EUROPEAN

; JOURNAL
$ OF OPERATIONAL
AR RESEARCH

ELSEVIER European Journal of Operational Research 130 (2001) 449-467

www.elsevier.com/locate/dsw

Invited Review
Variable neighborhood search: Principles and applications

Pierre Hansen *, Nenad Mladenovié
GERAD and Ecole des Hautes Etudes Commerciales, 3000 chemin de la Cote-Sainte-Catherine, Montréal, Canada H3T 2A7
Received 1 July 1999; accepted 22 December 1999

Abstract

Systematic change of neighborhood within a possibly randomized local search algorithm yields a simple and effective
metaheuristic for combinatorial and global optimization, called variable neighborhood search (VNS). We present a
basic scheme for this purpose, which can easily be implemented using any local search algorithm as a subroutine. Its
effectiveness is illustrated by solving several classical combinatorial or global optimization problems. Moreover, several
extensions are proposed for solving large problem instances: using VNS within the successive approximation method
yields a two-level VNS, called variable neighborhood decomposition search (VNDS); modifying the basic scheme to
explore easily valleys far from the incumbent solution yields an efficient skewed VNS (SVNS) heuristic. Finally, we
show how to stabilize column generation algorithms with help of VNS and discuss various ways to use VNS in graph
theory, i.e., to suggest, disprove or give hints on how to prove conjectures, an area where metaheuristics do not appear
to have been applied before. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction ation, column generation, ...) may not suffice to
solve very large instances, and thus one reverts to
heuristics. Moreover, as will be illustrated below,
heuristics may be very useful within exact algo-

rithms.

Since the early years of O.R., heuristics have
been widely used to solve a large variety of prac-
tical problems. Indeed, modeling of complex issues

often leads to NP-hard problems. While such
problems are intractable in worst case, they may
not be so in average case or in the case under
study. However, the large set of tools now avail-
able to solve them exactly (branch-and-bound,
cutting planes, decomposition, Lagrangian relax-
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One much used type of heuristic is local search.
It proceeds from an initial solution by a sequence
of local changes, which improve each time the
value of the objective function until a local opti-
mum is found. In recent years, several metaheu-
ristics have been proposed, which extend in
various ways this scheme and avoid being trapped
in local optima with a poor value (see [56] for a
multi-authored book-length survey and [54] for an
extensive bibliography). These metaheuristics, e.g.,
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adaptive multi-start [4], variable depth search
[47,55], simulated annealing [42], Tabu search (TS)
[23-27,30], GRASP [14] and others such as genetic
search [38] and ant colonies [11], have led to much
improved results in many practical contexts.

In this paper, we examine a relatively unex-
plored approach to the design of heuristics: change
of neighborhood in the search. Using systemati-
cally this idea and very little more, i.e., only a local
search routine, leads to a new metaheuristic, which
is widely applicable. We call this approach variable
neighborhood search (VNS). Contrary to other
metaheuristics based on local search methods,
VNS does not follow a trajectory but explores
increasingly distant neighborhoods of the current
incumbent solution, and jumps from this solution
to a new one if and only if an improvement has
been made. In this way often favorable charac-
teristics of the incumbent solution, e.g., that many
variables are already at their optimal value, will be
kept and used to obtain promising neighboring
solutions. Moreover, a local search routine is ap-
plied repeatedly to get from these neighboring
solutions to local optima. This routine may also
use several neighborhoods. Therefore, to construct
different neighborhood structures and to perform
a systematic search, one needs to have a way for
finding the distance between any two solutions,
i.e., one needs to supply the solution space with
some metric (or quasi-metric) and then induce
neighborhoods from it. In the application part of
the next sections, we answer this problem-specific
question for each problem considered.

The paper is organized as follows. Rules of the
basic VNS are given in Section 2, followed by
application to five combinatorial or global opti-
mization problems. In Section 3, several extensions
aimed at solving very large problem instances are
presented. They include a variable neighborhood
decomposition search (VNDS) heuristic and a
modification of the basic scheme, called skewed
VNS (SVNS), aimed at efficient exploration of
valleys far from the incumbent solution. This
technique is illustrated on one more combinatorial
optimization problem. New types of applications
of VNS are described in Section 4. Its role in
making efficient stabilized column generation is
first explained. It is then shown how VNS can be

applied in graph theory, an area where (contrary
to graph optimization) metaheuristics do not ap-
pear to have been used before. Section 5 concludes
the paper with a brief discussion of criteria for
evaluating metaheuristics with application to
VNS.

2. Basic VNS

In this section, we describe in general terms the
basic rules of the VNS metaheuristic. We then il-
lustrate them on five problems:

1. a classical combinatorial optimization problem,
i.e., the traveling salesman problem (TSP);

2. a central problem of discrete location theory,
i.e., the p-median problem (PM);

3. a well-known problem of global optimization,
which is the counterpart of the previous prob-
lem in continuous location theory, i.e., the mul-
ti-source Weber (MW) problem;

4. a much studied problem of cluster analysis, i.¢.,
the minimum sum-of-squares clustering (or par-
titioning) problem (MSSC);

5. an important problem of structured global op-
timization, i.e., the bilinear programming prob-
lem with bilinear constraints (BBLP).

In each case, a comparison is made with results
of other classical or recent state-of-the-art heuris-
tics.

2.1. Rules

Let us denote with A7, (k = 1,. .., knay), a finite
set of pre-selected neighborhood structures, and
with A47(x) the set of solutions in the kth neigh-
borhood of x. (Most local search heuristics use one
neighborhood structure, i.e., ky.x = 1.) Steps of
the basic VNS are presented in Fig. 1. They make
use of a local search routine discussed later.

The stopping condition may be e.g., maximum
CPU time allowed, maximum number of itera-
tions, or maximum number of iterations between
two improvements. Often successive neighbor-
hoods ./, will be nested. Observe that point x’ is
generated at random in step 2a in order to avoid



P. Hansen, N. Mladenovi¢ | European Journal of Operational Research 130 (2001) 449-467 451

Initialization. Select the set of neighborhood structures Ay, k = 1,..., knaz, that will be used in
the search; find an initial solution z; choose a stopping condition;

Repeat the following until the stopping condition is met:
(1) Set k& + 1; (2) Until k = kypaz, repeat the following steps:
(a) Shaking. Generate a point z' at random from the k" neighborhood of z (z' € Ni(z));
(b) Local search. Apply some local search method with z’ as initial solution; denote with z"

the so obtained local optimum,;

(c) Move or not. If this local optimum is better than the incumbent, move there (z + z"'),
and continue the search with A (k < 1); otherwise, set k + k + 1;

Fig. 1. Steps of the basic VNS.

cycling, which might occur if any deterministic rule
was used.

As a local optimum within some neighborhood
is not necessarily one within another, change of
neighborhoods can be performed during the local
search phase also. In some cases, as when applying
VNS to graph theory, the use of many neighbor-
hoods in the local search is crucial. This local
search is then called variable neighborhood de-
scent (VND) and its steps are presented in Fig. 2.
(Again, most local search heuristics use in their
descents a single or sometimes two neighbour-
hoods, i.e., k], <2.)

The basic VNS is a descent, first improvement
method with randomization. Without much ad-
ditional effort it could be transformed into a de-
scent-ascent method: in step 2c¢ set also x « x”
with some probability even if the solution is worse
than the incumbent. It could also be changed into
a best improvement method: make a move to the
best neighborhood £* among all ky,x of them. Of
course, the former variant is reminiscent of sim-
ulated annealing [42] and the latter of variable
depth search [47,55]. Other variants of the basic

VNS could be to find solution x’ in step 2a as the
best among ¢ (a parameter) randomly generated
solutions from the kth neighborhood, or to in-
troduce kmin and kp, two parameters that control
the change of neighborhood process, i.c., in the
previous algorithm instead of k « 1 set k « knyin
and instead of k — k+ 1 set k < k + kgep. Then
intensification and diversification of the search is
achieved in an easy and natural way: indeed, if
kmin and/or kg, are set to some fairly large integer
values, then the search continues in far away re-
gions of the solution space, i.e., it is diversified; if
kmin is small and kg, = 4] 4 1, where |b] is the
largest integer not greater than b, then the search
spends more time in the region close to the in-
cumbent, i.e., it is intensified. Of course, many
other ways to exploit intensification or diversifi-
cation, including some fairly close ones, have
been proposed within the TS research program
[23-27].

Further modifications to basic VNS are dis-
cussed in Section 2.2. When using more than one
neighborhood structure in the search, the following
problem specific questions have to be answered:

Initialization. Select the set of neighborhood structures N}, k = 1,...,k! .., that will be used in

the descent; find an initial solution z;

Repeat the following until no improvement is obtained:
(1) Set k «+ 1; (2) Until k£ = k/,,,, repeat the following steps:
(a) Ezploration of neighborhood. Find the best neighbor z’ of z (z' € N/(z));
(b) Move or not. If the solution thus obtained z' is better than z, set = « z'; otherwise, set

k+k+1.

Fig. 2. Steps of the basic VND.
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1. what A7, should be used and how many of
them?

2. what should be their order in the search?

3. what strategy should be used in changing neigh-
borhoods?

Similar questions apply to the ./7,. Application
of the VNS metaheuristic for solving each partic-
ular problem is based on answers to these ques-
tions.

2.2. TSP

Given 7 cities with intercity distances, the TSP
is to find a minimum cost tour x (i.e., a permuta-
tion of the cities, which minimizes the sum of the n
distances between adjacent cities in the tour). It is
a classical NP-hard problem.

For a recent, detailed survey and comparison of
heuristics for the TSP, see [40]. Probably the most
popular heuristic for solving TSP is 2-opT, where
in turn two links between cities in the current tour
x are removed and these cities reconnected by
adding links in the only other way which gives a
tour. Since 2-opT is a descent local search heuris-
tic, it stops in a local minimum. We first apply the
basic VNS rules using 2-oPT (or a quicker variant
in which only the edges of moderate length are
used) as local search routine.

Let us denote with % the solution space (i.e.,
the set of all permutations) of the TSP (x € ).

One may measure the distance p between two TSP
tours by the cardinality of their symmetric differ-
ence: if tours x; and x, differ in k links, then
p(x1,x) = k. It is clear that p is a metric on .. The
neighborhoods induced by this metric are

Nilw) = {¥lp(xd) =k, x € 7},
k=2,...,n, (1)

that is the k-oPT neighborhoods [46]. We obtain a
parameter-free VNS heuristic by setting the single
parameter k.« to n. Then, all ingredients for ap-
plication of the basic VNS (VNS-1 for short) are
given. Another version (VNS-2) that uses a
quicker 2-opT in step 2b works as follows. Instead
of deleting and reconnecting all possible pairs of
links, the O(n?) neighborhood is reduced by ne-
glecting the 7% (a parameter) longest links from
each city. Let (i, /) be the link to be deleted in the
outer loop of 2-opT. If city j does not belong to the
(1 — »)% cities closest to city i, then the inner loop
does not take place. Long links which might ini-
tially be included in the tour will be considered for
deletion when selecting points in the .47;(x) and
will thus progressively disappear.

In Table 1, average results for random Euclid-
ean problems over 100 trials for » = 100, ...,500
and 10 trials for n = 600, ...,1000 are reported.
Each problem instance is first solved twice by 2-
opT and the best solution value kept. The CPU
time spent for these two independent calls of 2-opT

Table 1
TSP: Average results for random Euclidean problems over 100 trials for n = 100, ...,500 and 10 trials for n = 600, ..., 1000*
n Best value found % Improvement CPU times
2-0PT VNS-1 VNS-2 VNS-1 VNS-2 2-0PT VNS-1 VNS-2
100 825.69 817.55 811.95 0.99 1.66 0.25 0.18 0.17
200 1156.98 1143.19 1132.63 1.19 2.10 3.88 3.21 2.82
300 1409.24 1398.16 1376.76 0.79 2.30 12.12 10.29 9.35
400 1623.60 1602.59 1577.42 1.29 2.84 46.13 40.03 34.37
500 1812.08 1794.59 1756.26 0.96 3.07 110.64 99.57 91.00
600 1991.56 1959.76 1925.51 0.97 3.32 204.60 191.85 173.07
700 2134.86 2120.59 2089.33 0.67 2.13 347.77 307.93 259.06
800 2279.18 2242.11 2190.83 1.63 3.88 539.94 480.50 462.23
900 2547.43 2399.52 2342.01 5.81 8.06 699.33 656.96 624.74
1000 2918.10 2555.56 2483.95 12.42 14.88 891.61 844.88 792.88
Average 1869.87 1803.36 1768.67 2.73 443 285.63 263.54 244.97

#Computing times in seconds CPU on a sun sparc 10, 135.5 Mips (as all other results in this paper).
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is then used as the stopping criterion for both VNS
variants. The first column of Table 1 gives the size
of the problem, the next three, the average objec-
tive function values, while the last three columns
report the average CPU time when the best solu-
tion was found by each method, (i.e., at the last
iteration for 2-opT). In VNS-2, the size of the 2-
oPT neighborhood is reduced by taking » = 40%
for n = 100, 60% for n = 200 and 80% for n > 300.
Average improvements in value of 2.73% and
4.43% over the classical 2-oPT heuristic are ob-
tained by VNS-1 and VNS-2, respectively. These
improvements are significant when compared with
those of other studies. For example, a 0.5% aver-
age improvement for the 2.5-opPT heuristic [3] over
the 2-opt heuristic (on random Euclidean in-
stances as well) at the cost of a 30-40% increase in
running time is reported in [40]. Improvements due
to VNS-2 are more important than those of VNS-1
and occur earlier as shown in the last two columns
of the table.

A heuristic for the Euclidean TSP called GE-
NIUS, which is very different from 2-opT, was
developed in [21]. It is a sophisticated insertion
followed by local deletion/insertion and correction
procedure. The size of the neighborhood in GE-
NIUS depends on a parameter p (the number of
cities already in the tour closest to the city that is
considered for possible deletion or insertion). We
immediately get a set of neighborhood structures
for VNS by denoting with ./7,(x) all tours ob-
tained by deletion/insertion with parameter value
p. Details can be found in [52], where results on the
same type of test problems as reported in [21] are
given. VNS gives a 0.75% average improvement
over GENIUS within a similar CPU time. More-
over, improvements are obtained for all problem
sizes. The GENIUS heuristic was also applied by
Gendreau et al. [22] to the TSP with back-hauls. In
this problem, customers (or cities) are divided into
three disjoint sets: depot, line-haul and back-haul
customers. Starting from the depot, a tour must be
designed such that all line-haul customers are vis-
ited before all back-haul customers. This time
VNS gives a 0.40% average improvement over
GENIUS with a 30% increase in computing time.
Again, improvements are obtained for all problem
sizes.

2.3. PM problem

Given a set L of m potential locations for p
facilities and a set U of given locations for n users,
the PM problem is to locate simultaneously the p
facilities in order to minimize the total transpor-
tation distance (or costs) from users to facilities,
each user being served by the closest facility.

This problem is NP-hard [41] and a central one
in discrete location theory [49]. PM can also be
expressed as a purely combinatorial problem: let
D= (d;) be an nxm matrix of nonnegative
numbers (associated with distances traveled or
costs incurred to satisfy the demand of the user
i€ U from a facility j€L). PM amounts to
choosing p columns of D such that the sum of
minima for all lines within these columns is mini-
mum. It may be written concisely as

min ZU min dy,
where J C L and |J| = p. Let us denote with

& = {x|x=set of p (out of m) locations of L}

the solution space of the problem. The distance
between two solutions x; and x; (x,x; € &) is
equal to k, if and only if they differ in k& locations.
Since % is a set of sets, a (symmetric) distance
function p can be defined as

p(xth) = |X1 \x2| = |XZ \X1| VX],)CZ €Y. (2)

It can easily be checked that p is a metric
function in %, thus, & is a metric space. The
neighborhood structures ./°; we use are induced
by metric p, i.e., k locations of facilities (k <p)
from the current solution are replaced by k others.
Such moves have already been mentioned in the
literature as A-interchange mechanism [53] or k-
substitution move [51].

PM is the first problem solved by VNS, in [50].
This work is discussed in [35]. Better results in
solving PM by VNS are reported in [33], where an
efficient implementation of fast interchange (FT)
descent from [66] is developed and used in step 2b
of the basic VNS. The same metric p is used for
both shaking (k =1,...,kn.) and local search
(k =1). In order to get a parameter free version of
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VNS, we set the value of the single parameter k.
to p.

The difficulty of PM depends greatly on the way
in which matrix D is obtained. In [59], test prob-
lems have values d;; drawn at random from a
uniform distribution over an interval [0,100].
Thus, these values do not satisfy the triangle in-
equality, nor correspond even approximately to
distances between points in a low-dimensional
space (as with data based on road distances).

A sophisticated TS heuristic is developed in
[59], which includes strategic oscillation [23-26].
VNS [36] improved best-known solution for all of
the 12 largest test problems of [59]. Moreover,
computing times are reduced by a factor of over 6
(for 50 VNS trials), which may be due to several
reasons, but probably the most important is the
fact that FI is not used in Rolland et al.’s com-
putations. Results are given in Table 2, which also
includes values obtained by heuristic concentra-
tion (HC) [61,62], supplied to us by the authors
[60], and chain substitution TS (CSTS) [51]. It
appears that VNS and HC outperform the two TS
heuristics. The best-known solution is reached by
VNS 11 times with an average error equal to 0.04,
while seven times by HC and with an average error
of 0.27. It should be noted that the quality of the
solution obtained by CSTS depends much on its
two parameters, i.e., lengths of the two tabu lists.

Table 2

PM: Results for test problems from [59]; maximum time allowed for

solution found in 50 trials of FI, CSTS and VNS are reported*

Since variable length TS did not work well, we
fixed the two parameters at 1 and 3, as suggested in
[51].

Comparison of other TS implementations with
VNS on problems from the ORLib data base gave
more balanced results. The basic VNS heuristic is
compared in [33] with FI and two recent methods
based on the TS approach: TS where the reverse
elimination method is used for diversifying the
search [65], we denote it by TS-1; TS where the so-
called 1-chain-substitution move is used in the
search [51], we denote it by TS-2. Results reported
are favorable for the basic VNS. For example, for
the first 25 test problems from [2] (as results for
them only are reported in [65]), all but two test
problems are solved exactly by VNS, with a total
error of 0.07%; all but three are solved exactly by
TS-2, with a total error of 0.57%; all but four are
solved exactly by TS-1, with a total error of 0.78%.
An explanation for the better performance of VNS
over TS, in terms of the effect of pseudo-local
optima due to Tabu restrictions is given in [33] and
briefly in [35].

2.4. MW problem
The MW problem (also known as continuous

location-allocation problem) is the continuous

CSTS [51] and VNS is set to be 30 times those of FI; the best

n P Best known % Error CPU time
FI VNS HC CSTS TS FI VNS CSTS TS
200 10 48912 1.21 0.00 0.00 0.02 0.68 5.2 80.3 59.1 381.9
15 31153 1.29 0.00 0.00 0.00 2.80 7.5 121.2 118.9 401.1
20 23323 1.96 0.00 0.65 0.00 0.74 9.6 161.6 163.2 416.6
300 10 82664 3.58 0.00 0.00 1.08 0.47 12.3 248.2 179.2 1241.0
15 52685 4.47 0.00 0.17 0.50 1.98 19.4 373.3 311.8 1321.6
20 38244 3.34 0.00 1.35 0.72 2.49 24.4 475.8 467.0 1378.3
400 10 123464 0.19 0.00 0.00 0.12 3.79 24.5 463.4 361.3 2910.6
15 79872 5.20 0.00 0.75 2.50 5.15 32.0 631.5 463.1 3096.8
20 58459 7.08 0.46 0.00 0.92 1.17 45.4 958.6 653.3 3218.3
500 10 150112 2.03 0.00 0.00 0.14 1.52 40.6 864.9 474.3 9732.2
15 97624 3.54 0.00 0.00 1.55 0.79 54.7 1164.2 887.2 9731.1
20 72856 4.86 0.00 0.41 1.46 0.41 74.5 15934  1350.0 9748.4
Average 3.23 0.04 0.27 0.75 1.83 29.2 594.7 4574 3631.5

#CPU times for HC method were not available to us.
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counterpart of PM: instead of locating the p fa-
cilities at some locations of L, they can be located
anywhere in the plane. MW can be formulated as
follows [45]:

P n
min E E Zij * Wi - dj(ui7 U,‘)
Ui Vi Zij “ -

=1 j=1
s.t.

P
Som=1, j=12,...n
i=1

z;€00,1], i=12,....p, j=1,2,...,n,

where p facilities must be located to satisfy the
demand of n users, u;, v; denote the coordinates of
the ith facility, d; the Euclidean distance from
(u;,v;) to the jth user, w; the demand (or weight) of
the jth user and z; the fraction of this demand,
which is satisfied from the ith facility. It is easy to
see that there is always an optimal solution with all
z;; € {0,1}, i.e., each user is satisfied from a single
facility, which is the (or a) closest one.

An early application of VNS to MW is given in
[5]. Several other ones are discussed at length in
[6]. It appears that the choice of neighborhoods is
crucial. Reassignment of customers to facilities a
few at a time is a poor choice, as it entails only
marginal changes in the solutions considered.
Much better results are obtained when the facilities
themselves are moved. As they may be located
anywhere in the plane target locations are needed.
An easy and efficient choice is locations of cus-
tomers, where there is no facility as yet. Using this
neighborhood structure, several basic TS and VNS
heuristics were developed and an extensive em-
pirical study carried out to evaluate various heu-
ristics — old, recent, and new — in a unified setting.
The different methods (i.e., Genetic search, three
TS variants, four VNS variants, etc.) were com-
pared on the basis of equivalent CPU times. Re-
sults of this study indicate that the VNS can be
effectively used to obtain superior solutions. For
instance on a series of 20 problems with 1060 users
the average error (by comparison with best known
solution) is of 0.02% only for the best VNS, while
it can rise to more than 20% for some well-known

heuristics of the literature. Average error for a
Genetic algorithm was 1.27% and for the best TS
0.13%.

2.5. MSSC

Consider a set X of n entities in g-dimensional
Euclidean space:

X ={x,....,x}, x; = (x15,...,%5) € R

The MSSC problem is to find a partition of X into
m disjoint subsets (or clusters) C;, such that the
sum of squared distances from each entity to the

centroid x; of its cluster is minimum, i.e.,

mlni Z ||X/—)_C[||2, )_C[:% Z X, (3)

i=1 lx,eC;

where | -|| denotes the Euclidean norm and
n=|C| (n + -+ n, =n).

Among many heuristics for MSSC (see [28] or
[63] for surveys), the K-MEANS local search algo-
rithm [39,48] is the most popular. Given an initial
partition, an entity x; that belongs to the cluster C,
in the current solution is assigned to some other
cluster C;, i# ¢. New centroids and objective
function values are then updated by using simple
formulae; a neighborhood of the current solution
is defined by all possible such exchanges (i.e., for
all i and j). A move is made if the best solution in
the neighborhood is better than the current one.
Otherwise, the procedure stops. Another popular
heuristic is the so-called H-MEANS algorithm [1],
which is very similar to Cooper’s alternating heu-
ristic [10] for the MW problem. A new descent
local search heuristic, called 1-MEANS, is proposed
in [34], where the cluster centroid ¥; is relocated at
some entity which does not already coincide with a
centroid. Since this move may be a large one and
corresponds to n; reallocations (or n;, K-MEANS
moves), we refer to it as a jump, hence the name 1-
MEANS. Obviously, heuristic solutions obtained
with the jump neighborhood could be improved by
the H-MEANS and/or K-MEANS heuristics. Using
them after -MEANS gives a VND heuristic called
J+H+K-MEANS.



456

Table 3

MSSC: Results for a 1060-entity problem; average and best results in 10 trials; stopping rule: 150 seconds for each trial
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m Best found % Deviation from best found
K-MEANS H-MEANS H+K-MEANS VNS-1 VNS-2

Av. Best Av. Best Av. Best Av. Best Av. Best
10 1754840264.9 0.19 0.19 0.01 0.00 0.01 0.00 0.14 0.00 0.14 0.04
20 791925963.7 2.89 0.00 1.87 1.29 1.31 0.46 3.50 1.84 0.74 0.01
30 482302357.1 9.34 6.63 11.77 9.01 8.20 5.79 10.64 5.16 0.86 0.00
40 342844809.0 15.50 12.04 20.01 15.28 16.86 11.53 15.95 9.64 0.81 0.00
50 256892529.0 27.16  24.57 35.60 30.59 28.66 17.14 29.95 13.50 1.42 0.00
60 199151542.6 35.79 32.53 44.59 33.56 36.21 30.00 35.19 20.50 0.59 0.00
70 159781533.1 44.28 33.08 56.63 47.90 47.39 38.89 43.85 25.59 0.78 0.00
80 130038918.6 53.15 46.64 62.34 50.77 56.69 43.98 51.08 35.07 0.75 0.00
90 111322621.7 56.12 48.94 63.94 51.38 54.40 48.38 44.94 28.17 0.73 0.00
100 97352045.7 60.41 54.74 46.21 46.21 35.95 35.95 42.99 28.00 1.16 0.00
110 86287804.2 60.69 52.78 59.92 49.73 41.44 40.79 43.97 23.76 1.34 0.00
120 76380389.5 62.90 54.00 62.32 52.66 48.96 41.28 38.58 33.56 1.02 0.00
130 68417681.6 65.91 50.73 54.66 38.95 42.34 24.64 38.46 26.30 0.67 0.00
140 61727504.5 62.16  49.82 53.05 45.51 36.00 36.00 30.85 22.04 1.43 0.00
150 56679822.6 66.06 55.05 47.82 40.74 3343 26.88 25.41 20.05 1.34 0.00
160 52210995.2 59.37 53.16 41.74 34.88 30.85 25.61 25.83 19.32 0.70 0.00
Average error 42.62 3593 41.40 34.28 32.42 26.71 30.08 19.53 0.90 0.00

In Table 3, two variants of VNS [34] are com-
pared with multi-start versions of K-MEANS, H-
MEANS and H+K-MEANS local searches based on
equivalent CPU time (150 seconds). Both VNS-1
and VNS-2 are parameter free, i.e., kpax = m.
VNS-1 uses K-MEANS neighborhoods (for step 2a
of the basic VNS from Fig. 1) and H+K-MEANS for
step 2b. VNS-2 uses relocation neighborhoods and
J+H+K-MEANS local search. The large difference in
the quality of the solutions obtained by these two
VNS versions can be explained by the effectiveness
of the relocation (jump) neighborhood structure.
A similar difference in efficiency between reallo-
cation and relocation neighborhoods for the MW
problem is reported in [6].

2.6. BBLP

Structured global optimization problems, while
having several and often many local optima, pos-
sess some particular structure, which may be ex-
ploited in heuristics or exact algorithms. One such
problem, of considerable generality, is the BBLP.
This problem has three sets of variables, x, y and z,
with cardinalities ny, n, and n3, respectively. When

all variables of y are fixed, it becomes a linear
program in x and z. When all variables of z are
fixed, it becomes a linear program in x and y. It
can be expressed as follows:

min  cyx+dyy+ejz+y"Coz+ co
s.t. ciquLdiTereingb[, i=1,...,m,
cfx+dly+elz+y"Cz< by,
i=m+1,....m,

x,y,z = 0.

The property recalled above suggests the well-
known alternate heuristic:

1. Initialization: Choose values of variables of z

(or ).

2. LPI: Solve the linear program in (x,y) (or in

(x,2)).

3. LP2: For y (or z) found in the previous step,

solve the linear program in (x,z) (or in (x, y)).

4. If stability is not reached (with given toler-

ance) return to 2.

Obviously this algorithm may be used in a
multi-start framework. To apply VNS one may
observe that neighborhoods A7 (x,y,z) of a solu-
tion (x, y,z) are easy to define. They correspond to
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k pivots of the linear program in (x,y) or in (x, z),
fork=1,2,..., kna. One can then apply the basic
VNS of Fig. 1 in a straightforward way. The local
search routine is the alternate heuristic described
above.

Results on randomly generated test problems
are presented in Table 4. Test problems have 30—
90, 10-50 and 10 x, y and z variables, respectively,
18 linear and 18 quadratic constraints. Coefficients
for linear terms in the objective function, and in
the linear terms in the constraints, of type <, =
or = are generated uniformly from (—20,20),
(—10,20), (—20,10) and (—10,+10), respectively;
right-hand sides are generated uniformly from the
interval (—100,100); coefficients for nonlinear
terms (i.e., matrices C;) are generated in two steps:
(i) the number of nonlinear terms is generated
from integer interval [1,5]; (i) nonzero elements
are chosen at random and corresponding coeffi-
cients generated uniformly from (—0.5,1).

It appears that VNS improves in almost all
cases and sometimes very substantially upon the
solution provided by the multi-start alternate
heuristic.

3. Extensions

While the basic VNS is clearly useful for ap-
proximate solution of many combinatorial and

global optimization problems, it remains difficult
or long to solve very large instances. As often, size
of problems considered is limited in practice by the
tools available to solve them more than by the
needs of potential users of these tools. Hence,
improvements appear to be highly desirable.
Moreover, when heuristics are applied to really
large instances, their strengths and weaknesses
become clearly apparent.

Three improvements of the basic VNS are
considered in this section. The first, reduced VNS
(RVNS) aims at increasing effectiveness (or speed),
at the possible cost of an increase in solution value.
The second, VNDS, extends basic VNS into a two-
level VNS scheme based upon decomposition of
the problem. This is shown, for the PM problem,
to improve both effectiveness of the heuristic and
quality of the solution obtained. The third exten-
sion addresses the problem of exploring valleys far
from the incumbent solution. Indeed, once the best
solution in a large region has been found it is
necessary to go quite far to obtain an improved
one. Solutions drawn at random in far-away
neighborhoods may differ substantially from the
incumbent and VNS can then degenerate, to some
extent, into the multi-start heuristic (which is
known not to be very efficient). So, some com-
pensation for distance from the incumbent must be
made and a scheme called SVNS is proposed for
that purpose.

Table 4
BBLP: Results for 10 repetitions of ALT (MALT) and VNS; each line reports average results on four random test problems with same
parameters
Parameters CPU time % Error
n m n ny ns MALT VNS MALT VNS
50 36 30 10 10 0.7 1.0 1.09 0.00
60 36 30 20 10 1.6 2.4 10.05 0.00
70 36 30 30 10 0.9 5.8 20.38 0.00
80 36 30 40 10 1.8 2.7 51.22 0.00
90 36 30 50 10 1.8 3.7 43.77 0.00
100 36 40 50 10 3.6 11.9 18.45 0.00
110 36 50 50 10 3.7 7.3 15.90 0.00
120 36 60 50 10 10.0 22.4 39.12 0.00
130 36 70 50 10 15.0 30.0 34.56 0.00
140 36 80 50 10 8.8 13.9 21.01 0.00
150 36 90 50 10 6.8 10.0 42.87 0.00
Average 4.35 9.19 23.23 0.00
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3.1. RVNS

Usually the most time-consuming ingredient of
basic VNS is the local search routine which it uses.
A drastic change is proposed in RVNS [36]: this
routine is disposed of completely. Thus in RVNS,
solutions are drawn at random in increasingly far
neighborhoods of the incumbent and replace it if
and only if they give a better objective function
value. Surprisingly, this simple scheme provides
good results, in very moderate time.

Results of experiments with large PM problem
(i.e., 3038 user example from the ORLib data base)
are reported in Table 5. It appears that RVNS
provides solutions of equal average value (0.53%
above the average value of the best solution ob-
tained by basic VNS) as FI in 18 times less com-
puting time.

So, RVNS appears to be desirable when one
aims at obtaining quickly good solutions, which
are not necessary very close to the optimum.

3.2. VNDS

VNS is combined with decomposition in [36]
where a VNDS heuristic is proposed. This method
follows a basic VNS scheme within a successive
approximations decomposition method. For a
given solution x, all but k attributes (or variables)
are fixed in the local search phase. All such pos-

sible fixations define a neighborhood .47 (x). As in
VNS, we start with a random solution x’ from
A71(x). But, instead of performing local search in
the whole solution space S with x’ as a starting
point, we solve a one-dimensional problem in the
space of the unfixed variable that has been chosen
at random. We then return a new value for this
variable into the solution and compute (or update)
the objective function value. The other steps are
the same as in VNS: if the new solution is not
better than the incumbent, then we set k = k + 1,
i.e., we look for improvements in the subspace
where all but two variables are fixed, etc., other-
wise a move is made and we set £ — 1 again. The
steps of the basic VNDS are presented in Fig. 3:
Note that the only difference between the basic
VNS and VNDS is in step 2b: instead of applying
some local search method in the whole solution
space . (starting from x’ € A";(x)), in VNDS we
solve at each iteration a subproblem in some
subspace ¥V, C A" (x) with x’ € V;. If a given local
search heuristic is used for solving this subproblem
(in step 2b of VNDS), then VNDS uses a single
parameter, kn.x. However, we can use some better
heuristic, such as VNS, for that purpose. More-
over, an additional problem specific parameter,
say b, can be considered. Its aim is to strike a
balance between the number of subproblems
solved and the desired quality of the solution of
each subproblem. Parameter b could represent,
e.g., the maximum time allowed for solving each

Table 5

Results for PM problem with 3038 users; methods: VNS — basic VNS; FI; RVNS; VNDS
p Objective values CPU time % Error

VNS FI RVNS VNDS FI RVNS VNDS FI RVNS VNDS
50  507809.5 510330.2 510216.4 507655.2 612.9 60.7 311.1 0.50 0.47 -0.03

100 354488.7 356005.1 356666.3 353255.2 1040.7 132.4 885.8 0.43 0.61 -0.35
150  281911.9 284159.0 283024.6 281772.1 1459.2 128.5 14324 0.80 0.39 -0.05
200  239086.4 240646.2 241355.6 238623.0 1943.6 107.6 1796.8 0.65 0.95 -0.19
250  209718.0 210612.9 210727.7 209343.3 2395.6 150.3 2189.7 0.43 0.48 -0.18
300 188142.3 189467.5 188709.3 187807.1 2583.4 130.6 1471.7 0.70 0.30 —-0.18
350 171726.8 172668.5 172388.5 171009.3 2804.3 153.1 2270.3 0.55 0.39 -0.42
400  157910.1 158549.5 158805.0 157079.7 4083.3 158.7 3670.9 0.40 0.57 —-0.53
450  146087.8 146727.2 147062.0 145449.0 4223.8 179.5 1652.7 0.44 0.67 -0.44
500  136081.7 136680.5 136665.0 135468.0 4649.3 209.7 2599.8 0.44 0.43 —-0.45
Average 2579.6 141.1 1828.12 0.53 0.53 -0.28
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Initialization. Select the set of neighborhood structures Ny, k = 1,..., kmaz, that will be used in
the search; find initial solution z; choose stopping condition;

Repeat the following until the stopping condition is met:
(1) Set k « 1; (2) Until k¥ = ka2, repeat the following steps:
(a) Shaking. Generate a point z' at random from the k" neighborhood of z (z' € N;(z));
in other words, let y be a set of & solution attributes present in ' but not in z (y = 2’ \ z).
(b) Local search. Find the local optimum in the space of y either by inspection or by some
heuristic; denote the best solution found with ¥’ and with z the corresponding solution in

the whole space S (z" = (' \ y) Uy');

(c) Move or not. If the solution thus obtained is better than the incumbent, move there
(z + z"), and continue the search with A} (k < 1); otherwise, set k + k + 1;

Fig. 3. Steps of the basic VNDS.

subproblem, or the maximum size of the sub-
problem we are willing to solve. If time or size of
the subproblem exceeds its limit, then we set
k<1, ie., we continue the decomposition by
solving smaller subproblems. In this case, we have
in fact a recursive, two level, VNS heuristic. Note
that it may be worthwhile to consider neighbor-
hoods built from close smaller ones if there is a
significant proximity relation between them. This
happens in the examples next discussed.

The PM problem has been defined in Section
2.3. Results for the 3038 user problem taken from
TSPLib [57] are given in Table 5. Problems are
solved by the following heuristics: VNS; FI; RVNS
and VNDS. The CPU time FI spends in the search
(7) is multiplied by five to get a stopping condition
for basic VNS. We also use ¢ as maximum time
allowed for VNDS; the parameter b for VNDS is
set to 300. In the last three columns of Table 5,
errors relative to the solution obtained by VNS are
reported. It appears that (i) VNDS outperforms FI
within similar CPU times; (ii) VNDS is 0.28%
better on average than basic VNS, using five times
less CPU times.

3.3. SVNS

Study of the topology of local optima and the
corresponding valleys (or mountains) of the ob-
jective function of the problem considered is a rich
source of information for understanding how
heuristics work. Yet, up to now, such studies ap-

pear to have been limited to a few problems only
(e.g., graph coloring [37], TSP [43] and graph bi-
section problem [4]). In [32], such a study is con-
ducted for the weighted maximum satisfiability
problem of logic. Given m clauses defined on n
logical variables (i.e., unions of literals, or vari-
ables in direct or negated form) with positive real
weights, the problem is to find a truth assignment
to the variables, which maximizes the total weight
of the satisfied clauses.

It appears from this study that local optima
tend to coalesce at the top of large mountains.
However, there may be several of them. This
poses a problem for VNS: indeed a few iterations
will quite quickly determine the best solution in a
large region (the top of the highest mountain in
that region). But then no better solution will be
found near to it. Moreover, solutions in neigh-
borhoods far from the incumbent will necessarily
be rather different from it and possibly of poor
value. So they will not provide indications as to
where are better solutions (higher mountains, if
any). If a single descent (or ascent) is made the
local optimum found may not be very good ei-
ther. In other words, when one must move very
far from the incumbent solution, basic VNS tends
to degenerate into multi-start, which is not among
the best metaheuristics. There are many possible
ways to overcome this problem. A simple one is
to replace in the test for acceptance of a move the
objective function value by an evaluation function
taking also into account distance from the incum-
bent. The resulting SVNS method is presented in
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Initialization. Select the set of neighborhood structures My, k = 1,..., kmaz, that will be used in
the search; find an initial solution 2 and its value f(z); set Zopt + , fopt + f(): choose a

stopping condition and a parameter value o;

Repeat the following until the stopping condition is met:
(1) Set k + 1; (2) Until k& = kynqz, repeat the following steps:
(a) Shaking. Generate a point z’ at random from the k** neighborhood of z (z' € N (z));
(b) Local search. Apply some local search method with z’ as initial solution; denote with z"

the so obtained local optimum;

(c) Improve or not. If f(z") < fopt Set fopt + f(z) and zops + 2"
(d) Move or not. If f(z") — ap(z,z") < f(z) set z < z" and k «+ 1; otherwise set k « k + 1.

Fig. 4. Steps of the SVNS.

Fig. 4 (in case of minimization, as in other
figures).

SVNS makes use of a function p(x,x”) to
measure distance between the incumbent solution
x and the local optimum found x”. The distance
used to define the .47, as in the above examples,
could be used for this purpose. The parameter o
must be chosen in order to accept exploring valleys
far from x when f(x”) is larger than f(x) but not
much (otherwise one will always leave x). A good
value is to be found experimentally in each case.
Moreover, in order to avoid frequent moves from
X to a close solution, one may take large value for
o when p(x,x") is small. More sophisticated
choices for a function ap(x,x”) could be made
through some learning process.

A first comparison of three heuristics, i.c.,
GRASP, VNS and TS on the jnh set of WMAX-
SAT instances from [58] is reported in [32]. These
instances all have 100 variables, 800 or 900 clauses
and integer weights for clauses uniformly drawn
at random in the set {1,2,...,1000}. The stop-
ping rule for all heuristics is 30 seconds computing
time per instance. Results are summarized in
Table 6.

For this set of test problems, VNS and TS
perform better than GRASP (which spends much
time to get good first local optima and only
moderate time to improve on the solutions so
found). TS does slightly better than basic VNS.

Experiments were also done to compare VNS
and TS on much larger test problems, with 500
variables and 4000-4500 clauses. A variant where
only low neighborhoods, i.e., the five directions
with smallest increase of f(x) were used did not
provide better results than basic VNS. However,
when using low neighbourhoods in SVNS, the best
results were obtained. They are summarized, for a
series of instances with 500 variables, 4500 clauses
and 3 variables per clause in Table 7. SVNS gives
the best solution known for 23 problems out of 25
vs 5 out of 25 for TS. Consequently, the average
error is much smaller for SVNS than for TS.

4. New applications
When a metaheuristic is very efficient and ef-

fective, or when its basic principle is sufficiently
new and simple, it may suggest not only new

Table 6
Results for jnh test problems for WMAXSAT (rn = 100)
GRASP VNS TS
Number of instances solved exactly 6 42 44
% Average error in 10 trials 0.0678 0.0189 0.0134
% Best error in 10 trials 0.0274 0.0001 0.0000
Total number of instances 44 44 44
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Table 7
Results for gerad test problems for WMAXSAT (n = 500)
VNS VNS-low SVNS-low TS

Number of instances where best 6 4 23 5
solution is found
% Average error in 10 trials 0.2390 0.2702 0.0404 0.0630
% Best error in 10 trials 0.0969 0.1077 0.0001 0.0457
Total number of instances 25 25 25 25

applications but new types of applications; this is (D) max b'w—e w_ —e w,

the case for VNS. In this section, we describe two st. ATA<e,

such types of applications: stabilized column gen- ~

eration, which requires finding quickly near-opti- —A—w.S — 0,

mal solution to large instances of combinatorial T—w, < <04,

problems to work well, and the system Auto- 7w, w, = 0.

GraphiX (AGX), which implements application of
VNS to graph theory (and not only to solving
optimization problems on graphs).

4.1. Stabilized column generation

Consider a feasible and bounded linear pro-
gram P and its dual D:

(P) min  c'x
s.t. Ax=b, x =0,

(D) max b'm
st. ATn<e, 1>0.

When P has many more variables than D, it is
convenient to solve it by column generation.
Convergence, however, is often slow. Such unde-
sirable behavior is also observed when one tries to
prove optimality of a degenerate solution of P.

In [12], a stabilization scheme is proposed
which remains entirely within the linear program-
ming framework. To this effect, it merges a per-
turbation and an exact penalty method.

Define a primal problem P and its dual D as
follows:

(P) min  ¢'Xx -5y + 8.y,
st. AXx—y_+y. =D,
VoS, Yy SéEy,
X,p-ps 20,

In the primal, y_ and y, are vectors of slack and
surplus variables with upper bounds ¢_ and e,
respectively. These variables are penalized in the
objective function by vectors ¢_ and J,, respec-
tively. In the dual, this amounts to penalizing dual
variables 7 when they lie outside the range [§_, J. ].
When applying column generation, after finding a
column with negative reduced costs, the parame-
ters ¢ and ¢ are updated. This is done following
problem-specific rules.

For stabilized column generation to work well,
it is essential that good estimates of dual variables
be obtained at the outset. For the PM, MW and
MSSC problems, such estimates may be obtained
by solving the primal of large instances with VNS
or VNDS and estimating, from sensitivity analysis,
lower and upper bounds on the dual variables by
the formulae

& =f(C) —
and

m—m;nf( ) UAKDS(C)),

S(Ci\{k})

where i is the index of the set C; in the best par-
tition found to which k belongs and f(C;) the
contribution of this set to the objective function
value. Combining stabilized column generation
with branch-and-bound, MW problems with up to
1060 users could be solved exactly [31,44] (vs 30
for the largest instances solved exactly in the
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literature when p > 3). Moreover, the continuous
relaxation of PM problems with up to 3038 users
could also be solved (work on combining this with
branch-and-bound is under way) [64]. The MSSC
proved to be more difficult. The bottleneck is the
column generation subproblem, a hyperbolic pro-
gram in 0-1 variables with quadratic numerator
and linear denominator, solved by a sequence of
unconstrained quadratic 0-1 programs. Never-
theless, several problems from the literature, in-
cluding the famous 150 iris of Fisher [20], could be
solved exactly for the first time [13].

4.2. VNS for extremal graphs

VNS can be helpful in solving approximately
numerous optimization problems defined on
graphs. But it can also prove useful in the study of
graph theory per se.

In [9], conjectures in graph theory are viewed as
combinatorial optimization problems on an infi-
nite family of graphs (of which only those of
moderate size will be explored). Then VNS can be
applied. This leads to an automated system, called
AGX whose aim is to suggest, disprove or give
hints on how to prove conjectures in graph theory.

Assume an objective function f(G) depending
on graph invariants i;(G), i2(G),...,i;(G) is given
(recall that invariants are quantities independent
of edges or vertices labeling e.g., order, size, radi-
us, diameter, chromatic number, maximum or
minimum degree. ..). Let ¢, denote the family of
all graphs G with n vertices (a parameter). The
problem considered is then
min(max) £(G) )
to which we apply VNS specialized to extremal
graphs problems.

AGX comprises a VND component with many
neighborhoods A7 (G), N 5(G), ..., N} aw (G)-
In the present version, there are 10 of them, de-
fined by the following transformations on G: de-
letion of an edge; addition of an edge between
nonadjacent vertices; move of an edge, i.e., deletion
followed by addition, but not in the same position
(these three neighborhoods are used in most ap-

plications); detour: removal of an edge and addi-
tion of two edges between endpoints of the deleted
one and a vertex not adjacent to either of these
endpoints; short cut, i.e., the reverse operation
than detour; 2 opt: remove two nonadjacent edges
and add two different nonadjacent edges connect-
ing the endpoints of the removed ones; insert
pending vertex: remove the edge of a pending
vertex, add edges between it and two adjacent
vertices and remove the edge between them; add
pending vertex: add an edge from one vertex to a
new one; delete vertex of bounded degree and all
edges adjacent to it, connection: delete two non-
adjacent edges and add two adjacent ones.

It is up to the user to apply all transformations
in turn or to select a subset of them, e.g. the less
time-consuming ones. VNS itself uses a set of
nested neighborhoods A (G), A4(G), ... defined
by the cardinality of the symmetric difference be-
tween the edge sets of two graphs G = (V,E) and
G =V,E)

p(G.G) =|(E\E)U(E'\ E)|, (5)

ie., p(G,G) =k if there are exactly k pairs of
vertices adjacent in G and not in G’ or adjacent in
G' and not in G. Then

G € N(G) <> p(G,G) =k. (6)

In addition to these components, which follow
the basic schemes of Figs. 1 and 2, AGX comprises
a routine for graph analysis which performs the
following: (i) recognition of the class to which
belongs the extremal graph G obtained (if it is one
of the series of well-known classes such as path,
star, tree, complete or bipartite graph, ...); (ii)
computation of various invariants for G; (iii) vi-
sualization of G on the screen using X-Windows,
with interactive modifications of position of ver-
tices, (iv) subroutines for interactive modifications
of G by deletion or addition of edges or vertices.
Moreover, AGX also has a routine for parametric
analysis which obtains, stores, analyzes and rep-
resents values of invariants, and of functions cor-
responding to conjectures.

VNS can be used in graph theory for several
purposes:
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(a) Find a graph satisfying given constraints. Let
i1(G), i(G),...,i;(G) denote / invariants of G and

p1, P2, ---,pr values given to them. Consider the
problem

I
min f(G) = ; ie(G) — el (7)

Any graph such that f(G) =0, satisfies these
constraints. Note that constraints involving for-
mulae on several invariants can be treated in a
similar way. Expression (7) shows constrained
problems can be reduced to unconstrained ones.

(b) Find optimal or near optimal values for an
invariant subject to constraints. Let ip(G) denote
the objective function invariant and assume con-
straints expressed as above. Consider the problem

min f(G) = is(G) +MZ lix(G) — el (8)

GeY,

where M is a constant sufficiently large to ensure
that for any pair of graphs G, G’ € ¥, such that
S lik(G) —pel =0 and Y, [i(G') — pe| >0,
f(G) < f(G). Maximum values are tackled in a
similar way.

Note that some invariants take integer values
and remain constant on large plateaus when G is
modified a little at a time, i.c., replaced sequen-
tially by a graph in the neighborhood A47(G). It is
then convenient to modify the objective function
by adding a secondary objective, with a coefficient
sufficiently small not to change the ordering of
graphs according to the first objective, and ori-
enting the transformations in the right direction.

(¢) Refute a conjecture. Consider a conjecture
h(G) < g(G) where h(G) and g(G) are formulae
depending on one or more invariants of G. It
corresponds to the problem
min f(G) = g(G) - h(G). )

€Y,

If a graph G for which f(G) < 0 is found, the
conjecture is refuted.

(d) Suggest a conjecture (or sharpen one). This
can be done in various ways, which usually use
parameterization on n or other invariants
i1(G),i2(G), i3(G), . ..,i;(G). For instance consider

min f(G) = i(G) — i1(G). (10)

GeY,

If no graph G with f(G) < 0 is found, then this
suggests i;(G) <ir(G). If the extremal graphs
found belong to a recognizable class, then it may
be possible to deduce a more precise inequality in
il(G)7 lQ(G) and n.

(e) Suggest a proof. The way the extremal
graphs are obtained, e.g., what transformations of
G are used, may suggest strategies to prove con-
jectures for all graphs or for some classes of them.

The Graffiti system of Fajtlowicz [15-19] has
been used to generate hundreds of conjectures in
graph theory which have been studied by many
mathematicians, some of them proved and more
disproved. The following conjecture is a reformu-
lation of one of them (i.e., # 834):

31(G) < n, (11)

where & denotes the minimum degree and / the
average distance between pairs of distinct vertices
of G. This conjecture has been refuted by AGX
[9] in 153 seconds of CPU time using an edge
addition, 15 edge deletions, a split, two mergings,
six moves, three 2-opTs, another merging and
split after VNS with neighborhoods of size up to
seven, and a final edge deletion after another
application of VNS with neighborhoods of size
up to seven. Two other conjectures of Graffiti are
also refuted in [9]. Recently five more conjectures
of Graffiti could be refuted by AGX in con-
junction with a program to generate cubic graphs
[7].

The energy E(G) of a graph G is the sum of
absolute values of the eigenvalues of G’s adjacency
matrix. It has an important interpretation in
chemistry, in connection with Huckel’s molecular
orbital theory [29]. A systematic study of E(G),
using AGX, has been initiated in [8]. Curves of
(presumably) minimum and maximum values of
E(G) as functions of numbers n of vertices and m
of edges of the graph considered were systemati-
cally obtained (in several days of computing time).
While extremal graph were not always obtained,
and sometimes better ones could be found inter-
actively, graphs corresponding to local minima or
linear portions of the curves were easily recog-
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nized. AGX then led to several conjectures, in-
cluding the following:

2v/m < E < 2m,

which despite its simplicity does not appear to
have been proposed before. These bounds could
then be proved, and shown to be tight for complete
bipartite graphs and for disjoint edges plus addi-
tional isolated vertices, respectively.

Moreover, several conjectures related to vari-
ous other graph invariants (chromatic number,
independence number,. . .) were obtained and some
of them proved.

5. Conclusions

When evaluating metaheuristics, it appears that
several, possibly conflicting, criteria should be
taken into account. Desirable properties of meta-
heuristics include
1. Simplicity: The metaheuristic should be based

on a simple and clear principle which should

be widely applicable.

2. Coherence: The various steps of heuristics for
particular problems should follow naturally
from the principle of the metaheuristic.

3. Efficiency: Heuristics for particular problem
should be efficient, i.e., provide optimal or
near-optimal solutions for all or at least most
realistic instances. Preferably, the heuristics
should solve optimally most problems of
benchmarks, when available.

4. Effectiveness: Heuristics for particular problems
should provide good, perhaps optimal or near-
optimal, solutions in moderate CPU time.

5. Robustness: Heuristics for various problems
should be effective and efficient, and for each
of these problems should give good solutions
for a variety of instances, i.e., not just be fine-
tuned to some training sets and less good else-
where.

6. User-friendliness: Heuristics should be well de-
fined, easy to understand and, most important,
easy to use. This implies they should have few,
ideally no, parameters.

7. Innovation: Preferably the principle of the meta-
heuristic and/or efficiency and effectiveness of

heuristics derived from it should lead to new

types of applications.

While VNS is still in its infancy, results for a
variety of problems described in this paper allow a
first assessment. Clearly, VNS is based on a simple
principle, i.e., systematic change of neighborhood
within the search. This principle, explained in the
basic schemes of Figs. 1 and 2 is largely applicable
and often in an easy way when a local search
heuristic is available. (This simplicity implies that
isolated steps of several heuristics or metaheuris-
tics are particular cases or come close to some
steps of VNS; their derivation often follows, when
it is explicit, from different principles.) While VNS
heuristics use several and sometimes many neigh-
borhoods, their various steps stem from a common
principle, i.e., hybridation is avoided and VNS is
coherent. Experiments with benchmarks of large
PM and MW problems show VNS is very efficient:
it solves many instances exactly and otherwise
gives solutions very close to the optimum. For
several other problems VNS appears to perform
better than recent heuristics developed by leading
researchers. Moreover, VNS is effective: the best
solutions are obtained in moderate computing
time. This is particularly true when using VNDS.
For instance, time to find the best solution of very
large instances of PM problem is less than that for
a single descent with the fast interchange heuristic.
Computational results on simulated and real data
show VNS is robust, i.e., about equally efficient
and effective for both types of problems. More-
over, VNS is very user-friendly. The basic steps are
easy to understand and apply and versions without
parameters (except for total CPU time allocated)
are not hard to obtain, while remaining efficient
and effective. Finally, VNS is innovative: on the
one hand, efficiency and effectiveness of VNS
heuristics for PM, MW, MSSC, and other prob-
lems are an indispensable ingredient in stabilized
column generation algorithms for solving those
problems exactly; and on the other hand, the basic
principle of VNS naturally suggest the approach to
graph theory developed in AGX.

Developments of VNS first focussed on appli-
cations of its basic principle to combinatorial op-
timization as well as to a few global optimization
problems. More recently, several extensions were
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proposed. RVNS aims at solving very rapidly, if
approximately, very large instances. VNDS aims
at increasing precision and at reducing solution
time for decomposable problems. This avenue
deserves more research, particularly as there are
many ways to decompose a problem. SVNS aims
at making efficient the search for better solutions
far from the incumbent one. It is a first step to-
wards solution of a problem crucial to obtention
of optimal or very close to optimal solution for
large instances. Neighborhoods used in VND also
strongly influence the efficiency of VNS, as e.g., for
the MW problem. Their nature and properties
should be investigated in more detail.

Some comparisons of VNS with other meta-
heuristics have been made and clearly there is
room for many more. Hybrid heuristics have not
been studied up to now. While they appear to be
promising in terms of finding better solutions,
particularly for large instances of difficult prob-
lems, they would also imply a decrease in sim-
plicity and consequently in the understanding of
the heuristics behavior. The same appears to be
true for the introduction of additional parameters
to guide the search more efficiently either in the
descent or in the diversification phase.

A first study of valleys (or mountains) of the
objective function and their exploration by VNS
has been conducted for the weighted maximum
satisfiability problem. It led to the development of
an efficient SVNS heuristic. Much more work on
the topology of local optima and valleys appears
to be desirable. VNS which does not alter the
shape of valleys explored could prove to be a very
good tool for that purpose. It might thus help to
address the important and largely open theoretical
question “Why do metaheuristics work as well as
they do?”
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