ELSEVIER

European Journal of Operational Research 132 (2001) 22-38

EUROPEAN
JOURNAL
OF OPERATIONAL
RESEARCH

www.elsevier.com/locate/dsw

Theory and Methodology

A Tabu search heuristic for the generalized assignment problem

Juan A. Diaz !, Elena Ferndndez *

Dpt. d’Estadistica i Investigacié Operativa, Universitat Politécnica de Catalunya, Pau Gargallo 5, 08028 Barcelona, Spain

Received 18 August 1998; accepted 20 March 2000

Abstract

This paper considers the generalized assignment problem (GAP). It is a well-known NP-hard combinatorial opti-
mization problem that is interesting in itself and also appears as a subproblem in other problems of practical impor-
tance. A Tabu search heuristic for the GAP is proposed. The algorithm uses recent and medium-term memory to
dynamically adjust the weight of the penalty incurred for violating feasibility. The most distinctive features of the
proposed algorithm are its simplicity and its flexibility. These two characteristics result in an algorithm that, compared
to other well-known heuristic procedures, provides good quality solutions in competitive computational times. Com-
putational experiments have been performed in order to evaluate the behavior of the proposed algorithm. © 2001

Elsevier Science B.V. All rights reserved.

Keywords: Generalized assignment problem; Metaheuristics; Tabu search; Local search

1. Introduction

The generalized assignment problem (GAP) is a
well-known NP-hard combinatorial optimization
problem. It considers a situation in which n jobs
have to be processed by m agents. The agents have
a capacity expressed in terms of a resource which is
consumed by job processing. The decision maker
seeks the minimum cost assignment of jobs to

*Corresponding author. Tel.: +34-93-4016948; fax: +34-93-
4015855.
E-mail addresses: jadiaz@eio.upc.es (J.A. Diaz), ele-
na@eio.upc.es (E. Ferndndez).
! Partially supported by grant 110598/110666 from Consejo
Nacional de Ciencia y Tecnologia (CONACYT), México.

agents such that each job is assigned to exactly one
agent subject to the agents’ available capacity.
Assignment of jobs to computers in a computer
network, storage space allocation, design of com-
munication networks with node capacity con-
straints, scheduling variable-length television
commercials into time slots, etc., are examples of
practical applications for the GAP. It also appears
as a subproblem in many real-life problems such as
vehicle routing, plant location, flexible manufac-
turing systems and resource scheduling.

In this paper, we propose a Tabu search algo-
rithm for the GAP. Two distinctive features of this
algorithm have to be remarked: its simplicity and
flexibility. These two characteristics result in an
algorithm that provides good quality solutions

0377-2217/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0377-2217(00)00108-9

J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38 23

that are competitive with other well-known heu-
ristic procedures.

The flexibility is obtained from two sources: a
strategic oscillation scheme that results from al-
lowing the search to explore the infeasible solu-
tions’ space and an adaptively modified objective
function. During the search, the solutions’ space is
enlarged to permit considering infeasible solutions.
This gives the search a higher level of flexibility
and some feasible solutions, that otherwise would
not have been considered, can be reached by suc-
cessively crossing the feasible/infeasible boundary.
This strategy has already been used for the GAP
by other authors (see [16,25-27]). As explained
later on, the difference is that in our approach no
solution is qualitatively preferred to others in
terms of its structure so a priori all considered
solutions are equally desired. This further in-
creases the degree of flexibility of the procedure.

Our algorithm considers a modified objective
function that includes a penalty term associated
with infeasible solutions. The weight given to such
penalty is dynamically adapted according to the
history of the search. A similar idea has been
proposed independently by Yagiura et al. [25],
where the search parameter is also adjusted auto-
matically according to the result of the previous
iteration. However, in our approach the modified
objective function plays a central role since it is the
element that really takes care of guiding the
search. This is achieved by using a combination of
recency-based and medium-term memory for ad-
justing the penalty weight. The combination of
these two memory components results in an ob-
jective function that is continuously adapting itself
to the stage of the search. This is an issue that we
believe is interesting since, traditionally memory
has been widely used to explore complex neigh-
borhood structures, whereas it has been used in a
very limited fashion to obtain automated mecha-
nisms to modify the objective function that guides
the search process.

The adaptability of the proposed algorithm
permits not having to resort to complex neigh-
borhood structures. This, in its turn, has an im-
portant effect on the overall speed of the procedure.
This is particularly true with the neighborhood
structures that are explored (the classical shift and

swap neighborhoods) and with the long-term
memory component considered which is the same
(the assignments’ frequency) both for the intensi-
fication and diversification phases.

The result is an algorithm where the search
strategy is based on (a) exploring large areas of the
infeasible solutions’ space and (b) dynamically
adapting the objective function to the stage of the
search.

The proposed algorithm has been tested on
different sets of problems publicly available in
Beasley OR-library (http:/lmscmga.ms.ic.ukljebl
orliblgapinfo.html) and in Yagiura library (http://
www-or.amp.i.kyoto-u.ac.jplyagiuralgap). It has
also been compared to other well-known existing
methods proposed by other authors in
[7,16,21,25,27].

The results prove that the performance of the
algorithm is remarkable since it produces high-
quality solutions in small computational times.

This paper is organized as follows: in Section 2
a model for the GAP is given and a relaxation
RGAP that will be used throughout the paper is
presented. Section 3, reviews solution methods for
the GAP found in the literature. The Tabu search
heuristic for the GAP is explained in detail in
Section 4: neighborhood structures, the neighbor
generation mechanism, and the memory functions
used are detailed in that section. Section 4 also
presents the mechanism for dynamically adjusting
the penalty parameter. In Section 5, computa-
tional results are presented and our approach
is compared to other existing algorithms. Fi-
nally, Section 6 includes some conclusions and
remarks.

2. The model

Let 7={1,...,m} be the set of agents and
J =A{1,...,n} the set of jobs. A standard integer
programming formulation for the GAP is the fol-
lowing:

(GAP)

min z= Z Zci,x[j, (1)

i€l jeJ

s.t.

24 J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38

icl

Zai,«xi/»éb,« VI S [, (3)
jes
x; €4{0,1} Viel VjelJ, 4)

where ¢;; is the assignment cost of job j to agent i,
a; the resource required for processing job j by
agent 7, and b; is the available capacity of agent i.
Decision variables x;; are set to 1 if job j is assigned
to agent i, 0 otherwise. Constraints (2), together
with the integrality conditions on the variables,
state that each job is assigned to exactly one agent.
Constraints (3) insure that the resource availabil-
ities of agents are not exceeded.

In our approach, the assignment costs have
been expressed in terms of their best assignment

Ai/' =Cij — cmin,
) , J

where c¢min; = min{c;; : i € I} is the cost of the
best assignment for job j. 4;; can be interpreted as
the relative assignment cost of job j to agent i with
respect to its best assignment cost. The use of the
4;’s allows fair comparisons for deciding which
jobs have to be assigned to a given agent, partic-
ularly when the assignment costs have different
ranges for the various jobs. Then, the objective
function can be rewritten as

minz = K + min { Z ZAUXU}’

icl jeJ

where K =}, cmin;, represents a fixed assign-
ment cost which has to be incurred. Since K is
constant we can remove it from (1) and consider
the following equivalent objective function:

minz = Z ZA,;,-X,-,—. (1)

iel jeJ

Throughout the paper, we consider a relaxed for-
mulation for the GAP in which the capacity con-
straints (3) are dropped and a penalty term is
added to the objective function:

min 7’ = Z Z Aix;+ P, (1)

iel jeJ

(RGAP)

Y oxy=1 Vjel, (2)

iel

x;€4{0,1} VjeJ, Viel (4)

The term P in the objective function evaluates the
infeasibility of the solutions to RGAP, with re-
spect to constraints (3) of GAP. It takes the form

P:PZSn

iel

where s; = max{}_,_, a;x; — b;,0} measures the
amount by which the capacity of agent i is violated
by a given solution. The parameter p is a penalty
factor.

The reasons for considering RGAP are next
explained. In the formulation of the GAP con-
straints (3) are ‘difficult’ and, usually, they are not
easy to fulfill. For this reason these constraints
may confine feasible solutions to a fairly narrow
region. When exploring the neighbors of a given
solution in a heuristic based method, restricting
the search to feasible solutions using simple moves
tends to generate very few trial solutions, forcing
the process to terminate very quickly, often with
low quality solutions. On the other hand, allowing
some violation of feasibility has two advantages:
first, it permits the execution of moves that are less
complex than might otherwise be required. Sec-
ond, it gives the search a higher level of flexibility
and much larger areas of the solutions’ space can
be explored. The deviation from feasibility can be
measured and controlled through a penalty term in
the objective function. Violation of feasibility is
allowed in several recent works for the GAP like
the Tabu search approach considered in [16], the
VDS proposed by Yagiura et al. [27], the VDS
with branching search considered in [26] and the
ejection chain approach proposed in [25]. How-
ever, these references, each one in its own context,
follow the same a priori criterion that, in some
sense, guides the search that is performed. Namely:
among feasible solutions to RGAP, feasible solu-
tions to GAP (those that fulfill constraints (3)) are
always preferred. This is an important difference
with respect to our approach. We consider all
feasible solutions to RGAP equally attractive in

J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38 25

terms of their structure. This is further explained
in Section 4.2.

3. Related work

In this section, we present a brief review of
solution methods found in literature for GAP. A
comprehensive treatment of these methods can be
found in [6] and in [21].

Exact methods for the GAP differ from each
other in the way the lower bounds are computed.
These bounds are derived from relaxations of the
assignment constraints (constraints (2)), the
knapsack constraints (constraints (3)) or the in-
tegrality conditions on the variables (constraints
(4)). See [3,18,20,22-24].

Large-sized instances of the GAP have been
tackled by means of approximate methods since
exact methods have only proved to be effective for
small-sized instances where the capacity con-
straints are loose. Different Lagrangean relax-
ations have been proposed in [2,9,13-15,17].

Other types of heuristic methods focused on
providing good quality feasible solutions can be
found in the literature for the GAP.

Martello and Toth [19] propose a two phase
heuristic method MTH. In the first phase an initial
solution is constructed using a greedy function to
measure the ‘desirability’ of assigning job j to
agent i. In the second phase the initial solution is
improved using a simple local exchange procedure.

Cattrysse [4] considers a heuristic that incor-
porates a variable reduction procedure in order to
reduce the size of the problem. This reduction
procedure is based on the addition of valid in-
equalities (facets) of the knapsack polytopes as-
sociated to the capacity constraints. It starts
solving the LP relaxation of the GAP. Then, vio-
lated valid inequalities for each knapsack con-
straint are identified and added to the formulation.
This process continues until no further valid in-
equalities can be generated. Once the reduction
step finishes, all variables with value 1 are fixed
and the capacity of each agent adjusted. In a sec-
ond step, Simulated Annealing is applied to solve
the reduced problem.

Amini and Racer [1] developed a Variable
Depth Search Heuristic (VDSH) for the GAP.
Two phases are considered. In the first phase, an
initial solution and the LP lower bound are gen-
erated. A doubly-nested iterative refinement pro-
cedure is performed in the second phase. Feasible
shift moves of a job from one agent to another
one, and feasible swap moves between jobs as-
signed to different agents are considered during the
refinement procedure.

Trick [24] considers a heuristic approach based
on the linear programming relaxation of the GAP.
It is an iterative method which consists of three
steps. In the first step all ‘useless’ variables are
removed (a variable is considered useless if
a; > b;). In the second step the LP-relaxation is
solved. During the third step all variables with
value 1 are fixed. When the LP based heuristic
finishes, an improvement phase that consists in
swapping pairs of jobs is applied.

Cattrysse et al. [5] reformulate the GAP as a set
partitioning problem. A heuristic procedure based
on this reformulation is proposed. Each column
represents a feasible assignment pattern of jobs to
an agent. For each agent, columns are generated
solving a knapsack problem in which the coeffi-
cients are obtained from the vector of dual vari-
ables of the LP-relaxation. Since this problem is
degenerate, a dual ascent procedure is used to
obtain the dual variables. Then, a subgradient
optimization procedure is applied to improve the
lower bound. Heuristic solutions may be found by
coincidence during the subgradient optimization
or by search among the columns generated.

Osman [21] proposes a hybrid heuristic SA/TS
which combines Simulated Annealing and Tabu
search. It uses a A-generation mechanism which
describes how a solution can be altered to generate
another neighbor solution. The SA/TS algorithm
is called hybrid because it combines the non-
monotonic oscillation strategy of Tabu search with
the simulating annealing philosophy. This non-
monotonic cooling scheme is used within the
framework of simulating annealing to induce an
strategic oscillation behavior in the temperature
values. Also a Tabu search algorithm is proposed
for the GAP. Both, the hybrid SA/TS and the
Tabu search algorithms use a frequency-based

26 J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38

memory that records information used for diver-
sification purposes.

A genetic algorithm (GA) for the GAP is pro-
posed by Beasley and Chu in [7]. Instead of using a
binary representation for the solutions, they use a
n-dimensional vector of integer alphabets in the set
I. These integer alphabets identify the agent to
which each job is assigned. Fitness—unfitness pair
evaluations are used to deal with both, feasible and
infeasible solutions. Apart from using mutation
and crossover operators, a two-phase heuristic
improvement operator is also used: in the first
phase this operator tries to recover feasibility by
reducing the unfitness score. The second phase
tries to improve the cost (fitness) of the solution
without further violating the capacity constraints.

Laguna et al. [16] introduce a Tabu search al-
gorithm for the multilevel assignment problem
MGAP based on ejection chains. MGAP differs
from GAP in that agents can perform tasks at
different efficiency levels. An ejection chain is an
embedded neighborhood construction that con-
siders the neighborhoods of simple moves to create
more complex and powerful moves. Multiple dy-
namic Tabu lists and a long-term memory com-
ponent are used within the framework of Tabu
search. Also a strategic oscillation scheme that
allows searching paths to cross the capacity—fea-
sibility boundary is used.

Yagiura et al. [27] have considered a Variable
Depth Search algorithm VDS for the GAP. They
incorporate an adaptive use of modified shift and
swap neighborhoods where some moves are for-
bidden in order to avoid cycling. The method also
allows the search to visit infeasible solutions
modifying the objective function to penalize the
violated capacity of the agents. In Yagiura et al.
[26], a branching search processes to construct the
neighborhoods are incorporated in order to im-
prove the performance of the VDS algorithm [27].

Simultaneously to our work, Yagiura et al. [25]
have proposed a Tabu search algorithm where
ejection chains are used to create more complex
and powerful moves. The algorithm maintains a
balance between visits to feasible and infeasible
regions using an automatic mechanism for ad-
justing the parameter that weights the penalty term
in the objective function.

4. Tabu search

In this section, we present the components
of our Tabu search algorithm for the GAP.
First, the solution representation is described.
Second, the neighborhood structures and their
associated moves are presented. Then, a strategic
oscillation scheme that permits the search to
alternate between feasible and infeasible solu-
tions is explained. Finally, the characteristics
of the short-term memory and the frequency-
based memory components of the algorithm are
detailed.

Tabu search, introduced in Glover [11] and
[12], exploits a collection of principles for intel-
ligent problem solving. It uses: (a) flexible
memory structures; (b) an associated mechanism
of control, to be used along with the memory
structures, to define Tabu restrictions and aspi-
ration criteria and (c) records of historical in-
formation for different time spans that permit
the use of strategies for intensification and
diversification of the search process. Its power is
based on the use of adaptive memory which is
used for guiding the search process to overcome
local optimality and to obtain near-optimal so-
lutions. The use of short-term memory consti-
tutes a form of aggressive search that tries to
make good moves subject to the constraints
implied by Tabu restrictions. Tabu restrictions
are used to prevent cycling and aspiration crite-
ria define rules to ignore Tabu restrictions under
certain conditions. Intensification and diversifi-
cation strategies are attained by means of long-
term memory. Intensification strategies exploit
features historically found desirable while diver-
sification strategies encourage the search to ex-
plore unvisited regions.

4.1. Solutions

A solution 7 for both GAP and RGAP is rep-
resented with a vector of n elements, where the kth
component is the agent to which job k is assigned,
ie.

TC:(HI,...,TCW), Wherenjel; n/=i<:,>x,:,-=l,

J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38 27

4.2. Neighborhood structures and generation mech-
anism

Given the set S of feasible solutions for an
optimization problem, a neighborhood structure
defines, for each solution = € S, a set S, C .S of
solutions that in some sense are ‘close’ to ©. We
have considered two simple classical neighborhood
structures: shift and swap. Given a solution 7, the
shift neighborhood, Ny, is defined to be the set of
solutions that can be obtained by reassigning one
job from one agent to another (see Fig. 1).

Nshift(n) = {(TE’I, “e
mo=m; Vi £}

vn:,)Elj* eJ s.t. TE;.* # T

The swap neighborhood, Nyy.p, is the set of solu-
tions that can be obtained by interchanging the
assignments of two jobs, originally assigned to
different agents (see Fig. 2).

N shift

Nowap(m) = {(7, - ..

;L ;o
s.t. T, =Wy, Ty =Wy, T; =T Vj 7é]1a]2}~

77-[/”)‘3.].17 j2 6‘]77-1:]41 7é T[jzﬂ

It is important to note here that when only swap
moves are used the solutions have a special struc-
ture. In particular, solutions have a fixed number
of jobs assigned to each agent. On the other hand,
shift moves are more restrictive in terms of feasi-
bility. For these reasons we have used
N = Nihitt U Ngwap as neighborhood structure which
is a more flexible option.

A neighbor generation mechanism is a set of
rules for selecting a solution from a given neigh-
borhood. The following rules define the generation
mechanism used in our Tabu search implementa-
tion:

e Moves in Ngir U Newap that are not Tabu-active
are considered admissible.

e For the current assignment 7= (m,...,m,),
jobs are processed by decreasing values of 4, ;.

e For a given job j, shift and swap moves are

.
0000000000

Job I Agent

O

O\

o —~ .
O~ .~ Im

BRAChas

0 |
O%_
O/

O

O Job Il Agent

Fig. 1. Shift neighborhood.

N Swap

Fig. 2. Swap neighborhood.

28 J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38

evaluated and the best admissible move with re-
spect to objective function (1”) is associated to
the job.

e The candidate generation mechanism halts if the
best admissible move for the job being processed
improves the objective function value (17). At
each iteration, the candidate moves are regener-
ated.

e Otherwise, if all the jobs have been processed
but none of the associated moves improve objec-
tive function (1”), the admissible move with the
lowest increment is selected and performed.

4.2.1. Remarks

(1) Note that both, the considered neighbor-
hood and the selection rules, are extremely simple.
It is interesting to note that since the search is first
improving, in most cases only a partial exploration
of candidate moves is performed at each iteration.
It is highly probable to find an improving move
with respect to objective function (1”) before all
jobs have been processed.

(2) As already mentioned, using the above
strategy, the search is guided by the objective
function (1”) and no priority is given to solutions
that are feasible for the GAP. This does not hap-
pen in Laguna et al. [16], where the strategy of the
search is guided towards feasibility through a
qualitative criterion which makes prefer feasible
solutions in most cases. Neither does this happen
in Yagiura et al. [27], where the search strategy
changes each time that feasibility is attained. In
Yagiura et al. [25] the ejection chain moves do not
consider solutions that increase infeasibility. Thus,
their strategy also guides the search towards fea-
sibility.

(3) It can also be observed that with the above
selection rules, no priority is given to shift moves
with respect to swap moves and vice versa. Once
more the element that takes care of guiding the
search is the modified objective function (1”). This
allows the solutions obtained at the various itera-
tions to change their structure and to have differ-
ent numbers of jobs assigned to each agent. To a
great extent this does not happen in [27] which uses
a more complex neighborhood structure also
based on Ngisy U Nywap- In that work, at some given
iterations a shift move is forced and then only

swap moves are permitted until feasibility is re-
covered.

4.3. Strategic oscillation

As mentioned previously, the objective function
used in the relaxed formulation RGAP includes a
penalty to evaluate the violation of the agents’
capacity constraints for the different solutions to
RGAP. This penalty term is of the form

P:PZSu

iel

where p is a penalty parameter. Since the value of
P is null for feasible solutions to the GAP, objec-
tive function (1”) in RGAP provides the original
evaluation (1") for such solutions and a modified
evaluator for infeasible solutions. This modified
evaluator, together with the (previously described)
rules of movement guide the search towards the
domain of feasibility when dealing with solutions
far away from such domain. Therefore, consider-
ing objective function (1”) enables the algorithm to
have a strategic oscillation behavior that permits
alternating between feasible and infeasible solu-
tions.

In this context, the weight assigned to the fea-
sibility violation penalty, p, plays a central role to
furnish the process with an equilibrium that per-
mits alternating between feasibility and flexibility.
In our algorithm this is done dynamically ac-
cording to the expression
pi=p- a(infeas/(niter—l)—l)7
where infeas is the number of infeasible solutions
to GAP obtained during the last niter iterations
and o > 1 is a parameter that varies as explained
later in this section.

The above expression can be interpreted in
terms of incorporating a recency-based memory
(infeas) and a medium-term memory (o) to adapt
the parameter p to the current stage of the search.

The rationale behind the expression that we use
is the following: the search strategy of our algo-
rithm relies on the usefulness of a wider explora-
tion of the infeasible solutions’ space. For this

J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38 29

reason, we consider that variations on the value of
p, although necessary, should be performed very
smoothly. This permits the search to operate ac-
cording to a uniform criterion for a series of iter-
ations. In other words, it allows the paths of
successive solutions to be generated with respect to
homogeneous rules. For a given «, the value of p
ranges in [0~ - p, /(=D . 5] Note that, since the
values of o will always be greater or equal to one, p
will only increase when «ll the solutions found in
the last niter iterations are infeasible. However,
even in that case, the upper limit on the interval
makes the increase in p to be very small. In the
other cases, p is reduced (or maintained) increasing
(or not decreasing) the importance assigned to the
quality of the solutions versus their closeness to
feasibility.

If, in the above expression, « were fixed to 1, the
value of p would also be fixed during all the pro-
cedure and the history of the search would not be
taken into account. When o = 2, the expression
obtained is very similar to the one used in [10] for
Routing Problems with stochastic demands and
customers. Observe, however, that when the value
of « is fixed, only recency-based memory is used.

The value assigned to o influences considerably
the progress of the search. The bigger the value of
o the larger the range of variation for p. Therefore,
when only infeasible solutions are visited in the
last iterations, the rate of increase of p is faster for

Short-term Memory Phase

short_term_phase(k, %)

higher values of «. Since most of the time the
considered solutions will be infeasible, small values
of o tend to give smaller p’s and vice versa. Con-
sequently, a medium-term memory component has
been incorporated to see if good feasible solutions
have been found with a similar rate of increase/
decrease for p. When this is so, the value of o is
maintained to enhance the search under the same
conditions on a given area. Otherwise, the value of
o is increased guiding the search towards the fea-
sible subregion of the area being explored. Again,
the variation of « is extremely moderate to avoid
sudden changes in the search. In particular, when
the best feasible solution known so far has not
been improved for the last 100 iterations, the value
of o is increased by 0.005 every 10 iterations until a
new better solution is found. Each time a new best
feasible solution is found, the value of « is reset to
the value 2.

4.4. Short-term memory phase

Fig. 3 outlines the short-term memory phase of
the algorithm. The short-term memory component
of Tabu search incorporates flexible memory
functions to forbid moves in order to avoid pre-
viously visited solutions. This memory is often
managed via solution’s attributes that are forbid-
den during some period of time.

Let 7* be the best solution found so far,
7F the current solution and k the total number of trial solutions

generated

while (stopping_criterion not satisfied) do

begin

Select a neighbor solution 7%+ € N(r¥)
(Using the neighborhood structure N and the neighborhood
generation mechanism detailed in the previous section)
if (cost(r**1) < cost(n*)) then
+1

=

Update short-term memory

(tabu restrictions detailed below)

Update long-term memory

(frequenc.y-based memory detailed below)

k:=k+1
end

Fig. 3. Short-term memory phase.

30 J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38

The attributes we have considered are the as-
signments of jobs to agents. They are represented
by ordered pairs (i,j) meaning that job j is as-
signed to agent i. In our implementation of Tabu
search for the GAP some of these attributes are
forbidden for the solutions to be generated in the
next iterations. In other words, these attributes
will be Tabu-active during a given number of it-
erations. More specifically, a matrix 7 is used to
record the forbidden attributes for the future so-
lutions. If during a given iteration k, a job j as-
signed to agent i, is reassigned, then, any solution
having the pair (i, j) as attribute will be forbidden
for the next ¢ iterations. That is, 7;; = k 4 ¢, re-
cords the last iteration number for which the at-
tribute (i1, /) will remain Tabu-active. In the case
of swap moves only one pair is recorded as Tabu-
active in the matrix 7. From the two assignments
being considered it is the one with the higher 4, ;.

Recency-based memory is managed using dy-
namic Tabu tenures. The parameter ¢ is randomly
selected within a range [tnin, fmax]-

A standard aspiration criterion is used to by-
pass a Tabu restriction for a move. If, after per-
forming the move, a feasible solution better than
the best solution known so far would be obtained,
the move is selected and performed.

As usual, the short-term memory phase is ter-
minated after a fixed number of iterations without
improvement.

4.5. Long-term memory phase

Long-term memory functions are used within
the framework of Tabu search to furnish the
search with a higher level of flexibility in order to
achieve regional intensification and/or global di-
versification. The role of long-term memory is to
record features of a selected number of trial solu-
tions. Our TS algorithm uses a frequency-based
memory scheme, both, for intensification and di-
versification purposes. The frequency matrix fr
records the number of times that job j has been
assigned to agent / in the total number of solutions
visited up to that point.

The intensification phase recovers the best so-
lution found so far and fixes the current assign-

ments of jobs to agents with a frequency of at least
85%. This assignments can be considered ‘good’
given that: first, they are also present in the best
solution found so far. Second, if they appear in
most of the solutions generated so far either they
have been selected many times or after being se-
lected they have not been changed for a long pe-
riod of time. Fixing some assignments is equivalent
to reducing the size of the problem given that some
decision variables are set to the value 1. Once this
fixing process finishes, the short-term memory
phase restarts for the resulting reduced GAP with
the unfixed jobs and adjusted agents’ capacities.

In the diversification phase, the frequency-
based memory is also used but in a different way.
The cost matrix 4 is replaced by the matrix fr + 4.
Now the elements of the matrix f can be viewed as
penalties for selecting the most frequent assign-
ments of jobs to agents. This is done to encourage
the assignments that have seldom been selected
and to discourage those assignments that have
been frequently used. The matrix 4 is added to the
frequency matrix for tie breaking purposes. Dur-
ing this phase it is intended to perform a number
of high influence moves in order to produce solu-
tions with different structures from the ones gen-
erated up to this point. After performing such
moves, the original cost matrix 4 is recovered and
the short-term memory phase reinitiated. Our ex-
perience has shown that this diversification scheme
is effective since different high quality solutions
from the ones generated to that point are usually
obtained after a reduced number of iterations in
the diversification phase.

Fig. 4 depicts the proposed Tabu search algo-
rithm. It starts with one application of the short-
term memory phase to improve the initial solution
obtained using the MTH heuristic proposed by
Martello and Toth [19]. Then, a cycle that alter-
nates between intensification and diversification
phases is performed during / iterations.

5. Computational results
Three different sets of problems have been used

to test the proposed Tabu search algorithm. The
first two sets of problems are publicly available in

J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38

Tabu Search Algorithm
Tabu_Search()

Let 7 = (m1,...,mn) be the best solution found so far and k the total
number of trial solutions generated
k=0

Use MTH (Martello & Toth heuristic) to obtain an initial solution so
Apply short_term _phase(k, 7)
for { iterations do
begin
{Intensification Phase}
Retrieve 7* and set 7% = 7*
if (frn 15> 0.85 x k) then
fix the value of z,+; to 1

Apply short_term_phase(k, k)
{Diversification Phase}
Unfix all fixed assignments

31

Restart short-term memory phase for very few iterations using the

matrix cost A + fr

Recover the original cost matrix A

Apply short_term_phase(k, 7)

end

Fig. 4. Tabu search algorithm for the GAP.

Beasley OR-library (http:/imscmga.ms.ic.ac.ukljeb/
orliblgapinfo.html). The third set of problems is
publicly available in Yagiura library (http://www-
or.amp.i.kyoto-u.ac.jplmemberslyagiuralgap/).

The first set, S1, contains 60 ‘small-sized’
maximization problems. These problems were
used to test the set partitioning heuristic of Cat-
trysse et al. [5], the Simulated Annealing heuristic
FSA of Cattrysse [4] as well as the hybrid Simu-
lated Annealing/Tabu search heuristic SA/TS and
the Tabu search heuristic TS proposed in Osman
[21]. The test problems of this set have the fol-
lowing characteristics:

1. The number of agents m is set to 5, 8 and 10.
2. The ratio r = m/n is set to 3, 4, 5 and 6 to de-

termine the number of jobs n.

3. a;; values are integers generated from a uniform

distribution U(5, 25).

4. c; values are integers generated from a uniform

distribution U(15,25).

5. The b; values are set to ((0.8/m) >, ; a;).

The test problems are divided into 12 groups (each
containing five problems), gapl to gapl2, accord-
ing to the size of the test problems as is depicted in
Table 1.

The second set of problems, S2, contains 24
‘large-sized’ minimization problems used to test

Table 1

Dimensions for S1 problems
Problem group m n
gapl 5 15
gap2 5 20
gap3 5 25
gap4 5 30
gap5s 8 24
gapb6 8 32
gap7 8 40
gap8 8 48
gap9 10 30
gapl0 10 40
gapll 10 50
gapl2 10 60

the GA proposed in [7], the Variable Depth Search
algorithm proposed in [27], the VDS with
branching search considered in Yagiura et al. [26],
and the ejection chain approach proposed in
Yagiura et al. [25]. The third set of problems, S3,
contains: 3 Type C problems with n = 400, 3 Type
D problems with n» = 400 and 9 Type E problems
used in [25]. Dimensions of S2 and S3 problems
can be seen in Table 5. The problems in S2 and S3
are divided into five classes according to the way
they were generated:
1. Type A. a; are integers generated from an
uniform distribution U(5,25), ¢; are integers

32 J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38

generated from an uniform distribution
U(10,50) and b, =0.6 x (n/m) x 15+ 0.4R,
where

R = max E a;j
iel .
and

I; = min{i|c;; < ¢y Yk € I}.

2. Type B. a;; and ¢;; generated as in Type A prob-
lems and b; is set to 70% of the value given for
Type A.

3. Type C. a;; and ¢;; generated as in Type A prob-
lems and b; =0.83 ., a;;/m.

4. Type D. In this case a;; are integers generated
using an uniform distribution U(1,100),
¢;; = 111 — a;; + e, where e are integers generat-
ed using an uniform distribution U(—10,10)
and b; =0.8>" ., a;;/m.

5. Type E.

a; =1 —10 x In(Uniform(0, 1]),

¢;; = 1000/a;; — 10 x Uniform(0, 1],

b; = max(0.8/m)x Y|,
a;;, max{a; Vj € J}.

Type E problems were generated using the proce-

dure detailed in Laguna et al. [16].

A fairly simplistic assumption with respect to
the cost/resource relationship is assumed for Types
A, B and C problems. However Types B and C
problems are more difficult than Type A since the
capacity constraints are tighter. Types D and E
problems are known to be more difficult to solve.
Results for Type A problems are not given since
the MTH heuristic produces the optimal values in
all cases.

The experiments have been performed on a Sun
Sparc Station 10/30 with 4 HyperSparc at 100
MHz using only one processor. The algorithm is
coded in C language. For each of the test problems
30 runs were performed. After some tuning the
following parameters’ values were used: number of
intensification and diversification iterations, / = 6;
the Tabu tenures values range from f,;, =2 to
tmax = 6. The stopping criterion for the short-term
memory phase has been adapted to the size of the
test problems. In particular, for problems in S1,
this parameter has been set to 350 iterations
without improvement. For large-sized problems in

jeJ

S2 and S3, the stopping criterion has been fixed to
1500 iterations without improvement.

The value of « is initially set to 1. Starting with
a smaller value of o has the effect of producing
good quality feasible solutions at an earlier stage
of the search. Once a feasible solution is found, the
value of « is reset to the value 2 and it is permitted
to take values between 2 and 3. Its value is reset to
2 every time a better solution is found. Arbitrarly,
the value of p is initialized to 1.

For each of the 60 problems of S1 the following
values were computed:

e Average percentage deviation from the optimal
value, ooy, = S (0, = Si)/30.

e Average Dbest-solution time, fpest, = ngl
tbeslpr/:;o'

e Average execution time, #op, = 2,3-31 tiotaty, / 30.

O, denotes the optimal solution for problem p,
and S, is the solution obtained for problem p
during the rth execution. fyesr,, and fora1, denote the
times needed to reach the best solution and the
total running time for problem p during run r,
respectively.

Additionally, the following values were calcu-
lated for each problem group (gapl to gapl2):

e Average percentage deviation from the optimal

value, grounp = Z;:l Topt, /5.

e Average best-solution time, fyes, = Z’S’Zl toest, /5.
e Average execution time, to1, = Zp:1 totat, /S
Table 2 summarizes some characteristics of the
methods used for comparison in our computa-
tional experiments. We have focused on the
neighborhoods that are explored, the possibility of
violating feasibility and the use of recent, medium-
term and long-term memory.

Tables 3 and 4 show the results obtained with
our Tabu search algorithm (denoted TS{) for
problems in S1. Results are compared to the hy-
brid Simulated Annealing/Tabu search SA/TS and
the Tabu search TSI heuristics proposed in [21]
and also to the GA proposed in Beasley and Chu
[7]. For SA/TS and TS1, Table 3 shows the average
percentage deviation from optimum of the best
solution found for each problem, over all the
problems in each group (see [21]). For the GA and
the TSt approaches, this table shows the average
percentage deviations from optimum (6 y.yp) taken
over all the executions of the problems in each

J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38 33

Table 2
Algorithms’ characteristics
SA/TS TSI GA BVDS TS(MGAP) TSEC TS
Moves Shift move X X X X X X X
Swap move X X X X X X X
Ejection chain X X
Infeasibility Allow search to visit X X X X
infeasible solutions
Moves towards feasibility X X X
are preferred
Objective Automatic penalty X X
function adjustment
Recency memory 1it. 10 it
Medium term memory 100 it
Long term Diversification X X X X
memory
Intensification X
Table 3 o ' compared method and for each group of prob-
Average percentage deviation from optimal for Sl lems. Times are measured in seconds.
Problem set SA/TS TSl GA Tst It can be seen that our Tabu search algorithm
gapl 0.00 0.00 0.00 0.00 provides the optimal values for all the problems. In
gapi 888 8'(1)8 8.88 8'88 this sense it outperforms SA/TS and TSI and is
g;g : 0.00 0.03 0.00 0.00 equivalent to GA. With respect to the deviation
gaps 0.00 0.00 0.00 0.00 from optirpal values it never exceeds 0.03% and,
gap6 0.05 0.03 0.01 0.01 therefore, it outperforms all the compared methods.
gap7 0.02 0.00 0.00 0.00 Although the average best-solution times and
gap8 0.10 0.09 0.05 0.01 average execution times are not comparable since
gap9 0.08 0.06 0.00 0.00 h . ied in diff
capl0 0.14 0.08 " 0.03 the expenmpnts were carrie out in different
gapl 0.05 0.02 0.00 0.00 computers, it must be noticed that for TSt the
gapl2 0.11 0.04 0.01 0.00 values #ye and #o, are extremely good (recall that
o 0.210 0070 0009 0.004 we only use one processor). ‘
e 0.04 003 0.00 0.00 . We next show the results obtained for problems
No. Optimal 39 45 60 60 in S2 and S3. We compare our results to the best
solutions known solution for these problems. They are

group. Also, for each of the approaches, the fol-

lowing averages over all groups of problems are

depicted in Table 3:

e o, Global average percentage deviation from
optimum.

® oni: Average percentage deviation from opti-
mum of the best solutions found.

e Number of problems for which the optimal so-
lution was found at least once.
Table 4 shows the average best-solution time,

thest, and the average execution time, £, for each

shown in the last column of Table 5. For five Type
C instances, one Type D instance and six Type E
instances this value corresponds to the optimal
solution value obtained with the branch-and-
bound algorithm proposed by Nauss [20]. These
instances are marked with an asterisk. For the
other instances, the best known values are not
known to be optimal and have been taken from [§]
in the case of Type B instances and from [25] for
the remaining Types C, D and E instances.

Now, for each of the problems the following
values were computed:

34 J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38

Table 4

CPU Times for SI1*
Problem group SA/TSP TSI GA ¢ TSt 4

Thest total Thest total Thest total Thest total

gapl n.a. 0.22 n.a. 0.73 0.40 72.38 0.04 1.09
gap2 n.a. 0.91 n.a. 1.44 1.68 79.96 0.04 1.48
gap3 n.a. 1.82 n.a. 2.85 2.18 85.06 0.08 2.05
gap4 n.a. 2.32 n.a. 4.86 4.16 92.36 0.13 2.54
gap5 n.a. 2.48 n.a. 3.97 5.52 100.36 0.22 2.38
gapb6 n.a. 5.67 n.a. 8.85 16.36 130.02 0.41 3.53
gap7 n.a. 13.97 n.a. 12.72 10.54 130.34 0.35 4.92
gap8 n.a. 19.53 n.a. 22.99 49.90 184.42 2.38 7.64
gap9 n.a. 5.73 n.a. 12.19 13.82 129.32 0.77 3.72
gapl0 n.a. 15.55 n.a. 18.62 33.70 167.66 1.07 5.90
gapll n.a. 36.96 n.a. 34.46 32.60 193.00 1.53 8.02
gapl2 n.a. 65.96 n.a. 47.07 39.08 260.34 1.83 10.67

“n.a.=Not available.
®CPU times in seconds on a VAX-8600 computer.

°CPU times in seconds on a Silicon Graphics Indigo R4000 (100 MHz).
4CPU times in seconds on a Sun Sparc Station 10/30 with 4 HyperSparc 100 MHz (SPECint95 2.35).

e Average percentage deviation from best known

solution, Gpes, = Z:il (Spr — B,)/30.

e Average best-solution time, fyes, .
* Average execution time, fotal, -
B, is the best known solution value for problem p.

Tables 5 and 6 show the results obtained. Now,
TSt is compared to the GA proposed by Beasley
and Chu in [7], to the Variable Depth Search with
Branching algorithm BVDS proposed by Yagiura
et al. [26], to the Tabu search algorithm for the
MGAP, denoted TS(MAGAP), proposed by La-
guna et al. [16], and to the Ejection Chain algo-
rithm TSEC proposed by Yagiura et al. [25].
Results for BVDS and TS(MGAP) were taken
from [25].

For each problem, Table 5 shows the best val-
ues (best) and the average percentage deviation
from the best known solution (6y,.) found with the
different approaches. Table 6 shows the average
best-solution times, #,.s, and the average execution
times, fo. Again, times are measured in seconds.

The results obtained confirm the validity of our
approach. Type B instances were easily solved and
the best known value was found for all these
problems. For Type C problems our results are
also remarkable: we obtained the best known so-
lution in four instances and for the other five in-
stances our best value is at most four units above

the best known solution. The difficulty of prob-
lems of Type D is reflected in the quality of the
results we obtained: for none of these problems we
attained the best known value. However, for the
instances with less than 400 jobs our solutions are
of good quality, although the performance of our
algorithm decreases for the very large instances.
For Type E instances our best solution is very
close to the best known value, excepting for the
very large instances of 400 jobs where the quality
of our solutions again tends to decrease. The val-
ues of the average deviations from the best known
values confirm the good behavior of TSt. Com-
paring TSt with the other approaches we can see
that for all types of instances our algorithm out-
performs BVDS, TS(MGAP) and GA in terms of
quality of the solutions and average deviation
from the best known value (for the methods and
instances that report these values). If we compare
TSt with the Ejection Chain algorithm, the quality
of our best solutions is nearly the same than those
of TSEC for Type C problems and for problems
with less than 400 jobs of Types D and E. How-
ever, for the very large Types D and E problems
with 400 jobs, TSt shows a slight decrease in its
performance as compared to TSEC. In terms of
the average deviation from the best known value,
the results of TSEC are extremely good and are

J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38 35

Table 5
Best values and average deviation from best values for S2, S3*
Prob. m n BVDS TS (MGAP) GA TSEC TSt Best known
value
Best Best Best Obest Best Oest Best Obest
B 5 100 n.a. n.a. 1843 0.347% n.a. n.a. 1843 0.000% 1843
B 10 100 n.a. n.a. 1407 0.071% n.a. n.a. 1407 0.000% 1407
B 20 100 n.a. n.a. 1166 0.069% n.a. n.a. 1166 0.097% 1166
B 5 200 n.a. n.a. 3553 0.301% n.a. n.a. 3552 0.005% 3552
B 10 200 n.a. n.a. 2831 0.308% n.a. n.a. 2828 0.046% 2828
B 20 200 n.a. n.a. 2340 0.060% n.a. n.a. 2340 0.113% 2340
0.193% 0.044%
C 5 100 1931 1931 1931 0.378% 1931 0.000% 1931 0.000% 1931°
C 10 100 1402 1403 1403 0.285% 1402 0.000% 1402 0.043% 1402°
C 20 100 1244 1244 1244 0.515% 1243 0.000% 1243 0.284% 1243°
C 5 200 3456 3457 3458 0.229% 3456 0.000% 3457 0.034% 3456°
C 10 200 2809 2812 2814 0.481% 2806 0.007% 2807 0.105% 2806°
C 20 200 2401 2396 2397 0.619% 2391 0.025% 2391 0.139% 2391
C 10 400 5605 5608 n.a. n.a. 5597 0.000% 5598 0.077% 5597
C 20 400 4795 4792 n.a. n.a. 4783 0.021% 4786 0.201% 4782
C 40 400 4259 4251 n.a. n.a. 4245 0.024% 4248 0.220% 4244
0.418% 0.009% 0.123%
D 5 100 6358 6386 6373 0.658% 6354 0.041% 6357 0.163% 6353°
D 10 100 6367 6398 6379 1.237% 6356 0.167% 6355 0.511% 6349
D 20 100 6275 6283 6269 1.652% 6215 0.387% 6220 0.905% 6196
D 5 200 12755 12788 12796 0.652% 12744 0.020% 12747 0.093% 12743
D 10 200 12480 12519 12601 1.536% 12445 0.076% 12457 0.277% 12436
D 20 200 12440 12416 12452 1.983% 12277 0.166% 12351 0.887% 12264
D 10 400 25032 25145 n.a. n.a. 24976 0.017% 25039 0.284% 24974
D 20 400 24780 24872 n.a. n.a. 24604 0.021% 24747 0.936% 24604
D 40 400 24724 24726 n.a. n.a. 24460 0.043% 24707 1.441% = 24456
1.286% 0.104% 0.611%
E 5 100 12681 12687 n.a. n.a. 12681 0.003% 12681 0.040% 12681°
E 10 100 11585 11650 n.a. n.a. 11577 0.000% 11581 0.087% 11577°
E 20 100 8499 8555 n.a. n.a. 8439 0.055% 8460 0.703% 8436°
E 5 200 24942 25203 n.a. n.a. 24930 0.000% 24931 0.027% 24930°
E 10 200 23346 23567 n.a. n.a. 23307 0.004% 23318 0.116% 23307°
E 20 200 22475 22735 n.a. n.a. 22379 0.022% 22422 0.446% 22379°
E 10 400 45878 172185 n.a. n.a. 45746 0.003% 45781 0.077% 45746
E 20 400 45079 137153 n.a. n.a. 44887 0.017% 45007 0.648% 44882
E 40 400 44898 63669 n.a. n.a. 44596 0.065% 44921 1.266% 44579
0.019% 0.379%

“n.a. = Not available.
®Known to be optimal values.

clearly better although, in our opinion, our devi-
ations are small.

The information of Table 6 permits to complete
the analysis of our results. First of all, it should be
noticed that the times correspond to experiments
performed in different computers so a normalizing
factor should be applied to obtain a fair compar-

ison. In [25] Yagiura et al. give an estimate of 1 for
the normalizing factor that should be applied to
the times of BVDS, TS(MGAP) and TSEC and of
0.1 for the normalizing factor that should be ap-
plied to the times of GA. Taking into account the
characteristics of the computer where we have
performed our tests (SPECint95 of 2.35, 100 MHz

36 J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38

Table 6

CPU times for S2, S3*
Prob. m n BVDS® TS(MGAP)* GA® TSt TSEC?*

total total Thest total Thest tiotal Toest tiotal

B 5 100 n.a. n.a. 126.9 288.2 n.a. n.a. 17.5 95.8
B 10 100 n.a. n.a. 30.1 276.0 n.a. n.a. 10.6 97.2
B 20 100 n.a. n.a. 191.5 617.3 n.a. n.a. 47.5 160.0
B 5 200 n.a. n.a. 439.5 790.0 n.a. n.a. 70.5 339.1
B 10 200 n.a. n.a. 608.4 1027.4 n.a. n.a. 154.8 389.8
B 20 200 n.a. n.a. 518.5 1323.5 n.a. n.a. 222.7 465.4
C 5 100 150 150 139.1 302.4 0.6 150 3.0 83.6
C 10 100 150 150 170.6 394.2 3.0 150 28.7 103.3
C 20 100 150 150 279.9 669.3 21.6 150 66.9 130.7
C 5 200 300 300 531.2 810.1 3.7 300 79.5 316.1
C 10 200 300 300 628.6 1046.0 100.5 300 212.7 403.0
C 20 200 300 300 1095.9 1792.3 137.4 300 291.8 498.3
C 10 400 3000 3000 n.a. n.a. 105.8 300 1348.8 1820.0
C 20 400 3000 3000 n.a. n.a. 130.4 300 1713.3 2236.3
C 40 400 3000 3000 n.a. n.a. 157.6 300 2333.2 3442.4
D 5 100 150 150 369.9 530.3 62.6 150 43.6 106.4
D 10 100 150 150 870.2 1094.7 107.2 150 83.2 133.4
D 20 100 150 150 1746.1 2126.1 111.0 150 119.5 167.4
D 5 200 300 300 1665.9 1942.8 95.5 300 226.8 363.2
D 10 200 300 300 2768.7 3189.6 129.2 300 205.0 397.4
D 20 200 300 300 4878.4 5565.1 120.7 300 348.2 515.6
D 10 400 3000 3000 n.a. n.a. 16.1 300 1979.6 2310.0
D 20 400 3000 3000 n.a. n.a. 81.3 300 2039.12 2440.1
D 40 400 3000 3000 n.a. n.a. 165.2 300 2573.6 3129.3
E 5 100 150 20000 n.a. n.a. 39.9 150 66.5 124.0
E 10 100 150 20000 n.a. n.a. 31.6 150 88.3 148.2
E 20 100 150 20000 n.a. n.a. 90.4 150 146.3 197.2
E 5 200 300 20000 n.a. n.a. 20.0 300 204.7 3514
E 10 200 300 20000 n.a. n.a. 34.1 300 233.0 396.4
E 20 200 300 20000 n.a. n.a. 209.3 300 425.2 585.3
E 10 400 3000 3000 n.a. n.a. 260.7 300 492.5 891.1
E 20 400 3000 3000 n.a. n.a 212.9 300 750.3 875.0
E 40 400 3000 3000 n.a. n.a. 217.7 300 1035.5 1211.1

#n.a. = Not available.

®CPU times in seconds on a Sun Ultra 2 model 2300, 300 MHz (SPECint95 12.3) computer.
°CPU times in seconds on a Silicon Graphics Indigo R4000 (100 MHz) computer.
4CPU times in seconds on a Sun Sparc Station 10/30 with 4 HiperSparc at 100 MHz (SPECint95 2.35).

and 89 Mb) and comparing them with the char-
acteristics of the computer of reference in [25]
(SPECint95 of 12.3, 300 MHz and 1 Gb) we con-
sider that the normalizing factor to be applied to
our times should be at most 0.2. The times de-
picted in Table 6 are the actual running times
without applying the normalizing factor. After
considering this normalizing factor, it can be seen
that our times are smaller than the times required
by all the compared methods and instances, ex-
cepting for the 9 instances with 400 jobs where our

times seem to be slightly higher than those of
TSEC.

In our opinion the results of Tables 5 and 6
show the interest of our approach. For small,
medium-size and large problems of dimensions
until m = 20 and » = 200 we obtain solutions of a
remarkable quality that either are optimal/best-
known or are very close to them in very small
computational times (taking into account the
speed of the computer). For the very large in-
stances, our approach is outperformed by TSEC.

J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38 37

However, we believe that the simplicity of our
approach is an added value for our algorithm that
makes it competitive with TSEC even for the
larger instances. Anyhow, the obtained results
confirm the success of the distinctive feature of our
proposal that consists in using both recent and
medium-term memory to automatically modify the
objective function that guides the search.

6. Conclusions and remarks

In this paper the GAP is considered and a Tabu
search heuristic approach is proposed. A relaxed
formulation that allows the search to cross the
capacity—feasibility boundary using a penalty term
is considered. A strategic oscillation scheme is then
used to permit alternating between feasible and
infeasible solutions and to give the search a higher
level of flexibility. Diversification and intensifica-
tion strategies are also implemented by means of
frequency-based memory. The resulting algorithm
is very simple in terms of its basic components: the
neighborhoods that are explored, the rules used to
explore the neighborhoods and the use of recent
and medium-term memory. Its distinctive feature
is the use of recent and medium-term memory to
guide the search via a modified objective function
which is dynamically adapted. This is an issue that
we believe is interesting since, traditionally mem-
ory has been widely used to explore complex
neighborhood structures, whereas it has been used
in a very limited fashion to obtain automated
mechanisms to modify the objective function that
guides the search process.

The performance of the algorithm has been
evaluated with three different problem sets and
compared to other existing algorithms.

The results obtained with the proposed algo-
rithm are remarkable. In general, we obtain high
quality solutions that either are optimal/best-
known or are very close to them. However, for the
very large instances, our approach is outperformed
by one of the compared methods. In all the cases,
the required computational times are excellent
(taking into account the speed of the computers).
In our opinion, the simplicity of our approach
makes it competitive even for the larger instances.

Moreover, we understand that these results could
be significantly improved by exploring more
complex neighborhoods and by considering more
sophisticated rules to explore the neighborhoods.
For this reason we believe that the obtained results
fully justify the interest of our proposal of using
short-term and medium-term memory to dynami-
cally adapt the objective function for guiding the
search in the infeasible solutions’ space.

Acknowledgements

Authors are grateful to the anonymous referees
for their valuable comments which have helped to
improve this paper.

References

[1] M.M. Amini, M. Racer, A rigourous computational
comparison of alternative solution methods for the gener-
alized assignment problem, Management Science 40 (1994)
868-890.

[2] P. Barcia, K. Jornsten, Improved Lagrangean decomposi-
tion: An application to the generalized assignment prob-
lem, European Journal of Operational Research 46 (1990)
84-92.

[3] J.F. Benders, J.A. van Nunen, A property of assignment
type mixed linear programming problems, Operations
Research Letters 2 (1983) 47-52.

[4] D.G. Cattrysse, Set Partitionig approaches to combinato-
rial optimization problems, PhD thesis, Centrum Industri-
eel Beleid, Katholieke Universiteit Leuven, Belgium, 1990.

[5] D.G. Cattrysse, M. Salomon, L.N. van Wassenhove, A set
partitioning heuristic for the generalized assignment prob-
lem, European Journal of Operational Research 72 (1994)
167-174.

[6] D.G. Cattrysse, L.N. van Wassenhove, A survey of
algorithms for the generalized assignment problem, Euro-
pean Journal of Operational Research 60 (1992) 260-272.

[7] P.C. Chu, J.E. Beasley, A genetic algorithm for the
generalised assignment problem, Computers & Operation
Research 24 (1997) 17-23.

[8] J.A. Diaz, E. Fernandez, A Tabu search heuristic for the
generalized assignment problem, Technical Report DR. 98/
08, Departament d’Estadistica i Investigacié Operativa,
Universitat Politecnica de Catalunya, 1998.

[9] M.L. Fisher, R. Jaikumar, L.N. van Wassenhove, A
multiplier adjustment method for the generalised assign-
ment problem, Management Science 32 (1986) 1095-1103.

[10] M. Gendreau, G. Laporte, R. Séguin, A Tabu search
heuristic for the vehicle routing problem with stochastic

38 J.A. Diaz, E. Fernandez | European Journal of Operational Research 132 (2001) 22-38

demands and customers, Operations Research 44 (1996)
469-477.

[11] F. Glover, Tabu search: Part I, ORSA Journal of Com-
puting 1 (1989) 190-206.

[12] F. Glover, Tabu search: Part II, ORSA Journal of
Computing 2 (1990) 4-32.

[13] M. Guignard, M.B. Rosenwein, An improved dual based
algorithm for the generalized assignment problem, Oper-
ations Research 37 (1989) 658-663.

[14] K.O. Jornsten, M. Nasberg, A new Lagrangean relaxation
approach to the generalized assignment problem, Europe-
an Journal of Operational Research 27 (1986) 313-323.

[15] T.D. Klastorin, An effective subgradient algorithm for the
generalized assignment problem, Computers & Operations
Research 6 (1979) 155-164.

[16] M. Laguna, J.P. Keely, J.L. Gonzélez-Velarde, F. Glover,
Tabu search for the multilevel generalized assignment
problem, European Journal of Operational Research 82
(1995) 176-189.

[17] L.A.N. Lorena, M.G. Narciso, Relaxation heuristics for a
generalized assignment problem, European Journal of
Operational Research 91 (1996) 600-610.

[18] S. Martello, P. Toth, An algorithm for the generalized
assignment problem, in: In Proceedings of the Ninth
IFORS Conference, Hamburg, Germany, 1981.

[19] S. Martello, P. Toth, Knapsack problems: Algorithms and
computer implementations, Wiley, Chichester, 1990.

[20] R.M. Nauss, Solving the classical generalized assignment
problem, Technical Report, 1998.

[21] IL.H. Osman, Heuristics for the generalised assignment
problem: Simulated annealing and Tabu search approach-
es, OR Spectrum 17 (1995) 211-225.

[22] G.T. Ross, R.M. Soland, A branch and bound algorithm
for the generalized assignment problem, Mathematical
Programming 8 (1975) 91-103.

[23] M.W.P. Savelsbergh, A branch-and-price algorithm for the
generalized assignment problem, Operations Research 45
(1997) 831-841.

[24] M.A. Trick, A linear relaxation heuristic for the general-
ized assignment problem, Naval Research Logistics 39
(1992) 137-151.

[25] M. Yagiura, T. Ibaraki, F. Glover, An ejection chain
approach for the generalized assignment problem. Techni-
cal Report 99013, Department of Applied Mathematics
and Physics, Graduate School of Informatics, Kyoto
University, 1999.

[26] M. Yagiura, T. Yamaguchi, T. Ibaraki, A variable depth
search algorithm with branching search for the generalized
assignment problem, Optimization Methods and Software
10 (1998) 419-441.

[27] M. Yagiura, T. Yamaguchi, T. Ibaraki, A variable depth
search algorithm for the generalized assignment problem,
in: S. Voss, S. Martello, I.H. Osman, C. Roucariol, (Eds.),
Metha-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization, Kluwer Academic Publishers,
Dordrecht, 1999, pp. 459-471.

