EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

ELSEVIER European Journal of Operational Research 92 (1996) 493511
General local search methods
Marc Pirlot
Faculté Polytechnique de Mons, rue de Houdain 9, B-7000 Mons, Belgium
Abstract

This paper is a tutorial introduction to three recent yet widely used general heuristics: Simulated Annealing, Tabu Search,
and Genetic Algorithms. A relatively precise description and an example of application are provided for each of the
methods, as well as a tentative evaluation and comparison from a pragmatic point of view.
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1. Introduction

This paper is an introduction to three heuristic
approaches known as Simulated Annealing (SA),
Tabu Search (TS), and Genetic Algorithms (GAs).
These are currently intensively used to ‘solve’ opti-
mization problems and, especially, combinatorial
ones. As they consist of general search principles
organized in a general search strategy, they may not
be described as algorithms but rather as methods or
meta-algorithms. Therefore, one often calls them by
the terms metaheuristics or general heuristics. The
names and to some extent the principles of these
heuristics are originally inspired by processes or
concepts which have nothing to do with optimiza-
tion.

The extraordinary success of these methods (which
results in a continuous flow of literature) is due to
several factors: reference to optimization mecha-
nisms in Nature (in the case of SA and GAs), general
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applicability of the approach, flexibility for taking
into account specific constraints in real cases, excel-
lent tradeoff between solution quality and ease of
implementation or computing time.

For each of the three approaches we provide:

® a rather precise description of their basic ver-
sion;

@ an example of application to a selected combi-
natorial optimization problem;

@ a short bibliography and a historic notice; and

® a glimpse of more advanced topics such as
tuning of parameters, advices for strategic options,
refinements of the basic ideas, and theoretical as-
pects (this part can be skipped in a first reading).

Our aim is to introduce the beginner to a basic
version of each method and give indications about
their respective strengths and weaknesses as well as
about various sophistications and hybridizations.
Several good texts about each of the methods have
been published and the interested reader is invited to
consult the literature referred to in the bibliographic
notices.
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In the conclusions, some considerations on the
comparison of heuristics are formulated; we try to
delineate domains where each of the three ap-
proaches can be fruitfully used; we advocate that
each of them implement potentially useful heuristic
search ideas which can be combined without taboo
but also with parsimony and regard for simplicity (at
least this is the author’s faith). Finally some current
trends in heuristic search are outlined.

The present paper is an abridged and somewhat
updated version of Pirlot (1992). The reader is re-
ferred to that paper for more detail on advanced
topics and for an additional chapter on neural net-
works in optimization.

1.1. Local search strategies

All three general heuristics we are concerned with
can be considered to some extent as local search
strategies; it is quite clear for SA and TS, in a more
elaborate sense for GAs. Essentially, local search
consists in moving from a solution to another one in
its neighbourhood according to some well-defined
rules. For definiteness, we consider the problem of
minimizing a function F(x) on a finite set of points
X. This can be considered a general statement of a
combinatorial optimization problem. A local search
strategy starts from an arbitrary solution x; € X and
at each step n, a new solution x,,, is chosen in the
neighbourhood V(x,) of the current solution x,.
This presupposes the definition of a neighbourhood
structure on X; to each x € X is associated a subset
V(x) C X called the neighbourhood of x. For in-
stance, if X is a set of binary vectors and x€ X, a
neighbourhood V(x) of x can be defined as the set
of all solutions x € X obtained from x by flipping a
single coordinate from O to 1 or conversely. Conven-
tionally, we suppose that a solution never belongs to
its own neighbourhood ie. x & V(x), VxeX. Al-
ternatively, one says that the neighbours of x are the
solutions obtained from x by an elementary move.
The evolution of the current solution x,, n=
1,2,..., draws a trajectory in the search space X.
The most common criterion for selecting the next
solution x,,, is to pick up the best one in the
neighbourhood of x,, i.e. a solution x,,, € V(x,)
with
F(x,,\)<F(x) VxeV(x,).

Then, x,,, becomes the next current solution pro-
vided it is not worse than x,, i.e. F(x,, )< F(x,).
Otherwise, the search is stopped. This strategy is
usually called a descent or a steepest descent strat-
egy. For further comparison purposes we give a
formal description below. F,” will denote the best
value of F up to step n and x, is such that
F(x;)=F .

Descent Algorithm
@ Initialization: select x, € X.
® Step n=1,2, ...; x, denotes the current solu-
tion.
(a) Find the best X in the neighbourhood V(x,).
(b) If F(x)< F(x,), then X becomes the new
current solution x,,, at Step n+ 1 and the best
value F of F (up to Step n) as well as x are
updated.
(c) Else: stop.

Note that the choice of a good neighbourhood
structure is generally important for the effectiveness
of the process. The main weakness of the descent
algorithm is its inability to escape from local min-
ima. This is symbolically illustrated in Fig. 1: all
solutions in the neighbourhood V(x,) are worse than
x, although, further away, there exists a global
minimum of F which cannot be reached under the
descent rule. Simulated Annealing and Tabu Search
are local search strategies explicitly designed for
avoiding such a situation. This implies temporary
deterioration of the objective function.

Fix)

V(xn )

X X
n

Fig. 1. Trapped in a local minimum.
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2. Simulated Annealing (SA)
2.1. General presentation

In a Simulated Annealing (SA) algorithm one
does not search for the best solution in the neigh-
bourhood V(x,) of the current solution x,; one
simply draws at random a solution x in V(x,). If
F(x) < F(x,), x becomes the next current solution.
Otherwise, one of the two following alternatives is
selected according to some probabilistic law; either x
becomes the current solution with probability p(n)
or x, remains the current solution with the comple-
mentary probability 1 — p(n). Typically, p(n) de-
creases with time (n) and with the size of the
deterioration of F (= F(x)— F(x,)). The idea of
SA originates from thermodynamics and metallurgy:
when molten iron is cooled slowly enough it tends to
solidify in a structure of minimal energy. This an-
nealing process is mimicked by our local search
strategy; at the start, almost any move (i.e. all updat-
ing of the current solution by a solution x randomly
chosen in its neighbourhood) is accepted. This al-
lows us to ‘explore’ the solution space. Then, gradu-
ally, the ‘temperature’ is decreased which means that
one becomes more and more selective in accepting
new solutions. By the end, only moves that improve
F are accepted in practice. Schematically, SA is the
following alteration of the Descent Algorithm.

Simulated Annealing (SA)

® Initialization: Select an initial solution x, in X;
initialize the best value F* of F and the correspond-
ing solution x™:

F* < F(x))
x* < x
® Step n=1, 2, ...; x, denotes the current solu-
tion.
— Draw x at random in the neighbourhood V(x,)
of x,.

- If F(x)<F(x,), then x,, | < x.
~If F(x)<F*,then F' < F(x)and x" < x.
— Else, draw a number p at random from [0, 1].
If p<p(n)then x,,, < x.
® End: If stopping condition is fulfilled, then stop.

In order to make the algorithm operational, a few
tactical decisions have to be made.

T

b

.
J T,i—

0 L 2L 3L a n

Fig. 2. The most common temperature schedule.

(a) Choice of the acceptance probability p(n). On
the analogy of thermodynamics, a Boltzmann-like
distribution is usually chosen:

1
p(n) exp( o )
where AF, = F(x) — F(x,) and T(n) is the so-called
‘temperature’ at Step n.

(b) Choice of a ‘temperature schedule’ or ‘cool-
ing schedule’. Temperature T(n) is a non-increasing
function of time; it is designed such as to exclude
almost all ‘bad moves’ at the end. A classical sched-
ule is represented in Fig. 2. Starting from T, the
temperature is maintained constant for L consecutive
steps. Then, after each series of L steps, it is de-
creased through multiplication by a fixed factor «
(0 < a < 1). Hence, after kL steps, the temperature
sets to

T(kL) =T, = o*T,.

This implies the setting of three parameters, T, o
and L, which will be respectively referred to as
initial temperature, cooling rate and length of
plateau.

(c) Choice of a stopping rule. Here are two vari-
ants of a stopping rule that are both natural and
commonly used:

® Stop 1: If F™ was not improved by at least
€,% after K, consecutive series of L steps, the
procedure is ended.

@ Stop 2: If the number of accepted moves is less
than €,% of L for K, consecutive series of L steps,
the procedure is ended.

Note again that the choice of a particular neigh-
bourhood structure is a critical decision in SA as in
any local search heuristic. The choice of parameter
settings will be discussed in Section 3.2.
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2.2. An example: Graph partitioning

We present the graph partitioning problem inves-
tigated in Johnson et al. (1989); it consists in parti-
tioning the vertices V of the graph G = (V, E) into
two equal size subsets V| and V, in such a way that
the number of edges with endpoints in both subsets
be minimal. There are different manners of applying
SA to this problem. The most natural is the follow-
ing. The solution space X is the set of bipartitions
(V,, V) of V with |V, | =|V,|=2%|V]|. The ob-
jective function (to minimize) is the sum of the
number of edges with both endpoints in V, and the
number of edges with both endpoints in V,. The
neighbourhood of the current solution (V;, V,) is the
set of all bipartitions that can be obtained by ex-
changing a vertex from V, with a vertex from V,,
ie.

Vi=V,u{x}\{»},
V;=V,u{y}\{x}

(for some x€V, and y€ V). The size of the
neighbourhood 1is %I |4 ,2_ The other tactical deci-
sions are made as explained in Section 2.1.

In an alternative implementation, instead of re-
stricting the solution space to bipartitions in sub-
spaces of equal cardinality (balanced bipartitions),
one accepts ‘illegal’ solutions (V;, V,) with |V, | #
|V, |. The ‘solution’ space is the set of all biparti-
tions and the objective function includes a term
which penalizes unbalanced bipartitions:

F(V,, V,) = number of edges in V,

+ number of edges in V,

+'Y(lv] l_lvzl)zs

where <y is a positive constant to be tuned. The
neighbourhood of a (non-necessarily balanced) bipar-
tition is made of all bipartitions (V}, V) with

(Vi =V, u{x} and V; = V,\{x})
or
(V1'= Vi{y} and V; = VZU{y}),

for x€V,, y € V,. The advantage of the latter im-
plementation which yields better results than the
former, is to provide new routes for escaping from

local minima and to reduce the size of the neigh-
bourhoods.

As SA is a randomized algorithm, it is advisable
to make a large number of independent runs and
look for good performance on average. That is what
Johnson et al. (1989) did in comparing the second
implementation of SA with a local search algorithm
(with the same neighbourhood) and the Kernighan—
Lin specialized heuristic (see Johnson et al., 1989,
and also Section 3). Roughly speaking, they con-
clude that SA outperforms local search; it beats
Kernighan-Lin on random graphs if running time is
not taken into account and works slightly better if
comparable times are allocated. However, on geo-
metric random graphs (i.e. graphs with a special kind
of geometric structure, see Johnson et al., 1989), SA
is outclassed by Kernighan—Lin. In all cases, the
running time which is necessary for an effective
annealing is usually long when compared to the time
used by deterministic heuristics.

2.3. Bibliographic and historic note

The idea of applying the annealing principle to
optimization problems is due to Kirkpatrick, Gelatt
and Vecchi (1983) and Cerny (1985) who worked
independently. They both applied SA to the traveling
salesman problem. Since then, many papers have
been published which either report on applications of
the method in many domains or present variants and
enhancements of the basic technique. A large num-
ber of theoretical papers deal with conditions under
which probabilistic convergence to a global optimum
can be guaranteed; some papers address the question
of the speed of convergence (see, e.g. van Laarhoven
and Aarts, 1987; Gidas, 1985; Mitra et al., 1986;
Hajek, 1988). Extensive bibliographies can be found
in Collins et al. (1988) and van Laarhoven and Aarts
(1987). Several books have also been devoted to SA
(see, e.g. van Laarhoven and Aarts, 1987; Azencott,
1992; Vidal, 1993; Siarry and Dreyfus, 1989). Spe-
cial mention is due to a series of papers by Johnson
and other authors (Johnson et al., 1989, 1991) where
a very careful and methodologically sound job is
done in comparing SA with other heuristics on four
classical problems: graph partitioning, graph coloring
and number partitioning; a third paper on the travel-
ing salesman problem has been announced but is still
awaited.
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2.4. More about SA

The successes as well as the failures of SA raise
important questions. In this section we touch to a
selection of topics which are recurrent in the SA
literature. For more detail the reader is referred to the
bibliography in Section 2.3.

2.4.1. Theoretical results

A number of papers have been produced which
analyse the behaviour of the annealing process as a
Markov chain (either a succession of homogeneous
ones or a single inhomogeneous one). Hajek (1988)
gave necessary and sufficient conditions on the cool-
ing schedule that guarantee (almost sure) conver-
gence to an optimal solution. These conditions essen-
tially imply that the decrease of the temperature must
be logarithmic in time while in most implementa-
tions it is exponential (see the geometric decrease in
Fig. 2). Using logarithmic schedules in practice re-
sults in unbearable computing times. The discrep-
ancy between theory and practice of SA has re-
mained an unresolved problem and one may suspect
that the successes of SA have little to do with the
convergence of some Markov chains (Johnson et al.,
1989, report on having used a logarithmic schedule
in graph partitioning without getting better results
than with a geometric one).

2.4.2. Tuning the parameters

There are no generally acknowledged rules for
selecting the values of the parameters even if the
classical geometric cooling schedule is used. We
outline some of the simplest propositions commonly
found in the literature. Some experimentation (or
better, systematic experimentation) around the initial
choice is recommended.

Initial temperature T,. The process should start
relatively free, i.e. at sufficiently high temperature.
One can, e.g. select T, in order to ensure a certain
probability p, of accepting bad moves at the start;
Po should be high, for instance 0.9, but Johnson et
al. (1989) selected p, = 0.4 as the best they could
find after having experimented with larger values.

Cooling factor o and length of plateau L. Clearly
those parameters have correlated effects on the com-
puting time. A typical value of « is 0.95. For L, one
can take a multiple of the average size of a neigh-

bourhood, in order to give a reasonable chance of
trying all neighbours of the current solution when
temperature is low. Johnson et al. (1989) took L
equal to 16 times the size of the neighbourhood. But
this 1s not always feasible in particular for large size
problems and/or when the size of the neighbour-
hood is large.

Stopping criterion. Standard values (%) for ¢,
and €, in the stopping criteria Stop 1 and Stop 2
(resp.) range from 1 to 5. Johnson et al. (1989) use
Stop 2 with €, =2% and K, =5%. It is advisable to
control a posteriori the choice of the parameters by
making sure that annealing was not stopped too
early, i.e. in a phase where F,” was still substantially
decreasing.

2.4.3. More strategic choices

Solution space, objective function and neighbour-
hood structure. Before tuning the parameters, some
more important decisions have to be made, i.e. defin-
ing the solution space, the objective function, a
neighbourhood structure. These issues are certainly
crucial for a successful implementation of SA but no
general recipe can be given. The best way of getting
some inspiration and intuition about these strategic
choices is through reading good reports on applica-
tions of SA to specific problems. Here again the
papers by Johnson et al. (1989, 1991) are of high
practical interest as the authors compare structurally
different implementations of SA, e.g. on the graph
coloring problem (approaches through penalty func-
tion, Kempe chain or fixed number of colors).

I will only add a general comment emphasizing
that the three basic strategic choices are often interre-
lated. Both for computational and efficiency reasons
it is desirable that moving through the solution space
from neighbour to neighbour be as easy as possible.
This is often incompatible with restricting the solu-
tion space to feasible solutions only. In graph color-
ing for instance, one can temporarily accept illegal
colorings (i.e. in which linked vertices receive the
same color).

It is very common pratice that some constraints
are modelled through penalties introduced in the
objective function (e.g. in Lagrangian fashion). This
generally occurs in industrial applications where large
numbers of specific constraints make difficult the
exploration of any neighbourhood structure on the
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set of feasible solutions. In most practical applica-
tions, part of the ‘art’ of implementing SA consists
in finding a good compromise between the con-
straints which are modelled as soft and hard con-
straints, i.e. those which are modelled through penal-
ties in the objective function and those taken into
account in the definition of the solution space.

Cooling schedules. The choice of a schedule is a
much discussed issue as there was a conflict, since
the early days of SA, between theory (logarithmic
coolings) and practice (geometric schedules). No
universally valid conclusion seems to emerge from
the literature. A general advice is however to cool
the system slowly enough at stages where the objec-
tive function is rapidly improving. An appropriately
tuned geometric schedule seems able to satisfy this
requirement and yield ‘good’ results in a reliable
manner (see, e.g. Johnson et al., 1989, pp. 832-884).
However, if optimal performances are wanted, then
the design of the cooling schedule can become more
crucial and extremely delicate (see, e.g. van
Laarhoven et al., 1992, on the jobshop scheduling
problem).

Beside ‘deterministic’ schedules like the geomet-
ric, logarithmic or linear ones, adaptive schedules
may also be considered. In these schedule the tem-
perature evolution is dynamically monitored by char-
acteristics of the trajectory in the search space. In
general, this results in slowly decreasing the temper-
ature when quick progresses are made in the objec-
tive function (see van Laarhoven and Aarts, 1987,
Johnson et al., 1989, p.882).

2.4.4. Choice of the initial solution and technical
improvements

Is it better to start from a randomly chosen initial
solution or from a good solution, e.g. one obtained
through a simple heuristic? This is another contro-
versial question and there is again no ‘yes—no’
answer to it. There is an advantage in starting from a
better than random solution in problems where good
solutions have a special global structure that cannot
be easily obtained through a small number of ele-
mentary transformations of a random solution. For
instance, Johnson et al. (1989) applied their biparti-
tioning algorithm to graphs with a special geometric

structure and found that it was beneficial to use a
specially devised heuristic to build an initial solution.

Technical improvements of the SA procedure can
also result in either better solutions or shorter com-
puting times; see Johnson et al. (1989) for a few
suggestions.

3. Tabu Search (TS)

Fairly general definitions of Tabu Search (TS)
may be given. One can describe TS as a local search
technique guided by the use of adaptive or flexible
memory structures. With such a general definition,
the specificity of TS is not easy to grasp. The variety
of the tools and search principles introduced and
described in particular by F. Glover is such that Tabu
Search can be considered as the germ of a general
framework for modern heuristic search. Mostly for
pedagogical reasons, we restrict our presentation to
the most basic features, those which are closest to
the intuitive idea of ‘tabu’ and are mainly imple-
mented in the so-called ‘tabu lists’. In this restricted
sense, TS is a method which is comparable in sophis-
tication to SA while in the extended sense, one could
even consider SA as implementing search ideas which
belong to the TS arsenal. Some indications of the
variations that can be built on the basic scheme are
given in the concluding section of this paper. We
refer to Glover (1989, 1990), Glover et al. (1993)
and to Glover and Laguna (1993) for a broader
presentation.

3.1. A basic short term version of Tabu Search

The adaptive memory of Tabu Search is imple-
mented with reference to short term and long term
components. Here we focus on short term aspects,
though we emphasize the importance of the comple-
mentary longer term considerations in order to obtain
the best computational outcomes. In the basic short
term scheme, the strategy for escaping from local
minima is the following one. Even if there is no
better solution than the current one, x,, in the neigh-
bourhood V(x,), one moves to the best possible
solution x in V(x,) or a sub-neighbourhood V'(x,)
€ V(x,) in the case where V(x,) is too big to be
explored efficiently. If the neighbourhood structure
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is symmetric, i.e. if x, belongs to the neighbourhood
V(x) of x whenever x € V(x,), there is a danger of
cycling when we explore V(x) during the next step;
there is indeed a chance that x, could be the best
solution in V(x) in which case we would come back
to x, and from then on, oscillate between x and x,,.
To avoid this situation and more general cycling
situations, we could store in a list (x,_,..., x,_,)
called rabu list, a certain number L of the last
solutions encountered. If x is in the list, the move
x, = x is forbidden. This idea raises some technical
problems; recording a complete description of the
last visited solutions and testing for each candidate
solution whether it is recorded in the list might be
rather time consuming. An alternative is to record a
characteristic or an attribute of the moves (it can be
the transformation performed on the current solution,
e.g. flipping the i-th coordinate value of a binary
vector from O to 1).

Such a tabu list does not exactly fulfill its an-
nounced role, i.e. to prevent cycling. On the one
hand it is more restrictive than necessary as it ex-
cludes many more solutions than those met in the
last L iterations. On the other hand, a tabu list
consisting of move characteristics can very well fail
to prevent cycling even with an unbounded tabu list
(fairly simple examples due to de Werra and illus-
trating this assertion are reported in Pirlot, 1992).
This is not essential however as the main role of the
tabu list is to diversify the search, ie. to send the
current solution in regions of the search space which
were not previously explored and in particular to
escape from local minima. An argument in favour of
this thesis is that tabu search using the basic tabu list
consisting of the last visited solutions (as opposed to
strategically identified attributes) usually yields very
poor results even if computing time is disregarded.
So and despite the remarks just made, the tabu list is
usually a list of one or several attributes of the
recently visited solutions or (of the converse) of the
most recent moves: these attributes should be chosen
accurately. As mentioned above, the prohibition of
solutions with a given attribute is likely to be restric-
tive in excluding much more solutions than the just
visited ones. To correct the bad consequences of this
(not all consequences are undesirable), one offers the
possibility of overwriting the tabu status of a move
when it leads to a good enough solution. More

formally, we define an aspiration level that de-
scribes what is a ‘good enough solution’. Two ele-
mentary examples of aspiration criteria are:

Asp 1. A solution is above the aspiration level if it is
better than any solution met before (as measured by
the objective function F).

Asp 2. (This criterion may be used when the tabu list
records two characteristics of the moves x — y, such
as an attribute of the converse move y —> x and the
value F(x).) If the attribute of the move y — x' is
in the tabu list and is associated with value F, the
move is acceptable only if F(x') <F.

Summarizing the above, we have the following
scheme for a basic short term TS algorithm.

(Short term) Tabu Search (TS)

@ Initialization: Select an initial solution x, in
X; initialize the best value F* of F and the corre-
sponding solution x*:

F* < F(x))
x" e x
Tabu list TL is empty.

® Step n=1, 2,...; x, denotes the current solu-
tion. F is used to store the best accessible value of F
met during the exploration of the subneighbourhood
V'(x,). x denotes the solution in V'(x,) for which
F(%) = F. Initialize F to
F e x,

For all x in V'(x,),

if F(x) < F and (if the move (x, — x) is not tabu

or if the move is tabu but passes the aspiration

criterion), then

F e F(x)and X < x.

Let x,,, < x.
If F<F* , then

x"<Xand F* «F.

The appropriate characteristic of the move (x, -
x,.,) enters the tabu list once the first entered
characteristic has been removed if the list was full.

@ End: if the stopping criterion is fulfilled, then
stop.

The list of tactical choices that have to be made is
somewhat longer than for SA; standard choices are
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not always possible or tend to be less efficient than
for SA. In other words, there is more room (and
need) for creativity in a TS application. The main
decisions to be made are:

@ the specification of a neighbourhood structure
and possibly of a subneighbourhood structure (for
the subneighbourhood V'(x,), a generic possibility
is to pick up at random a fixed number of solutions
in V(x,));

® the choice of the move attributes to be recorded
in the tabu list;

@ the tabu list length;

@ the choice of an aspiration criterion;

@ the selection of a stopping rule (the same rule
as for stopping SA may be used or the total number
of iterations may be fixed a priori).

3.2. Bibliographic and historic note

Glover (1986) is the initiator of Tabu Search.
Similar views were developed by Hansen (1986)
who formulated a steepest ascent/mildest descent
heuristic principle. A comprehensive description of
TS can be found in Glover et al. (1993) or in Glover
and Laguna (1993) as well as extensive bibliogra-
phies. The literature about TS (mainly reports on
applications) is now growing at a very fast rate.
More or less refined versions of the method have
been used to ‘solve’ a large variety of combinatorial
optimization problems like scheduling, vehicle rout-
ing, quadratic assignment, clustering and grouping,
electronic circuit design, graph coloring, and the
traveling salesman problem. Volume 41 of the An-
nals of Operations Research (J.C. Baltzer AG, Sci-
ence Publishers, Basel, Switzerland) is entirely de-
voted to TS. In contrast with simulated annealing
very little theoretical work has been done about TS.
A notable exception (Faigle and Kern, 1992) pro-
vides convergence results for a probabilistic version
of TS much in the spirit of similar results for SA.

3.3. An example: Graph coloring

Because we are focusing here on the short term
component of Tabu Search, we will restrict our
attention to an example with a corresponding focus.
An early application of TS to the coloring problem
by Hertz and de Werra (1987) is appealing for its

simplicity and directness. (More recent TS imple-
mentations that include additional considerations of-
fer useful advantages and have proved more power-
ful, as we discuss later.) A coloring of the vertices V
of a non-directed graph G = (V, E) is searched for;
the same color may not be assigned to two adjacent
vertices and as few different colors as possible are to
be used. Hertz and de Werra consider alternatively
the problem of coloring the vertices with a fixed
number ! of colors and minimizing the number of
faults, i.e. the number of adjacent vertices which are
painted the same color. Hence, coloring adjacent
vertices with the same color is accepted but penal-
ized. The authors’ strategy consists in finding a
perfect coloring (without faults) for a large initial
value of I then find successive perfect colorings for
smaller and smaller /. The procedure stops when the
algorithm is not able to find a coloring with the
current number of allowed colors. In this implemen-
tation, a ‘solution’ x is any [l-partition of V, x=
(V,,..., V). Clearly, in this approach, most solutions
are not feasible (i.e. are not perfect colorings). This
1s just like in the second implementation of SA in
graph partitioning. The objective function F (to
minimize) is defined on all [-partitions x =
(Vy,...,V) of V by

F(x)= Z |E L

i=1

where E; is the set of edges whose extremities are
both in V,. The neighbourhood V(x) is the set of all
I-partitions which differ from x=(V,,...,V,) by the
transfer of exactly one ‘bad vertex’ from some class
V; to some other class V; (a ‘bad vertex’ in V; is a
vertex linked to another vertex of V,). During local
search, not all solutions of V{x) are evaluated (there
are too many of them). A sample V'(x) is drawn at
random from V(x); the size of the subneighbour-
hood V'(x) is a parameter of the algorithm. Only
non-tabu solutions or tabu solutions that satisfy the
aspiration criterion are accepted in V’(x). The best
solution from V’'(x) becomes the new current solu-
tion. The tabu list (TL) records the vertices trans-
fered during the last k iterations together with their
color before the transfer. The TL prevents a vertex
transferred during the latter k iterations from turning
back to its original color. The aspiration criterion is
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satisfied (and the tabu status of a transfer overwrit-
ten) when a move from solution x to solution x' is
such that F(x') < F(x) and never in the past has a
move been improving a solution of value F(x) to
one of value as good as F(x'). Note that some tricks
are used to reduce computation time: the neighbour-
hood random generation is stopped as soon as is
found a non-tabu solution which is better than the
current best solution. Special star-shaped configura-
tions are searched for and reduced, i.e. some local
optimization work is done on the current solution
(see Hertz and de Werra, 1987). The authors experi-
mented on random graphs whose number of nodes
ranges from 100 to 1000 and whose edge density is
0.5 (= probability of presence of each edge). They
took the ‘magic number 7° for the length k of their
tabu list, the size of the randomly generated sub-
neighbourhoods grows with the number of nodes of
the instance at hand. The results are compared with
those obtained by an implementation of SA which
was run on the same instances; better results are
obtained with TS and using less computing time
(Johnson et al., 1991, do not confirm this statement).
The same authors in the same paper also developed a
so-called combined method which they use for color-
ing large graphs (more than 500 vertices). TS is used
for finding a large independent set whose vertices
are assigned the first color. These vertices are re-
moved and a large independent set is (tabu-)searched
for in the remaining part of the graph. The vertices
of the second independent set receive the second
color and the procedure is continued in this way until
the number of not-yet-colored vertices drops below a
certain threshold. Then TS is used for coloring the
remaining vertices as explained above.

4. Genetic algorithms (GAs)
4.1. General presentation of genetic algorithms

A Genetic Algorithm (GA) may be described as a
mechanism that mimics the genetic evolution of a
species. The main difference with the two former
approaches, SA and short term TS, is that GAs deal
with populations of solutions rather than with single
solutions. This feature is also shared with another
population based approach called Scatter Search,

which underlies some of the strategies of longer term
TS. An obvious advantage is intrinsic parallelism but
it goes beyond letting solutions evolve independently
in parallel: solutions do interact, mix together and
produce ‘children’ that hopefully retain the good
characteristics of their parents. Population based ap-
proaches such as GAs (and Scatter Search) can be
viewed as a form of local search but in a generalized
sense. It is not the neighbourhood of a single solu-
tion which is explored but the neighbourhood of a
whole population; due to interaction, this is not
simply the union of the individual neighbourhoods.
In GAs, the main operators used to generate and
explore the neighbourhood of a population and select
a new generation are selection, crossover and muta-
tion. We describe these operators below. Note that
the GA literature is rich in terms borrowed from
Genetics, sometimes with a little of pedantry; we
shall limit our use of the genetic jargon to a mini-
mum. The first peculiarity of GAs is that the genetic
operators do not operate directly on the solution
space; solutions have to be coded as finite-length
strings over a finite alphabet. This makes little differ-
ence with common optimization practice in some
situations, like mathematical programming in 0-1
variables, as a natural encoding of a solution is a
bitstring containing the values of each of the boolean
variables in some predefined order. However, this is
less easy in some other situations and above all, the
straightforward encoding is not always the most
appropriate. From now on in the framework of GAs,
when we write ‘solution’, we mean ‘encoded repre-
sentation of a solution’ unless otherwise stated.

A GA starts with an initial population of say N
solutions and evolves it, yielding a population of the
same size N at each iteration. Very roughly, the
(n + 1)st generation of solutions is obtained from the
n-th generation X" through the following proce-
dure: the best individuals (= solutions) from X
are selected, crossover operations are performed on
pairs of them. This yields an offspring of solutions
which will replace the bad individuals of the current
population. Mutation is generally performed on a
small proportion of the ‘children’.

Let us go a little more into the detail. Each
solution of the current population {x,,..., xy} is
evaluated by its ‘fitness’ which can simply be the
value of the objective function in a maximization
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problem. More generally, the fitness of a solution is
an appropriate monotone transformation of its evalu-
ation by the objective function. Let F denote, in this
section, the fitness function which we want to maxi-
mize over the solution space. The selection of the
‘best’ individuals from a given population is done
according to their fitness but not in a deterministic
way; solutions are drawn at random with replace-
ment from the current population with a probability
that increases with their fitness. A simple choice for
such a probability is as follows: for all i=1,..., N,
x; is selected with probability

F(xi) _Fmin
j}’=l(p( x;) "Fmin) ,
where

Fuo=min{F(x,), j=1,...,N}.

Pairs of selected individuals are then submitted (with
some probability x) to the crossover operation. There
are lots of possibilities for defining this operator,
depending on the problem and its encoding. The
commonest example called ‘2-point crossover’ works
as follows. Suppose the solutions are coded in bit-
strings of length 8 and that the following pairs of
individuals were selected:

61 0 1 1 0 0 1
I 1.0 0 01 1 O

Two positions, say the 2nd and the 5th, are chosen at
random and the characters between those two posi-
tions are swapped, yielding two ‘children’ solutions.
In our example, we swap the characters on the 3rd,
4th and 5th positions in both strings:

6 1]0 1 170 0 1

1 110 0 Of1 1 O
L0 1{0 0 0[O0 O 1
1 1710 1 141 1 0

Each child is then submitted to mutation (with some
probability ). The simplest mutation operator con-
sists of choosing a position at random and substitut-
ing the character in that position by another character
from the alphabet. For instance, working on the
8-positions bitstring

01011001

and performing a mutation at position 6 yields

01011101

The final step in the generation of a new population
is the substitution of ‘bad’ individuals of the current
population by the (possibly mutated) children. The
‘bad’ individuals are selected according to their fit-
ness in a randomized way, much as was done for
selecting the good individuals; solutions are drawn at
random without replacement with a probability that
decreases with their fitness. This procedure yields
the (n+ 1)st generation. The algorithm generally
stops after a preassigned number of generations have
been produced. As a summary, we present a
schematic description of a typical GA. Note that
function F (= fitness) is to be maximized on the
space X of coded solutions. Many variants of this
basic scheme can be found in the literature.

Genetic Algorithm (GA)

@ Initialization: Select an initial population X
={x{",..., xX{V} c X; initialize the best value F* of
F and the corresponding solution x*:

F* e max{F(xV), i=1,...,N}
x* < arg max{F(x), i=1,...,N}

® Step n=1,2, ...; X denotes the current
population of solutions

(a) Selection of good individuals from X" Let
{y;, j=1,...,2M} be 2M individuals drawn with
replacement from X", the probability of choosing
x{") being an increasing function of F(x{™).

(b) Crossover: For k=1,..., M, the crossover
operator is applied to the pairs (y,,, ¥,,,,) with
probability x: this yields M pairs of children
(Z34- 2354 1) (which are identical to their parents
with probability (1 — x)).

(¢) Mutation: For j=1,...,2M, the mutation
operator is applied to z; with probability p: this
yields 2M (possibly mutated) children o;, j=
1,...,2M (which are identical to z; with probability
(1 —p).

(d) Substitution of the bad individuals: Draw 2 M
individuals from X without replacement, the
probability of choosing x{™ being a decreasing func-
tion of F(x{™). X"*1 is obtained by substituting
the 2 M selected ‘bad’ individuals from X by the
children {zj, j=1,...,2M}.

Forall j=1,...,N,if F(x{"*Y)> F*, then
F* « F(xﬁ-” l))
x* « x(_n+ 1)

® End: If (n + 1) > a fixed number of iterations,

then stop.
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Table 1

Initial population

j Population Solution F(x)
{x", j=1,....4)

1 01101 13 169

2 11000 24 576

3 01000 8 64

4 10011 19 361

4.2. A didactic example and some general remarks

We illustrate the above complicated procedure on
a simple example borrowed from Goldberg (1989, p.
14 ff.). Consider the problem of maximizing F(x) =
x? on the set of integers {0, 1,...,31} and let a GA
be used for this purpose.

A straightforward encoding of the solutions is by
bitstrings of length 5. Let us start with the initial
population of 4 solutions in Table 1: it was drawn at
random by coin tossing.

In this example, the whole population is replaced
by the children at each iteration (i.e. 2M = N = 4).
The good individuals selected for reproduction are
shown in Table 2. Note that x{") appears twice. A
one-point crossover operator is used; all characters
positioned after the selected cutpoint are swapped.
The cutpoints for the two pairs of parents are shown
in Table 2. The crossover probability x is assumed
to be 1 and the mutation probability is w = 107>. No
mutation is simulated. The average fitness pro-
gressed from 293 in XV to 439 in X®. Proceeding
in this way and due to the selection mechanism
designed to favour the fittest individuals it can be
hoped that the final population will contain very
good solutions. In the example, a very good solution
(11011 = 27) is already produced after one step. It is
crucial however that sufficient diversity be main-
tained in the population in order to permit the explo-
ration of as many ‘good regions’ of the solution

space as possible and not to restrict the search to the
vicinity of a (local) maximum. Here again Glover’s
concepts of diversification and intensification which
were alluded to in Section 3 are relevant. The persis-
tence of a diversified population can be achieved by
a careful tuning of the (many) parameters of the
algorithm, namely population size, replacement rate
(i.e. number of children substituting old solutions at
each generation), crossover probability (x) and mu-
tation probability (), number of iterations.
Important structural choices have to be made as
well, e.g. a good encoding for the solutions, adequate
crossover and mutation operators. These are essential
decisions as it is generally believed among the GAs
community that the success of GAs is due to the
progressive proliferation of good schemata in the
population, i.e. specific substrings which would be
associated with properties which characterize opti-
mal or near-optimal solutions. This clearly implies
that the encoding of the solutions should be in some
sense meaningful, i.e. should implicitly give a se-
mantic description of what is a good solution. For
instance, in the above simple example, solutions with
a ‘1’ in the first position are better than any solution
with a ‘0’ in the first position. The necessity and the
difficulty of selecting good encodings as well as

. appropriate operators is further illustrated in the next

subsection. The interested reader is also referred to
Falkenauer (1993) where the author proposes appro-
priate encoding and operators for grouping problems,
including for example bin packing and clustering.

4.3. A genetic algorithm for the traveling salesman
problem (TSP)

Several attempts at ‘solving’ the famous traveling
salesman problem (TSP) have been made using dif-
ferent implementations of GAs. We present here the
most elementary of these algorithms in order to

Table 2
First iteration
Selected ‘good’ individuals Crossover Children Solution F( z})
{yi=1..., 2M) site Z;=w
1 0110]1 4 01100 12 144
2 110010 4 11001 25 625
3 11/000 2 11011 27 729
4 10[011 2 10000 16 256
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further illustrate the possible application of GAs. In
the TSP, a traveller has to visit C cities exactly once
and go back to his starting point. The problem
(which is NP-hard) is to find a tour of the cities at
lowest cost. In the simplest GA for solving the TSP,
a solution, i.e. a tour, is represented by an ordered
list of the cities. For instance, if there are C=9
cities,

357124869

represents the tour that passes successively through
the cities 3, 5, 7,...,9 and then comes back from 9
to 3. A first difficulty is to define a crossover
operator since the usual 2-point crossover (see Sec-
tion 4.1) is not applicable. Indeed, consider that we
have to produce children from the parents

A=3571248609,
B=19234687S5:.

Suppose that the third and sixth positions were se-
lected for 2-point crossover. This would yield the
following ‘tours’ as children:

3 512 3 4 6|8 6 9
1 97 1 2 4|8 7 5

but these tours are meaningless since some citics
appear twice while some other cities are not visited
at all. One of the crossover operators specially de-
signed for dealing with ‘chromosomes’ that represent
a permutation (as is the case here) is named OX (for
order crossover) and works as follows. As for 2-point
crossover, two positions are selected, say the 3rd and
the 6th as on the example above; both parents A and
B are then prepared in order to make possible to
transfer the ‘genes’ 3 to 6 of A in the corresponding
section of B and vice versa. To prepare B for
instance, holes (H) are created in the places where
are located the genes that will come from A, i.e.

B: HO9|H3 HG6|8 HS.

Then, the holes are filled in by moving non-holes
that lie on their right in the chromosome. This starts
from the second cut position (from the gene in the
7th position on). When the last gene is reached one
goes back to the gene in the first, second, ..., posi-
tion, in circular order:

B: 36/|HHHHI|8509.

When this process ends, there are ‘holes’ only in the

exchange section and the genes from the exchange
section of A can be imported, yielding

B: 36|7124]|8509.
Preparing A similarly, one gets
A: 7112346(895.

This operator seems particularly well adapted be-
cause it introduces the least possible perturbation of
the relative positions of the cities by preserving as
far as possible the circular order of the cities which
is what matters in this context. Other types of
crossovers may also be considered for the TSP; they
belong to the so-called class of ‘reordering opera-
tors’: see Goldberg (1989, pp. 166—-179).

The problem of avoiding the creation of meaning-
less solutions also arises with mutation. That is why
this operator is substituted by inversion in the TSP
application. Starting from a chromosome A, two cut
positions are selected at random, say before the 3rd
and after the 6th sites, and the order of the cities in
between is reversed, yielding

A": 35[14217]8609.

Applying these special operators in a simple-minded
manner does not seem to make possible a successful
treatment of problems of reasonable size. There is a
need for crossover operators that do not blindly mix
pairs of tours but use local optimization in the
crossover operation. This is implemented in the algo-
rithm proposed by Grefenstette et al. (1985) whose
results can compete with those obtained by SA on
200-city problems. Other approaches also combining
local optimization with genetic search are reported to
yield near optimal results on the Padberg 532-city
problem (see the references in Mathias and Whitley,
1992). This tends to demonstrate that obtaining good
results with GAs on combinatorial optimization
problems often requires a rather sophisticated inter-
pretation of the basic scheme.

4.4. Bibliographic and historic note

The origins of GAs lie in the foundations of a
theory of adaptive systems initiated by Holland whose
1975 book Adaptation in Natural and Artificial
Systems is the Bible of the GA community. An
introductory account of the theory as well as its main
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developments and applications can be found in the
excellent introduction to GAs by Goldberg (1989).
Function optimization is in fact the most trivial
application of the theory which ambitions to be
relevant in such fields as the design of data struc-
tures, algorithms, computer operating systems, in
adaptive control, etc. Since De Jong’s thesis in 1975
however, a large part of the activity of the GA
community has been devoted to the less exciting but
more accessible task of function optimization (see
Goldberg, 1989, pp. 126~127 for a list of applica-
tions of GAs to optimization problems; see also the
proceedings of specialized conferences on GAs:
Grefenstette, 1985, 1987; Schaffer, 1989; Belew and
Booker, 1991; Schwefel, 1991; Minner and Mander-
ick, 1992). It is interesting to note that the population
based Scatter Search (SS) approach (Glover, 1977)
contrasts with GAs by introducing a spatial model
rather than a genetic model. In SS, reference points
(parents, in GA terminology) are joined, possibly
more than two at a time, by ‘rounded linear combi-
nations’ instead of ‘genetic crossover’. {This allows
offspring to be produced beyond the region of the
parents, protecting against the inbreeding phe-
nomenon that sometimes troubles GAs.) This spatial
operation produces the classic GA crossover opera-
tors and a variety of others as special instances.
Additional links between different methods arise in
the associated path relinking strategy of Tabu
Search, which extends Scatter Search to combine
good solutions by constructing paths in neighbor-
hood space. These connections between SS, TS and
GAs are elaborated in Glover (1994).

4.5. A few more words about GA

4.5.1. Theoretical results

GAs are not primarily designed for function opti-
mization but as models of efficient adaptive be-
haviour. Hence, theoretical results are not concerned
with convergence to a global optimum as for SA but
with optimal or near-optimal sequences of decisions
in the context of an unknown and uncertain environ-
ment. This distinction and its consequences are em-
phasized in a very convincing manner in De Jong
(1992). The most important theoretical results about
GAs are to be found in the book by Holland (1975).
The author studies the proliferation of schemata (i.e.

families of solutions characterized by a common
substring) under simple crossover and mutation oper-
ators. He shows in particular that ‘short’ schemata
with above average fitness proliferate at exponential
rate (as long as their fitness remains above average).
If we consider that the goal of heuristic search is to
maximize the overall expected gain (here on the
value of the objective function) and transposing re-
sults from the theory of sequential games under
uncertainty, it can be argued that the GA strategy is
near-optimal as it allocates exponentially growing
representation to the good schemata. Such results,
though conceptually appealing, are rather platonic as
they do not offer any guarantee of optimality or
near-optimality of the generated solutions. They only
say something about the quality of the search process
but perhaps stronger guarantees cannot be expected
in the optimization of NP-hard problems.

4.5.2. Implementing GAs

Selection of encoding and operators. Only general
comments can be made about the implementation of
a GA in practice. First, it is obvious that the choice
of an encoding on one hand and the design of
crossover and mutation operators should be interre-
lated and carefully thought about. Crossover and
mutation should facilitate the effective transmission
of the good characters of the solutions.

Comparison with other approaches. GA practi-
tioners have had a tendency to form a rather closed
community. As a consequence there are few serious
studies comparing the results of a genetic approach
with other approaches on test problems. An excep-
tion is Yamada and Nakano (1992) where jobshop
scheduling tests problems are tackled with success
by applying a genetic search to the disjunctive graph
model. Another exception is the TSP. Rather impres-
sive results have been obtained by several authors
(see, e.g. Grefenstette et al., 1985; Miihlenbein, 1991;
Mathias and Whitley, 1992). This is done however
by exploiting the structure of the problems and de-
signing specific crossover operators; in one of the
implementations (Miihlenbein, 1991) the genetic
search is augmented by local optimization.

GAs and function optimization. The adjunction of
some form of local search to a genetic approach is
probably advisable in general because, as mentioned
in Section 4.5.1., GAs may succeed in locating
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potentially optimal regions (hopefully by detecting
good schemata) but are not designed for locating
precisely the optimal solution(s). This weakness can
be palliated by means of local optimization or alter-
natively by dynamically rescaling the fitness func-
tion or using the ranking of the solutions in the
current population instead of their absolute fitness.
The use of local search in population approaches is a
fundamental component of the original Scatter Search
method, and became introduced in GAs about a
decade later.

Diversity vs. convergence. A difficulty, somewhat
opposite, in implementing a GA is to maintain enough
diversity in the population; diversity indeed is a
condition of efficiency of a crossover operator. A
technique for preserving diversity consists in accept-
ing the replacement of a solution (parent) by another
(child) only when the new solution is similar to the
substituted one (‘niche and speciation’ techniques;
see Goldberg, 1989). The diversity issue is less of a
complication in Scatter Search (and path relinking in
TS), since the mode of combination yields an auto-
matic mechanism to generate offspring that are not
restricted to the domain of the parents.

5. Conclusion and prospects
5.1. Comparison and evaluation of heuristics

After the description of the three general heuris-
tics presented above, the reader is naturally expect-
ing some considerations on how they compare in
applications and which to choose. It must be empha-
sized as a preliminary, that comparing algorithms is
in general no simple matter.

Let me briefly discuss this issue. First of all,
various goals may drive the design and the imple-
mentation of an algorithm. One may be wanting to
solve a practical problem or trying to design the
‘best’ algorithm for a classical problem like the TSP.
Regarding heuristics, the aim of a heuristic search
may be to approximate the optimal solution and
compete with exact algorithms or alternatively find a
satisfactory solution to a practical problem. I believe
that general heuristics are better suited for the former
aim but can be extremely useful in the latter too. In
the race for the best algorithm for a given classical
problem, a current trend consists in building highly

complex algorithms which incorporate knowledge
and techniques from different horizons (exact opti-
mization, heuristics, artificial intelligence, etc).
Heuristics (and metaheuristics) can be used as a
component of an exact algorithm, for example in
producing good bounds or a good initial solution. It
can be helpful too to design good tmplementations of
general heuristics for well-solved classical problems
in view of practical applications. Very often, models
of real-life situations can be obtained by adding
specific constraints to some classical problem; start-
ing with a heuristic which can be evaluated against
exact methods, one can take advantage of the ability
of such heuristics to integrate additional constraints.

These preliminaries show that comparing general
heuristics to one another and to alternative ap-
proaches essentially involves the consideration of
several criteria. Among these, one should mention
ease of implementation, robustness of parameter set-
tings (w.r.t. changes in the data, instance size, etc.),
flexibility for taking additional constraints into ac-
count, computational burden and solution quality.
The definition of solution quality is a difficult ques-
tion in itself, especially for heuristics. Beside the
traditional alternative ‘average versus worst case per-
formance’, there usually are no known bounds on the
performance of heuristics and the evaluation relies
on statistical considerations. In a worst-case analysis
perspective, this raises the question of sampling the
set of problem instances in a ‘representative manner’
or, in other terms, of how rare are the bad cases. The
importance of such a question is illustrated in John-
son et al.’s (1989), study as we have already men-
tioned; for example, on a special class of graphs with
a geometric structure, SA is outperformed by
Kernighan-Lin in the graph partitioning problem.
For local search heuristics, there is the additional
problem of performance stability w.r.t. the initial
solution choice; in randomized heuristics the choice
of the random sequence is another source of variabil-
ity. By the way, this shows clearly the need for a
methodology in comparing algorithms; this should
be based on the statistical theory of experimental
design as in any other experimental science (see, e.g.
Montgomery, 1976).

So, the conclusions will be in lights and shades.
Let us begin with two quotations from Johnson et al.:
‘‘Annealing is a potentially valuable tool but in no



M. Pirlot / European Journal of Operational Research 92 (1996) 493511 507

ways a panacea’” (Johnson et al.,, 1991, p.405). It is
clear indeed that SA is not competitive in some
problems (an example of which is number partition-
ing studied in Johnson et al., 1991). Similar state-
ments are certainly valid both for TS and GAs. Note
that a challenging problem is to understand why, or
for what kind of problems, general heuristics like
SA, TS, GA or others can be efficient in the search
for good solutions.

The following statement from Johnson et al. (1989,
p-869) is concerned with a specific difficulty in
assessing general heuristics which are not well-
specified algorithms but rather schemes of algo-
rithms: “‘Although experiments are capable of
demonstrating that the approach performs well, it is
impossible for them to prove that it performs poorly.
Defenders of SA can always say that we made the
wrong implementation choices’’. The more complex
the approach (like in TS and GAs), the more justified
the statement. In particular, comparing SA, TS and
GAs on a given optimization problem without speci-
fying which implementations were used is almost
meaningless. General statements should be made
only when several implementations of each approach
have been tested; even in that case, one should
remain extremely careful. In their exemplary investi-
gations on the applications of the SA to graph color-
ing, Johnson et al. (1991) compare mmplementations
of SA using different neighbourhood structures with
a classical heuristic that has been randomized
(XLRF). Their conclusions indicates that the compe-
tition winner varies according to factors like instance
size, edge density (for random graphs), geometry of
the graph (see Johnson et al., 1991, Table VIII,
p-399). Johnson et al. also experimented with the TS
algorithm described in Section 3.2, but do not con-
firm Hertz and de Werra’s conclusions: they find no
general domination of TS over SA. A suggested
explanation is that their implementation of SA is
substantially faster than the SA algorithm used by
Hertz and de Werra (which was originally presented
in Chams et al,, 1987). Note however that in most
compartsons of simple TS with SA, TS has generally
been found superior, mainly by being able to provide
solutions of comparable quality in much shorter time.

In trying to propose some conclusions, I will be
concerned only with rather straightforward (though
careful) implementations of the three approaches as

opposed to highly sophisticated and elaborated ones.
This also means that I shall adopt the viewpoint of
the practitioner who is facing a real-life problem and
is trying to solve it rather than of an academic OR
researcher. The latter is indeed interested in perfor-
mance mainly on classical well-studied problems and
simple-minded approach generally is not pertinent in
this context. Note also that in recent years there has
been a tendency to develop sophisticated (mainly
TS) heuristics to solve practical problems. Some
very nice examples can be found in Volume 41 of
the Annals of Operations Research edited by Glover
et al. (1993).

Let me first recall a common sense yet often
forgotten statement. In front of a practical problem,
one should inform oneself on whether good specific
heuristics or exact methods do exist for the problem
or for variants or subproblems. If the decision of
implementing a general heuristic is made (and it can
be on top of a traditional local search heuristic), I
would advocate beginning with a simple one like SA
or a basic short term version of TS. If encouraging
results can be obtained and if better is needed, one
can then turn to more sophisticated approaches, as by
including longer term strategies in TS. (Experience
has shown they can sometimes make dramatic differ-
ences). Indeed the time needed to implement SA or a
simple TS is attractively short. For choosing further
between SA and TS, I would say that it is often
possible to obtain solutions of similar quality with
both but TS generally runs much faster. On the
contrary, even simple TS involves more tactical
choices and hence needs slightly more time to be
implemented and tuned. One possible option is to
quickly prototype with SA and then turn to TS for
more efficiency.

The quality of solution usually is better than with
simple-minded descent algorithms at least for
medium size, hard problems. Running times are
often much longer than for descent algorithms. For
large instances, they may become prohibitive and
solution quality may be poor. Parameter fine tuning
is not crucial in general except when trying to obtain
optimal solutions (see, e.g. van Laarhoven et al.,
1992). Both SA and TS implementations for a given
problem can usually be adapted to take into account
constraints which were not in the initial formulation
of the problem.
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In the case where potential benefits are expected
to balance the efforts needed to sophisticating a
simple implementation of TS (or SA), many possibil-
ities are open. TS offers good opportunities for
importing all kinds of heuristic search principles
(including population evolution and crossover, see
Moscato, 1993). As observed earlier, longer term TS
already embodies population based elements in its
path relinking strategies. One can also think of GAs
or other heuristic approaches, or even turn back to
exact methods. Incorporating knowledge about the
mathematical structure of the problem is in principle
advisable. A short overview of possible combina-
tions of basic heuristic search ideas is provided in
the next section.

5.2. Outlook of current trends

Beside the quality of the solutions, ease of imple-
mentation and robustness for taking additional con-
straints into account, a large part of the attractiveness
of the so-called general heuristics is due to two of
their features, the analogy with ‘natural’ optimiza-
tion processes and the existence of theoretical con-
vergence results. The former feature should not be
taken too seriously as is usually the case with analo-
gies, while the latter proved somewhat disappointing
as discussed above.

As a consequence, nothing is taboo neither in TS
nor in SA or in GAs! Many recent papers report on
experimentations with variants or combinations of
the ‘classical’ general heuristics or with new heuris-
tic search ideas. Any sensible combination of heuris-
tic search ideas may indeed be considered, but exper-
imentation should be done seriously which is not
always the case. It still happens that the enthusiasm
raised by the intuitive appeal of a new method does
not offer much resistance to pragmatic investigation.

It is likely that the field will evolve by building
toolboxes of well-tried heuristic search ideas and
libraries of heuristic search algorithms. In view of
the almost absolute freedom of blending such tools,
some people say that the design of a heuristic is an
art; the blowing up of heuristic search methods will
at least generate a new combinatorial optimization
problem, the problem of managing the growing flow
of papers submitted for publication in scientific jour-
nals.

In the final subsections we present a selection of a
few trends among the most interesting in our view.

5.2.1. Sophisticated TS: A toolbox for heuristic
search

In his recent work, Fred Glover gives a very
extensive definition of TS which, in my opinion, is
very near to a general definition of heuristic search
in optimization. In the wide sense, TS can be consid-
ered a first example of a toolbox of the type alluded
to above.

Following Glover, Taillard and de Werra (1993),
TS is a technique based on selected concepts of
artificial intelligence but it is ‘open’ in the sense that
the list of concepts and search strategies usable
under the TS heading is not restrictive. There is
however one main component which is the imple-
mentation of flexible memory structures. This can be
done in a variety of manners mainly by varying the
neighbourhood structure and /or the objective func-
tion. We just sketch here some representative possi-
bilities and refer to the already mentioned literature
for more detail and further developments.

Tabu lists are in fact a simple way of evolving the
neighboorhood structure and taking into account the
history of the search. No general indications can be
given on how to implement tabu lists, choosing the
properties of the moves to be recorded and fixing the
lists sizes. Browsing through the literature is the best
way of getting inspired and, as for SA, using graphi-
cal tools and/or statistics can help a great deal to
suggest fruitful choices.

As previously noted, Tabu lists are typically im-
plementing short term memory effects. Longer term
memory can be used for monitoring the alternation
of intensification and diversification phases which
are, according to Glover, a basic strategic principle
of search. Intensification means concentrating the
search on promising types of solutions. This can be
done, e.g. by identifying characters of ‘elite’ solu-
tions met in the past and defining the neighbourhood
of the current solution by means of candidate lists of
moves which implement the preference for solutions
sharing some characters with elite solutions. It is
clear however that identifying pertinent characters of
elite solutions may not always be an easy task;
alternatively properties to be emphasized in the
neighbourhood definition can also be selected on the
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basis of a statistical study of the search history
(frequency-based memory as opposed to recency-
based memory). Nevertheless, even fairly simple
forms of intensification, based on identifying ‘con-
sistent’ and ‘strongly determined’ variables, have
proved highly effective (Rochat and Taillard, 1994).

Diversification is required to remain able to es-
cape from local minima. A simple diversification
device consists in modifying the objective function
and penalizing solutions which are ‘too close’ to a
set of previously visited ones. Varying the weights of
such penalties as well as those introduced to model
soft constraints can be used to monitor intensifica-
tion and diversification (‘shifting penalty approach’).
A generalization of this concept is called strategic
oscillation.

All these sophisticated search principles can better
be understood through examples of applications.
References to such examples are provided, e.g. in
Glover et al. (1993).

5.2.2. Hybrid techniques

A number of search ideas can be imported from
one type of heuristic search and implemented in
another. Here is a sample of examples.

Mixing TS and SA. In an SA algorithm, random
selection of a solution in the neighbourhood V(x,)
may be substituted by the selection of the best
solution in a randomly generated subneighbourhood
V'(x,)c V(x,). This is applied, e.g. in Tuyttens et
al. (1994) where it is compared to classical SA on a
grouping problem and proves definitely more effi-
cient.

Another variant of SA can be described by means
of a concept borrowed from the TS terminology. It
consists in modifying the usual monotonically de-
creasing cooling schedule; when the search becomes
inefficient, the system is heated again and the search
restarted at a higher temperature; the restarting tem-
perature is lower than the initial one and is decreased
from cycle to cycle. This can be described as an
application of the ‘strategic oscillation’ principle.
For a successful implementation of this idea on the
vehicle routing problem, see Osman (1993).

Conversely, the idea of a cooling schedule can be
imported in TS. In many implementations of TS, a
thresholding technique is used, e.g. in the aspiration
criterion; moves for which the variation of the objec-

tive function does not pass a certain threshold are
forbidden. The value of the threshold can be de-
creased according to some ‘cooling schedule’. Such
an idea is implemented in Tuyttens et al. (1994)
where it is compared to a basic short term TS
algorithm on a grouping problem. Again this yields
better solutions in lesser time.

Mixing TS with GA. In an interesting paper and
among other stimulating considerations about TS,
Moscato (1993) proposes a parallel version of TS
where a population of solutions is evolved in an
alternation of individual and collective phases. Dur-
ing the collective phases, pairs of solutions are mixed
by means of a crossover operator. This approach
retains the most appealing idea of the GAs, i.e.
interactive or co-operative parallelism. As noted, a
related alternative is to incorporate Scatter Search
and path relinking strategies in Tabu Search. Al-
though proposed in TS settings some years ago,
these strategies have not been widely investigated.

Integration in specific heuristics. An example of
integration in a specific heuristic for graph coloring
is in Hertz and de Werra (1987); it was briefly
described in Section 3.3 above.

Integrating LP in general heuristics. Working
with general heuristics does not preclude using more
traditional techniques of OR. An example where
Linear Programming is needed for computing the
objective function i1s described in Teghem et al.
(1994). The problem (grouping book covers which
will be printed on the same offset plate) can be
formulated as a mixed integer program; SA (or TS or
GAs) may deal with the combinatorial part of the
search while every assignment of covers to plates is
assessed by LP. So, an LP routine is called at each
step and yet computing times remain reasonable.

5.2.3. New general heuristics

Surprisingly enough, the birth rate of new general
heuristic ideas is not that high. Among the recent
ones let us mention for their appealing name the
‘Great Deluge’ and the ‘Record-to-Record’ algo-
rithms (Dueck, 1993). These can be classified as
rather simple thresholding techniques. Another typi-
cal example of a heuristic patterned after Nature is
the so-called ‘Ant algorithm’ (Colorni et al., 1994)
which is built on an analogy with the behavior of an
insect colony.
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A new approach which seems reasonably efficient
has been proposed by Charon and Hudry (1993). It is
called ‘Noising’ and relies on the following princi-
ple. Noise N is added to the objective function F for
instance through random perturbations of the coeffi-
cients of F. This yields a ‘noisy’ objective function
F'=F+kN,
where k is a parameter. Then a descent algorithm is
applied to the noisy objective function F’. In Variant
1, k is decreased as time elapses; Variant 2 consists
of an alternation of noisy and non-noisy descents
(with decreasing values of k); in Variant 3, the
system periodically returns to the best solution which
was met. This technique has been applied to the
TSP, graph partitioning, median order and assign-
ment problems. It is reported to be rather efficient,
robust, easy to implement and to tune. Again, inter-
connections are possible by noting the relation to the
TS approach of strategic oscillation, which is some-
times applied as a strategy to modify both objective
function and constraint parameters. Similarly, period-
ically restarting from elite solutions is a basic TS
intensification approach. Special variants of this form
of intensification have recently produced unusually
good outcomes in scheduling applications (Nowicki
and Smutnicki, 1993, 1994).
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