | 60         | 88 (EGD)         |
| M5 | 61        |           | 61  |           |  | 55  |           | 93         | 88 (EGD)         |
| L1 | 731       |           | 638 |           |  | 713 |           | 915        | <b>529</b> (HEA) |

## **Restricted Assortative Mating**

- Incorporate some <u>degree of restriction when recombining</u> parents in evolutionary algorithms
- Use mating radius to control the exploration and/or exploitation

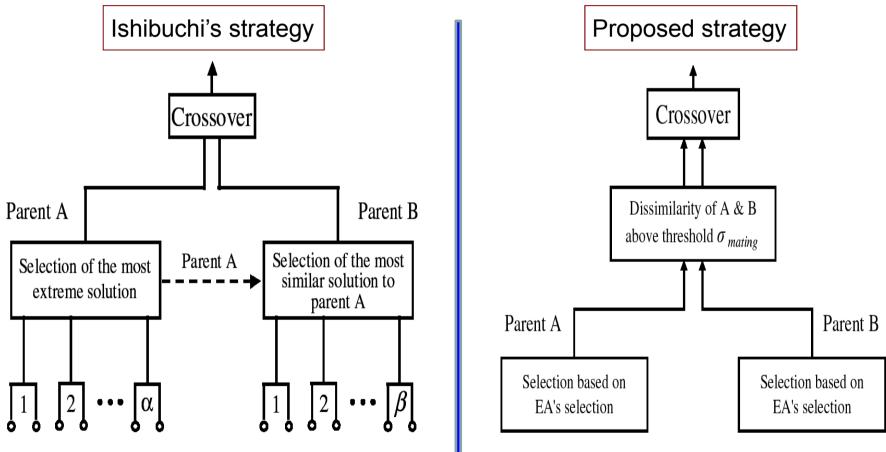
## Natural Selection

- Selection schemes:
  - Fitness proportionate selection
  - Rank-based selection
  - Tournament selection
- Parents chosen based on their fitness
- Passively assigned mates
- Operate in objective space

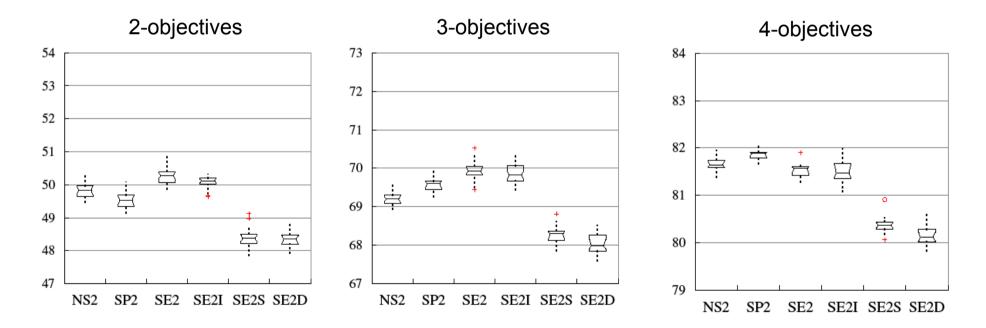
## **Sexual Selection**

- Selection schemes:
  - Ancestry selection
  - Assortative mating
  - Gender selection
- 2<sup>nd</sup> parent chosen w.r.t 1<sup>st</sup> parent
- Actively choose mates
- Operate in objective/decision space

The proposed restricted assortative mating strategy adapts to the <u>similarity between potential parents</u> and also to the <u>diversity of the</u> <u>current population</u>. The method can be incorporated into other EAs.



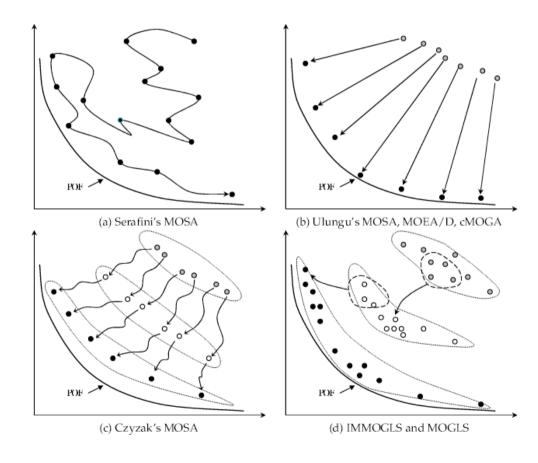
- Experiments on 2-, 3- and 4-objecitve knapsack problems
- NSGA2, SPEA2, SEAMO2
- Ishibuchi mating strategy and restricted assortative mating strategy incorporated into SEAMO2
- The mating ratio  $\sigma_{\text{mating}}$  is fixed or automatically adjusted according to the population diversity (decision space)



### **EMOSA** – an Adaptive Algorithm for MOCO

Employs simulated annealing for the optimisation of each sub-problem and <u>adapts search directions</u> for diversifying non-dominated solutions.

Various strategies used to define search directions in existing multi-objective meta-heuristics based on decomposition.



## **EMOSA Approach**

#### **Step 0: Initialisation**

Produce *pop* well-distributed weight vectors. For each weight vector, an initial solution is generated randomly. Update the external population (EP) with the nondominated solutions in the initial population. Set T:=T0.

#### **Step 1: Local Search and Competition**

For each individual x in the current population, repeat the follow steps K times.

1.1 find a neighbouring solution y

1.2 update the EP with y if it is not dominated by x

1.3 replace x with the probability P(w, x, y, T)

Compete with the other solutions with similar weight vectors to that of x

#### **Step 2: Temperature Change**

Lower the temperature value by using T:=T – alpha. If T>=Tc, adapt the weight vector of each individual in the population, otherwise, go to Step 4.

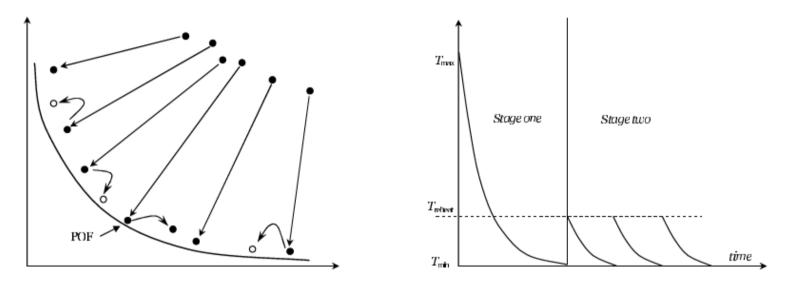
#### **Step 3: Direction Adaptation**

Modify each weight vector to move the current solution away from its nearest nondominated neighbours in the population.

#### Step 4: Stopping Criteria

If T<Tmin, then stop and return EP, Otherwise go to Step 1.

Faster annealing schedule with re-heating when searching close to the Pareto front and strategy to adapt weight vectors when simulated annealing enters the only improvement phase.



#### **Procedure 3 AdaptWeightVector**(s)

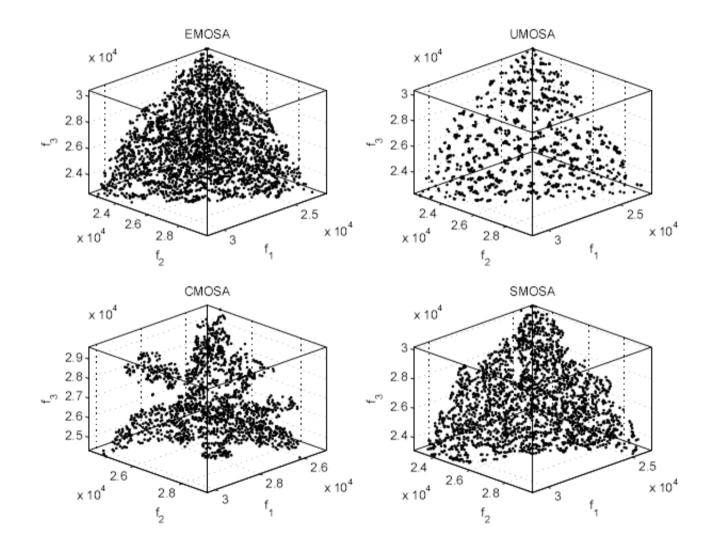
- 1: find the closest non-dominated neighbor  $x^{(t)}, t \in \{1, ..., Q\}$  to  $x^{(s)}$
- 2:  $A \leftarrow \{\lambda \in \Theta | \operatorname{dist}(\lambda^{(s)}, \lambda^{(t)}) < \operatorname{dist}(\lambda, \lambda^{(t)}) \text{ and } \operatorname{dist}(\lambda, \lambda^{(s)}) \leq \operatorname{dist}(\lambda, \Lambda) \}$
- 3: if A is not empty then

4: 
$$\lambda^{(s)} \leftarrow \operatorname{argmax}_{u \in A} \operatorname{dist}(u, \lambda^{(s)});$$

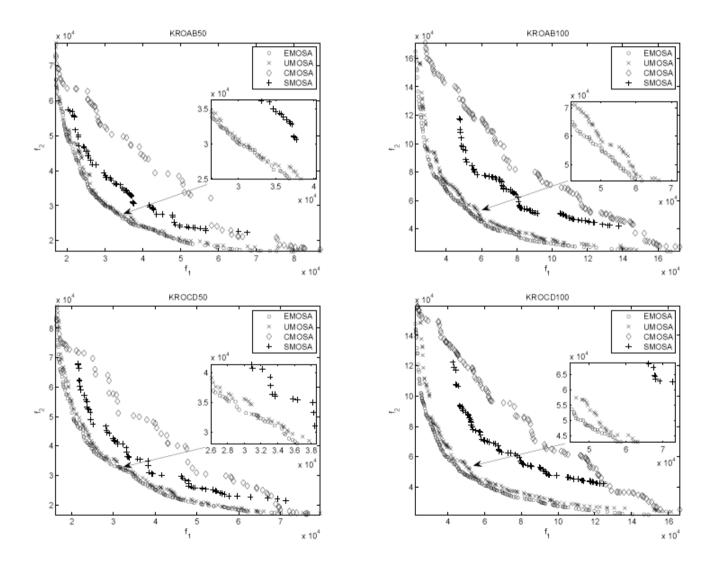
5: **end if** 

6: return  $\lambda^{(s)}$ 

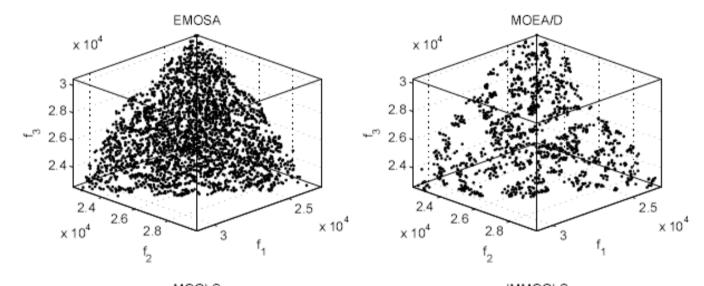
- Some results on 3-bjective knapsack problem instances
- EMOSA outperforms other MOSA-like algorithms

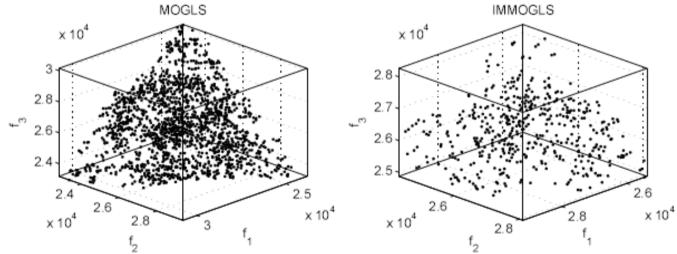


- Some results on 2-bjective TSP problem instances
- EMOSA outperforms other MOSA-like algorithms

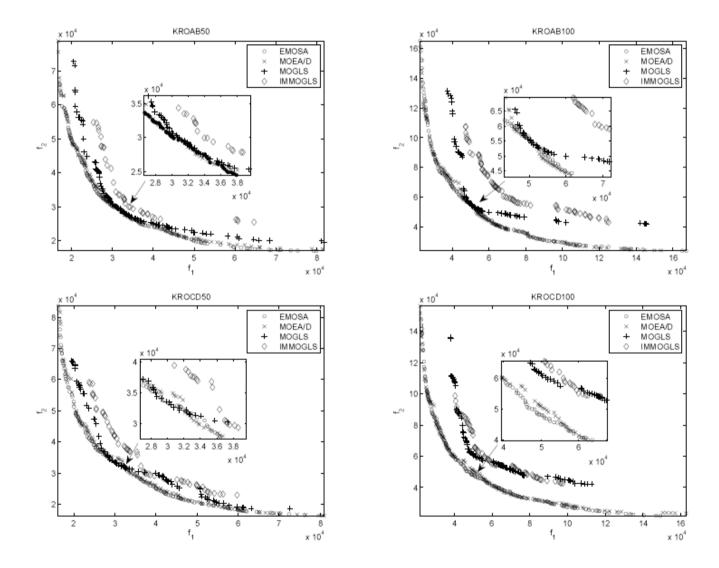


- Some results on 3-bjective knapsack problem instances
- EMOSA outperforms other MOMA-like algorithms





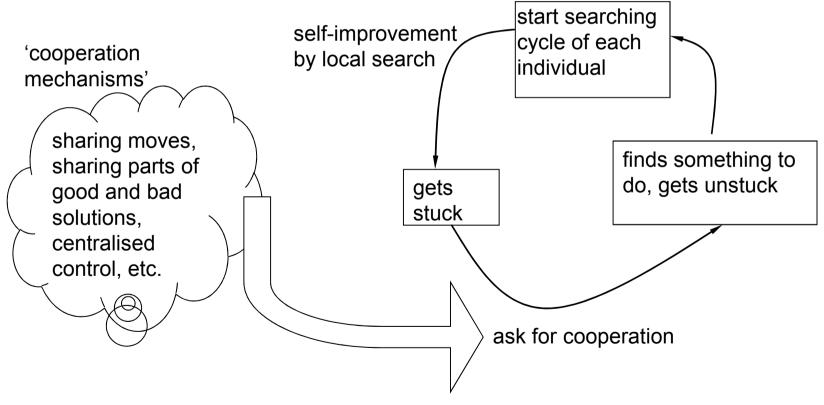
- Some results on 2-bjective TSP problem instances
- EMOSA outperforms other MOMA-like algorithms.



# **ASYNCHRONOUS COOPERATION**

## **Cooperative Local Search**

Simple cooperative strategy based on memory to improve local search procedures.



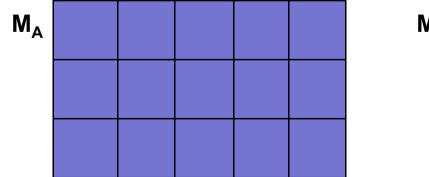
Memory-based cooperation mechanism based on matrices of genes:

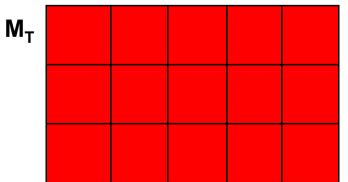
Matrices  $M_A$  (attractive) and  $M_T$  (tabu) of size  $n \ge m$ 

Instead of memorising move attributes as in tabu search, these shared matrices keep track of the frequency of each 'gene' seen during search.

 $M_A$  is <u>updated when a move improves</u> a solution  $M_A(i,j) = M_A(i,j) + 1$ 

 $M_T$  is <u>updated when a move worsens</u> a solution  $M_T(i,j) = current iteration + tenure$ 





The information stored in  $M_A$  and  $M_T$  is used in two ways:

• Information sharing. All explorers update the matrices of genes. When an explorer is stuck, it uses the information stored in  $M_A$  to modify the current solution (maximum *n*/20 changes).

• Heuristic heavy mutation. A heavy disruption of the solution is carried out. It removes the most penalised entities from their assigned locations (maximum n/5 removals). Then, each of these entities is assigned a new location avoiding those marked tabu in  $M_T$ .

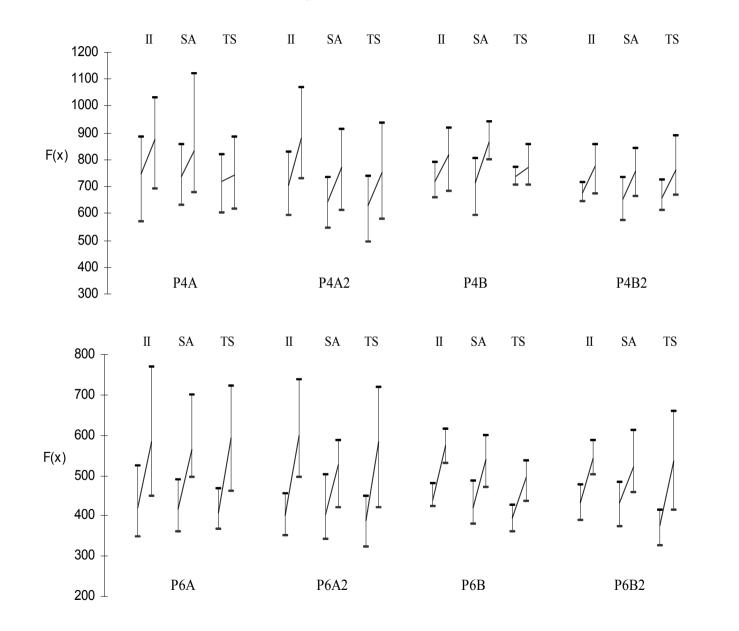
**Step 1.** Generate population of 'explorers' LS<sub>SS</sub>

Step 2. Self-improvement phase using 'information sharing'

Step 3. Random variation of population using 'heavy mutation'

**Step 4.** If terminate condition Stop, otherwise go to Step 2.

Some results on the Office Space Allocation Problem

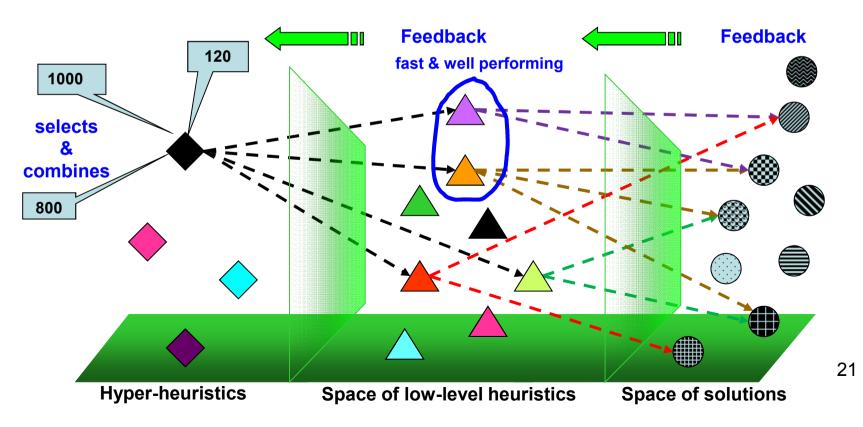


20

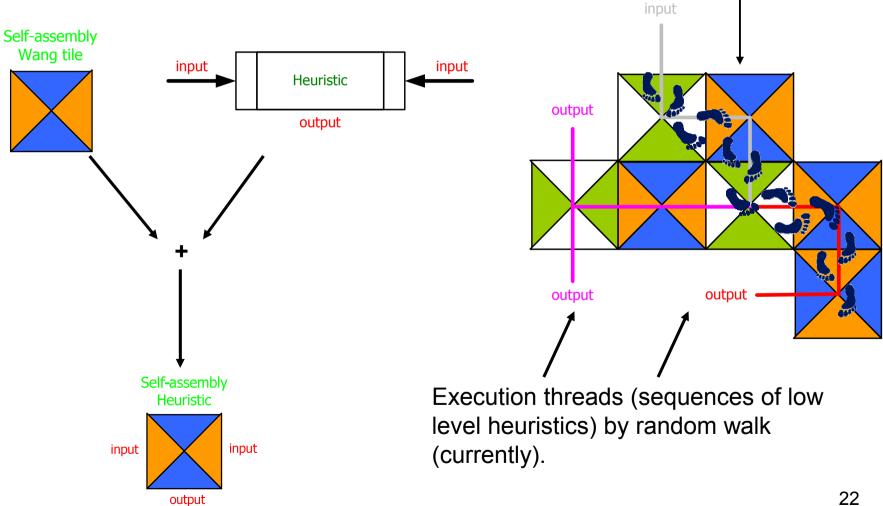
## **SELF-ASSEMBLY**

## **Hyper-heuristics**

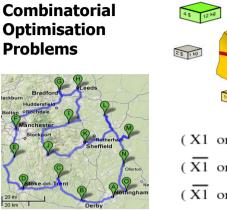
- Search methodologies that select and combine low-level heuristics to solve hard computational problems.
- Domain-independent strategies that operate in the space of heuristics.
- Manufacture unknown heuristics which are fast and well performing.



## **Heuristics Self-assembly System**



Assembled heuristic



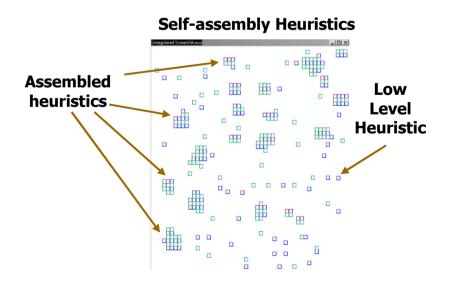


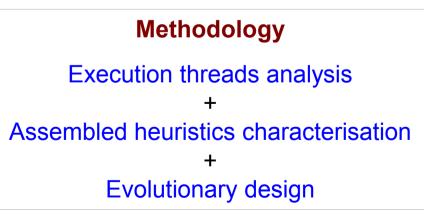


 $(X1 \text{ or } X2 \text{ or } \overline{X3})$  $(\overline{X1} \text{ or } \overline{X2} \text{ or } X3)$  $(\overline{X1} \text{ or } \overline{X2} \text{ or } \overline{X3})$  $(\overline{X1} \text{ or } \overline{X2} \text{ or } \overline{X3})$ 

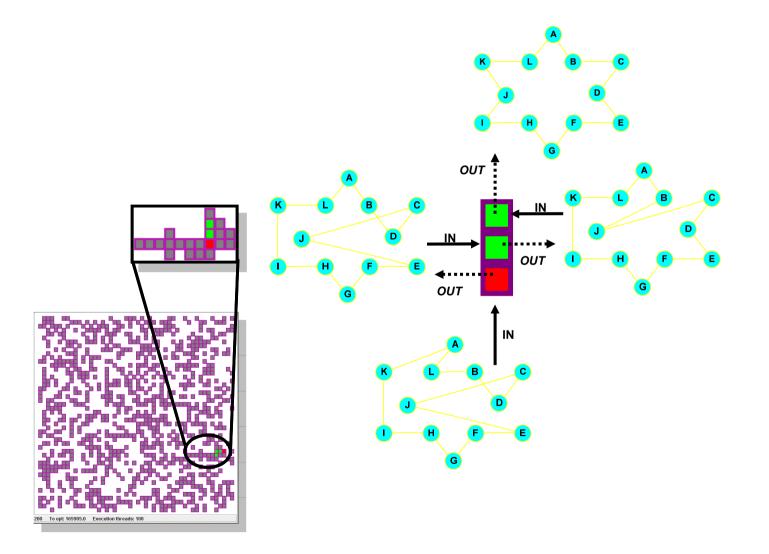
Is it possible to automatically design the <u>correct assembly of a heuristic</u>, the execution threads of which optimise a given problem instance?

If the answer is YES, is it possible to apply the same methodology to a different problem?

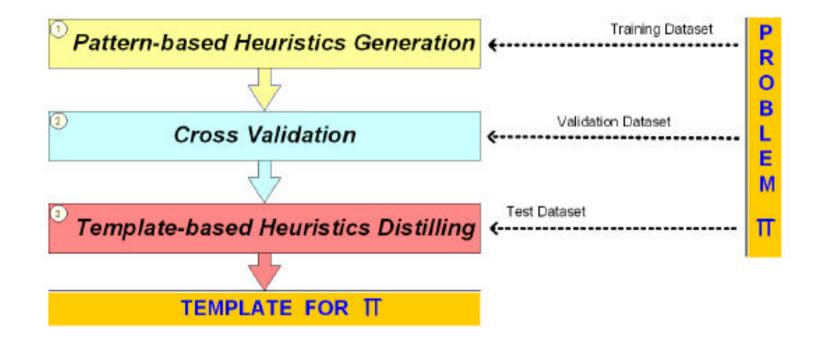




An <u>execution thread represents a sequence of low-level heuristics</u> that can be applied to a given tour in order to produce another tour.

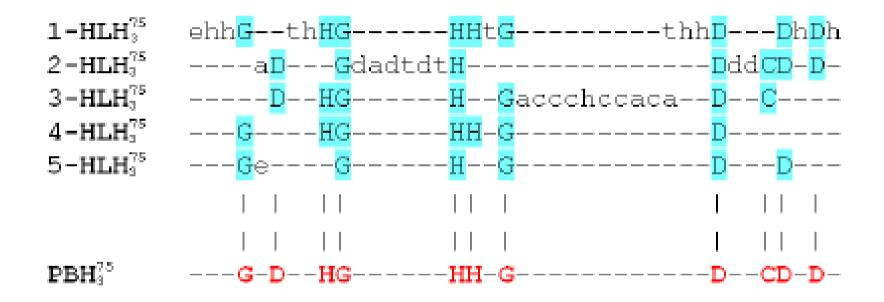


Methodology that generates a <u>low-level heuristics template</u> for then manufacturing good performing heuristics.

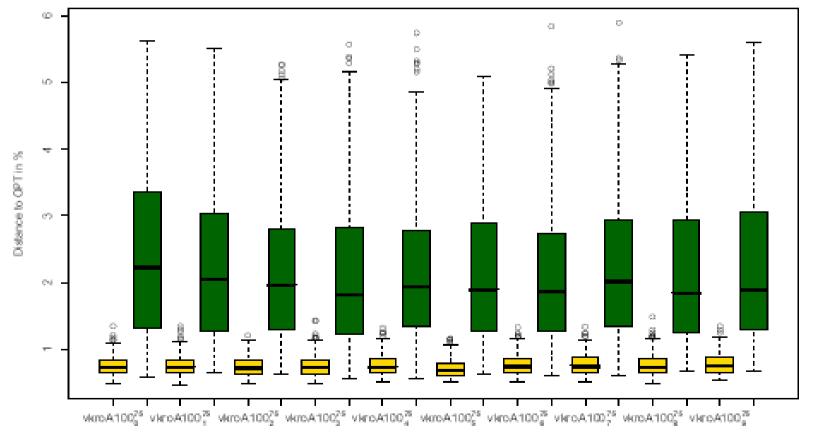


Other researchers are exploring GP and CBR for this purpose.

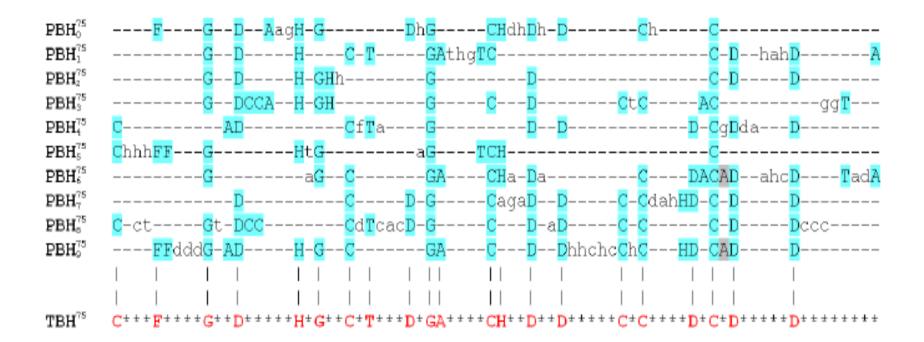
From top performing heuristic sequences, <u>common combinations</u> (<u>patterns</u>) of low-level heuristics are identified, e.g. GDHGHHGDCDD.



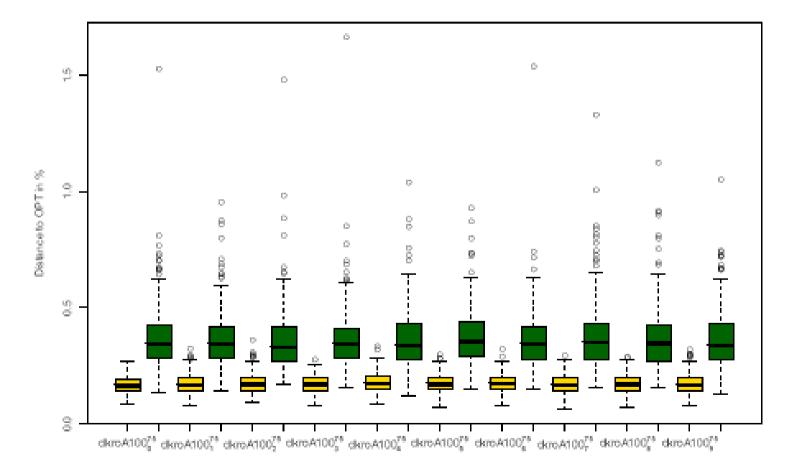
<u>Performance of pattern-based heuristics</u> is compared against other non-pattern-based heuristic sequences.



<u>Common structures</u> among the pattern-based heuristics are identified. Then, a <u>heuristic template</u> (e.g. TBH<sup>75</sup>) is constructed in terms of building blocks.



The <u>sequences of heuristics</u> are generated based on the heuristic template have a better and more robust performance when solving other 'unseen' instances of the problem.



# **FINAL REMARKS**

Key issues in the design of heuristic search methods for combinatorial optimisation problems include:

- define objective function
- initialise solutions
- search neighbourhood
- define basic strategies to escape local optima
- deal with infeasibility

Known strategies become self-adaptive by following simple principles:

- acceptance of non-improving solutions according to search progress
- <u>use of memory for tracking visited solutions and past performance of</u>
  <u>neighbourhood search</u>
- restricted mating adapting to diversity in decision space
- weight vectors that adapt for competition and diversification/intensification
- <u>extend single-point local search to population-based local search</u>

Self-assembly and self-generation of heuristics is under investigation.

## **SOME REFERENCES**

Dario Landa-Silva, Edmund K. Burke. **Asynchronous Cooperative Local Search for the Office Space Allocation Problem**. *INFORMS Journal on Computing*, 19(4), pp. 575-587, **2007**.

Khoi Nguyen Le, Dario Landa-Silva. Adaptive and Assortative Mating Scheme for **Evolutionary Multi-objective Algorithms**. Proceedings of the *2007 Evolution Artificielle Conference (EA 2007)*, Tours France, LNCS, Vol. 4926, Springer, pp. 172-183, **2008**.

Joe Henry Obit, Dario Landa-Silva. **Computational Study of Non-Linear Great Deluge for University Course Timetabling**. To Appear in: V. Sgurev, M. Hadjiski (eds). *Intelligent Systems - From Theory to Practice*. Post Conference IEEE-IS 2008 Volume, Studies in Computational Intelligence, Springer-Verlag, **2009**.

Hui Li, Dario Landa-Silva. **An Adaptive Evolutionary Multi-objective Approach Based on Simulated Annealing**. To appear in the MIT Evolutionary Computation Journal. **2010**.

Joe Henry Obit, Dario Landa-Silva, Marc Sevaux, Djamila Ouelhadj. Non-Linear Great Deluge with Reinforcement Learning for University Course Timetabling. Under review. October 2009.

German Terrazas, Dario Landa-Silva, Natalio Krasnogor. **Discovering Beneficial Cooperative Structures for the Automatic Construction of Heuristics**. To Appear in NICSO 2010. **May 2010**.