
163

C H A P T E R

6 Process
Management

A process contains its own independent virtual address space with both code and
data, protected from other processes. Each process, in turn, contains one or more
independently executing threads. A thread running within a process can create
new threads, create new independent processes, and manage communication and
synchronization between the objects.

By creating and managing processes, applications can have multiple, concur-
rent tasks processing files, performing computations, or communicating with
other networked systems. It is even possible to exploit multiple processors to
speed processing.

This chapter explains the basics of process management and also introduces
the basic synchronization operations that will be used throughout the rest of the
book.

Windows Processes and Threads

Every process contains one or more threads, and the Windows thread is the basic
executable unit. Threads are scheduled on the basis of the usual factors: availabil-
ity of resources such as CPUs and physical memory, priority, fairness, and so on.
Windows has supported symmetric multiprocessing (SMP) since NT4, so threads
can be allocated to separate processors within a system.

From the programmer’s perspective, each Windows process includes resources
such as the following components:

• One or more threads.

• A virtual address space that is distinct from other processes’ address spaces,
except where memory is explicitly shared. Note that shared memory-mapped
files share physical memory, but the sharing processes will use different
virtual addresses to access the mapped file.

• One or more code segments, including code in DLLs.

Hart_ch06.fm Page 163 Tuesday, September 28, 2004 2:46 PM

164 C H A P T E R 6 P R O C E S S M A N A G E M E N T

• One or more data segments containing global variables.

• Environment strings with environment variable information, such as the
current search path.

• The process heap.

• Resources such as open handles and other heaps.

Each thread in a process shares code, global variables, environment strings,
and resources. Each thread is independently scheduled, and a thread has the
following elements:

• A stack for procedure calls, interrupts, exception handlers, and automatic
storage.

• Thread Local Storage (TLS)—arrays of pointers giving each thread the ability
to allocate storage to create its own unique data environment.

• An argument on the stack, from the creating thread, which is usually unique
for each thread.

• A context structure, maintained by the kernel, with machine register values.

Figure 6–1 shows a process with several threads. This figure is schematic and
does not indicate actual memory addresses, nor is it drawn to scale.

This chapter shows how to work with processes consisting of a single thread.
Chapter 7 shows how to use multiple threads.

Note: Figure 6–1 is a high-level overview from the programmer’s perspective.
There are numerous technical and implementation details, and interested readers
can find out more in Inside Windows 2000 (Solomon and Russinovich).

A UNIX process is comparable to a Windows process with a single thread.

Threads, in the form of POSIX Pthreads, are a recent addition to UNIX imple-
mentations and are now nearly universally used. Stevens (1992) does not discuss
threads; everything is done with processes.

Needless to say, vendors and others have provided various thread implementa-
tions for many years; they are not a new concept. Pthreads is, however, the most
widely used standard, and proprietary implementations are obsolete.

Hart_ch06.fm Page 164 Tuesday, September 28, 2004 2:46 PM

P R O C E S S C R E A T I O N 165

Process Creation

The fundamental Windows process management function is CreateProcess,
which creates a process with a single thread. It is necessary to specify the name of
an executable program file as part of the CreateProcess call.

It is common to speak of parent and child processes, but these relationships
are not actually maintained by Windows. It is simply convenient to refer to the
process that creates a child process as the parent.

CreateProcess has ten parameters to support its flexibility and power.
Initially, it is simple to use default values. Just as with CreateFile, it is
appropriate to explain all the CreateProcess parameters. Related functions
then become easier to understand.

Note first that the function does not return a HANDLE; rather, two separate
handles, one each for the process and the thread, are returned in a structure spec-
ified in the call. CreateProcess creates a new process with a primary thread.
The example programs are always very careful to close both of these handles when
they are no longer needed in order to avoid resource leaks; a common defect is to
neglect to close the thread handle. Closing a thread handle, for instance, does not
terminate the thread; the CloseHandle function only deletes the reference to the
thread within the process that called CreateProcess.

Process

Code

Global Variables

Process Heap

Process Resources
Open Files

Heaps
· · ·

Environment Block

· · ·

Thread 1

Thread Local Storage

Stack

Thread N

Thread Local Storage

Stack

Figure 6–1 A Process and Its Threads

Hart_ch06.fm Page 165 Tuesday, September 28, 2004 2:46 PM

166 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Parameters

Some parameters require extensive explanations in the following sections, and
many are illustrated in the program examples.

lpApplicationName and lpCommandLine (this is an LPTSTR and not an
LPCTSTR) together specify the executable program and the command line
arguments, as explained in the next section.

lpsaProcess and lpsaThread point to the process and thread security at-
tribute structures. NULL values imply default security and will be used until
Chapter 15, which covers Windows security.

bInheritHandles indicates whether the new process inherits copies of the
calling process’s inheritable open handles (files, mappings, and so on). Inherited
handles have the same attributes as the originals and are discussed in detail in a
later section.

dwCreationFlags combines several flags, including the following.

• CREATE_SUSPENDED indicates that the primary thread is in a suspended state
and will run only when ResumeThread is called.

• DETACHED_PROCESS and CREATE_NEW_CONSOLE are mutually exclusive;
don’t set both. The first flag creates a process without a console, and the
second flag gives the new process a console of its own. If neither flag is set, the
process inherits the parent’s console.

BOOL CreateProcess (

LPCTSTR lpApplicationName,

LPTSTR lpCommandLine,

LPSECURITY_ATTRIBUTES lpsaProcess,

LPSECURITY_ATTRIBUTES lpsaThread,

BOOL bInheritHandles,

DWORD dwCreationFlags,

LPVOID lpEnvironment,

LPCTSTR lpCurDir,

LPSTARTUPINFO lpStartupInfo,

LPPROCESS_INFORMATION lpProcInfo)

Return: TRUE only if the process and thread are successfully
created.

Hart_ch06.fm Page 166 Tuesday, September 28, 2004 2:46 PM

P R O C E S S C R E A T I O N 167

• CREATE_NEW_PROCESS_GROUP specifies that the new process is the root of a
new process group. All processes in a group receive a console control signal
(Ctrl-c or Ctrl-break) if they all share the same console. Console control
handlers were described in Chapter 4 and illustrated in Program 4–5. These
process groups have similarities to UNIX process groups and are described
later in this chapter.

Several of the flags control the priority of the new process’s threads. The possi-
ble values are explained in more detail at the end of Chapter 7. For now, just use
the parent’s priority (specify nothing) or NORMAL_PRIORITY_CLASS.

lpEnvironment points to an environment block for the new process. If NULL,
the process uses the parent’s environment. The environment block contains name
and value strings, such as the search path.

lpCurDir specifies the drive and directory for the new process. If NULL, the
parent’s working directory is used.

lpStartupInfo specifies the main window appearance and standard device
handles for the new process. Use the parent’s information, which is obtained from
GetStartupInfo. Alternatively, zero out the associated STARTUPINFO structure
before calling CreateProcess. To specify the standard input, output, and error
handles, set the standard handler fields (hStdInput, hStdOutput, and
hStdError) in the STARTUPINFO structure. For this to be effective, also set
another STARTUPINFO member, dwFlags, to STARTF_USESTDHANDLES, and set
all the handles that the child process will require. Be certain that the handles are
inheritable and that the CreateProcess bInheritHandles flag is set. The
Inheritable Handles subsection gives more information and an example.

lpProcInfo specifies the structure for containing the returned process,
thread handles, and identification. The PROCESS_INFORMATION structure is as
follows:

Why do processes and threads need handles in addition to IDs? The ID is
unique to the object for its entire lifetime and in all processes, whereas a given
process may have several handles, each having distinct attributes, such as

typedef struct PROCESS_INFORMATION {

HANDLE hProcess;

HANDLE hThread;

DWORD dwProcessId;

DWORD dwThreadId;

} PROCESS_INFORMATION;

Hart_ch06.fm Page 167 Tuesday, September 28, 2004 2:46 PM

168 C H A P T E R 6 P R O C E S S M A N A G E M E N T

security access. For this reason, some process management functions require IDs,
and others require handles. Furthermore, process handles are required for the
general-purpose, handle-based functions. Examples include the wait functions dis-
cussed later in this chapter, which allow waiting on handles for several different
object types, including processes. Just as with file handles, process and thread
handles should be closed when no longer required.

Note: The new process obtains environment, working directory, and other in-
formation from the CreateProcess call. Once this call is complete, any changes
in the parent will not be reflected in the child process. For example, the parent
might change its working directory after the CreateProcess call, but the child
process working directory will not be affected, unless the child changes its own
working directory. The two processes are entirely independent.

The UNIX and Windows process models are considerably different. First,
Windows has no equivalent to the UNIX fork function, which makes a copy of the
parent, including the parent’s data space, heap, and stack. fork is difficult to
emulate exactly in Windows, and, while this may seem to be a limitation, fork is
also difficult to use in a multithreaded UNIX system because there are numerous
problems with creating an exact replica of a multithreaded system with exact
copies of all threads and synchronization objects, especially on an SMP system.
Therefore, fork, by itself, is not really appropriate in any multithreaded system.

CreateProcess is, however, similar to the common UNIX sequence of successive
calls to fork and execl (or one of five other exec functions). In contrast to
Windows, the search directories in UNIX are determined entirely by the PATH
environment variable.

As previously mentioned, Windows does not maintain parent-child relationships
among processes. Thus, a child process will continue to run after the creating par-
ent process terminates. Furthermore, there are no process groups in Windows.
There is, however, a limited form of process group that specifies all the processes
to receive a console control event.

Windows processes are identified both by handles and by process IDs, whereas
UNIX has no process handles.

Specifying the Executable Image and the Command Line

Either lpApplicationName or lpCommandLine specifies the executable image
name. The rules are as follows.

• lpApplicationName, if not NULL, is the name of the executable. Quotation
marks can be used if the image name contains spaces. More detailed rules are
described below.

• Otherwise, the executable is the first token in lpCommandLine.

Hart_ch06.fm Page 168 Tuesday, September 28, 2004 2:46 PM

P R O C E S S C R E A T I O N 169

Usually, only lpCommandLine is specified, with lpApplicationName being
NULL. Nonetheless, there are detailed rules for lpApplicationName.

• If lpApplicationName is not NULL, it specifies the executable module.
Specify the full path and file name, or use a partial name and the current
drive and directory will be used; there is no additional searching. Include the
file extension, such as .EXE or .BAT, in the name.

• If the lpApplicationName string is NULL, the first white-space-delimited
token in lpCommandLine is the program name. If the name does not contain a
full directory path, the search sequence is as follows:

1. The directory of the current process’s image

2. The current directory

3. The Windows system directory, which can be retrieved with GetSystem-
Directory

4. The Windows directory, which is retrievable with GetWindowsDirectory

5. The directories as specified in the environment variable PATH

The new process can obtain the command line using the usual argv
mechanism, or it can invoke GetCommandLine to obtain the command line as a
single string.

Notice that the command line is not a constant string. This is consistent with
the fact that the argv parameters to the main program are not constant. A
program could modify its arguments, although it is advisable to make any changes
in a copy of the argument string.

The new process is not required to be built with the same UNICODE definition
as that of the parent process. All combinations are possible. Using _tmain as
discussed in Chapter 2 is helpful in developing code for either UNICODE or ASCII
operation.

Inheritable Handles

Frequently, a child process requires access to an object referenced by a handle in
the parent; if this handle is inheritable, the child can receive a copy of the parent’s
open handle. The standard input and output handles are frequently shared with
the child in this way. To make a handle inheritable so that a child receives and can
use a copy requires several steps.

The bInheritHandles flag on the CreateProcess call determines whether
the child process will inherit copies of the inheritable handles of open files,

Hart_ch06.fm Page 169 Tuesday, September 28, 2004 2:46 PM

170 C H A P T E R 6 P R O C E S S M A N A G E M E N T

processes, and so on. The flag can be regarded as a master switch applying to all
handles.

It is also necessary to make an individual handle inheritable; it is not done by
default. To create an inheritable handle, use a SECURITY_ATTRIBUTES structure
at creation time or duplicate an existing handle.

The SECURITY_ATTRIBUTES structure has a flag, bInheritHandle, that
should be set to TRUE . Also, recall that nLength should be set to sizeof
(SECURITY_ATTRIBUTES).

The following code segment shows how an inheritable file or other handle is
typically created. In this example, the security descriptor within the security
attributes structure is NULL; Chapter 15 shows how to include a security descriptor.

HANDLE h1, h2, h3;

SECURITY_ATTRIBUTES sa =

{sizeof(SECURITY_ATTRIBUTES), NULL, TRUE };

...

h1 = CreateFile (..., &sa, ...); /* Inheritable. */

h2 = CreateFile (..., NULL, ...); /* Not inheritable. */

h3 = CreateFile (..., &sa, ...);

/* Inheritable. sa can be reused. */

A child process still needs to know the value of an inheritable handle, so the
parent needs to communicate handle values to the child using an interprocess
communication (IPC) mechanism or by assigning the handle to standard I/O in
the STARTUPINFO structure, as is done in the first example of this chapter
(Program 6–1) and in several additional examples throughout the book. This is
generally the preferred technique because it allows I/O redirection in a standard
way and no changes are needed in the child program.

Alternatively, nonfile handles and handles that are not used to redirect standard
I/O can be converted to text and placed in a command line or in an environment
variable. This approach is valid if the handle is inheritable because both parent and
child processes identify the handle with the same handle value. Exercise 6–2 suggests
how to demonstrate this, and a solution is presented on the book’s Web site.

The inherited handles are distinct copies. Therefore, a parent and child might
be accessing the same file using different file pointers. Furthermore, each of the
two processes can and should close its own handle.

Figure 6–2 shows how two processes can have distinct handle tables with two
distinct handles associated with the same file or other object. Process 1 is the
parent, and Process 2 is the child. The handles will have identical values in both

Hart_ch06.fm Page 170 Tuesday, September 28, 2004 2:46 PM

P R O C E S S H A N D L E C O U N T S 171

processes if the child’s handle has been inherited, as is the case with Handles 1
and 3.

On the other hand, the handle values may be distinct. For example, there are
two handles for File D, where Process 2 obtained a handle by calling CreateFile
rather than by inheritance. Finally, as is the case with Files B and E, one process
may have a handle to an object while the other does not. This would be the case
when the child process creates the handle or when a handle is duplicated from one
process to another, as described in the upcoming Duplicating Handles section.

Process Handle Counts

A common programming error is to neglect to close handles when they are no
longer needed; this can result in resource leakage, which in turn can degrade per-
formance, cause program failures, and even impact other processes. NT 5.1 added
a new function that allows you to determine how many handles any process has
open. In this way, you can monitor your own process or other processes.

Here is the function definition, which is self-explanatory:

Parent

Process 1’s
Object Table

Child

Process 2’s

Object Table

File A

File B

File C

File D

File E

Handle 1

Handle 2

Handle 3

Handle 4

Inheritable Inherited Handle 1

Handle 2

Handle 3

Handle 4CreateFile

CreateFile

Inherited

Not Inheritable

Not Inheritable

Inheritable

Figure 6–2 Process Handle Tables

BOOL GetProcessHandleCount (

HANDLE hProcess,

PDWORD pdwHandleCount)

Hart_ch06.fm Page 171 Tuesday, September 28, 2004 2:46 PM

172 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Process Identities

A process can obtain the identity and handle of a new child process from the
PROCESS_INFORMATION structure. Closing the child handle does not, of course,
destroy the child process; it destroys only the parent’s access to the child. A pair of
functions is used to obtain current process identification.

GetCurrentProcess actually returns a pseudohandle and is not inheritable.
This value can be used whenever a process needs its own handle. You create a real
process handle from a process ID, including the one returned by GetCurrent-
ProcessId, by using the OpenProcess function. As is the case with all sharable
objects, the open call will fail if you do not have sufficient security rights.

Parameters

dwDesiredAccess determines the handle’s access to the process. Some of the
values are as follows.

• SYNCHRONIZE—This flag enables processes to wait for the process to
terminate using the wait functions described later in this chapter.

• PROCESS_ALL_ACCESS—All the access flags are set.

• PROCESS_TERMINATE—It is possible to terminate the process with the
TerminateProcess function.

• PROCESS_QUERY_INFORMATION—The handle can be used by GetExit-
CodeProcess and GetPriorityClass to obtain process information.

HANDLE GetCurrentProcess (VOID)

DWORD GetCurrentProcessId (VOID)

HANDLE OpenProcess (

DWORD dwDesiredAccess,

BOOL bInheritHandle,

DWORD dwProcessId)

Return: A process handle, or NULL on failure.

Hart_ch06.fm Page 172 Tuesday, September 28, 2004 2:46 PM

D U P L I C A T I N G H A N D L E S 173

bInheritHandle specifies whether the new handle is inheritable.
dwProcessId is the identifier of the process requiring a handle.

Finally, a running process can determine the full pathname of the executable
used to run it with GetModuleFileName or GetModuleFileNameEx, using a
NULL value for the hModule parameter. A call from within a DLL will return the
DLL’s file name, not that of the .EXE file that uses the DLL.

Duplicating Handles

The parent and child processes may require different access to an object identified
by a handle that the child inherits. A process may also need a real, inheritable
process handle—rather than the pseudohandle produced by GetCurrent-
Process—for use by a child process. To address this issue, the parent process can
create a duplicate handle with the desired access and inheritability. Here is the
function to duplicate handles:

Upon completion, lphTargetHandle points to a copy of the original handle,
hSourceHandle. hSourceHandle is a handle in the process indicated by
hSourceProcessHandle and must have PROCESS_DUP_HANDLE access;
DuplicateHandle will fail if the source handle does not exist in the source process.
The new handle, which is pointed to by lphTargetHandle, is valid in the target
process, hTargetProcessHandle. Note that three processes are involved,
including the calling process. Frequently, these target and source processes are the
calling process, and the handle is obtained from GetCurrentProcess. Also notice
that it is possible to create a handle in another process; if you do this, you then need
a mechanism for informing the other process of the new handle’s identity.

DuplicateHandle can be used for any handle type.
If dwDesiredAccess is not overridden by DUPLICATE_SAME_ACCESS in

dwOptions, it has many possible values (see the MSDN library on-line help).

BOOL DuplicateHandle (

HANDLE hSourceProcessHandle,

HANDLE hSourceHandle,

HANDLE hTargetProcessHandle,

LPHANDLE lphTargetHandle,

DWORD dwDesiredAccess,

BOOL bInheritHandle,

DWORD dwOptions)

Hart_ch06.fm Page 173 Tuesday, September 28, 2004 2:46 PM

174 C H A P T E R 6 P R O C E S S M A N A G E M E N T

dwOptions is any combination of two flags.

• DUPLICATE_CLOSE_SOURCE causes the source handle to be closed.

• DUPLICATE_SAME_ACCESS causes dwDesiredAccess to be ignored.

Reminder: The Windows kernel maintains a reference count for all objects;
this count represents the number of distinct handles referring to the object. This
count is not available to the application program, however. An object cannot be
destroyed until the last handle is closed and the reference count becomes zero.
Inherited and duplicate handles are both distinct from the original handles and
are represented in the reference count. Program 6–1, later in the chapter, uses
inheritable handles. On the other hand, a handle passed from one process to
another through some form of IPC is not a distinct handle, so if one process closes
the handle, the handle cannot be used by any other process. This technique is
rarely used, but Exercise 6–2 uses IPC to send the value of the inherited handle to
another process.

Next, it is necessary to learn how to determine whether a process has
terminated.

Exiting and Terminating a Process

After a process is complete, the process, or more accurately, a thread running in
the process, can call ExitProcess with an exit code.

This function does not return. Rather, the calling process and all its threads
terminate. Termination handlers are ignored, but there will be detach calls to
DllMain (see Chapter 5). The exit code is associated with the process. A return
from the main program, with a return value, will have the same effect as calling
ExitProcess with the return value as the exit code.

Another process can use GetExitCodeProcess to determine the exit code.

VOID ExitProcess (UINT uExitCode)

BOOL GetExitCodeProcess (

HANDLE hProcess,

LPDWORD lpExitCode)

Hart_ch06.fm Page 174 Tuesday, September 28, 2004 2:46 PM

E X I T I N G A N D T E R M I N A T I N G A P R O C E S S 175

The process identified by hProcess must have PROCESS_QUERY_INFOR-
MATION access (see OpenProcess, discussed earlier). lpExitCode points to the
DWORD that receives the value. One possible value is STILL_ACTIVE, meaning that
the process has not terminated.

Finally, one process can terminate another process if the handle has
PROCESS_TERMINATE access. The terminating function also specifies the exit code.

Caution: Before exiting from a process, be certain to free all resources that
might be shared with other processes. In particular, the synchronization resources
of Chapter 8 (mutexes, semaphores, and events) must be handled carefully. SEH
(Chapter 4) can be helpful in this regard, and the ExitProcess call can be in the
handler. However, __finally and __except handlers are not executed when
ExitProcess is called, so it is not a good idea to exit from inside a program.
TerminateProcess is especially risky because the terminated process will not
have an opportunity to execute its SEH or DLL DllMain functions. Console
control handlers (Chapter 4 and later in this chapter) are a limited alternative,
allowing one process to send a signal to another process, which can then shut
itself down cleanly.

Program 6–3 shows a technique whereby processes cooperate. One process
sends a shutdown request to a second process, which proceeds to perform an
orderly shutdown.

UNIX processes have a process ID, or pid, comparable to the Windows process ID.
getpid is similar to GetCurrentProcessId, but there are no Windows
equivalents to getppid and getgpid because Windows has no process parents or
groups.

Conversely, UNIX does not have process handles, so it has no functions compara-
ble to GetCurrentProcess or OpenProcess.

UNIX allows open file descriptors to be used after an exec if the file descriptor
does not have the close-on-exec flag set. This applies only to file descriptors,
which are then comparable to inheritable file handles.

UNIX exit, actually in the C library, is similar to ExitProcess; to terminate
another process, signal it with SIGKILL.

BOOL TerminateProcess (

HANDLE hProcess,

UINT uExitCode)

Hart_ch06.fm Page 175 Tuesday, September 28, 2004 2:46 PM

176 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Waiting for a Process to Terminate

The simplest, and most limited, method of synchronizing with another process is
to wait for that process to complete. The general-purpose Windows wait functions
introduced here have several interesting features.

• The functions can wait for many different types of objects; process handles are
just the first use of the wait functions.

• The functions can wait for a single process, the first of several specified
processes, or all processes in a group to complete.

• There is an optional time-out period.

The two general-purpose wait functions wait for synchronization objects to
become signaled. The system sets a process handle, for example, to the signaled
state when the process terminates or is terminated. The wait functions, which will
get lots of future use, are as follows:

Specify either a single process handle (hObject) or an array of distinct object
handles in the array referenced by lpHandles. nCount, the size of the array,
should not exceed MAXIMUM_WAIT_OBJECTS (defined as 64 in WINNT.H).

dwMilliseconds is the time-out period in milliseconds. A value of 0 means
that the function returns immediately after testing the state of the specified

DWORD WaitForSingleObject (

HANDLE hObject,

DWORD dwMilliseconds)

DWORD WaitForMultipleObjects (

DWORD nCount,

CONST HANDLE *lpHandles,

BOOL fWaitAll,

DWORD dwMilliseconds)

Return: The cause of the wait completion, or 0XFFFFFFFF for an
error (use GetLastError for more information).

Hart_ch06.fm Page 176 Tuesday, September 28, 2004 2:46 PM

E N V I R O N M E N T B L O C K S A N D S T R I N G S 177

objects, thus allowing a program to poll for process termination. Use INFINITE
for no time-out to wait until a process terminates.

fWaitAll, a parameter of the second function, specifies (if TRUE) that it is
necessary to wait for all processes, rather than only one, to terminate.

The possible successful return values for this function are as follows.

• WAIT_OBJECT_0 means that the handle is signaled in the case of WaitFor-
SingleObject or all nCount objects are simultaneously signaled in the
special case of WaitForMultipleObjects with fWaitAll set to TRUE.

• WAIT_OBJECT_0+n, where 0 ≤ n < nCount. Subtract WAIT_OBJECT_0 from
the return value to determine which process terminated when waiting for any
of a group of processes to terminate. If several handles are signaled, the
returned value is the smallest possible value. WAIT_ABANDONED_0 is a
possible base value when using mutex handles; see Chapter 8.

• WAIT_TIMEOUT indicates that the time-out period elapsed before the wait
could be satisfied by signaled handle(s).

• WAIT_FAILED indicates that the call failed; for example, the handle may not
have SYNCHRONIZE access.

• WAIT_ABANDONED_0 is not possible with processes. This value is discussed in
Chapter 8 along with mutex handles.

Determine the exit code of a process using GetExitCodeProcess, as
described in the preceding section.

Environment Blocks and Strings

Figure 6–1 includes the process environment block. The environment block
contains a sequence of strings of the form

Name = Value

Each environment string, being a string, is NULL-terminated, and the entire
block of strings is itself NULL-terminated. PATH is one example of a commonly
used environment variable.

To pass the parent’s environment to a child process, set lpEnvironment to
NULL in the CreateProcess call. Any process, in turn, can interrogate or modify
its environment variables or add new environment variables to the block.

Hart_ch06.fm Page 177 Tuesday, September 28, 2004 2:46 PM

178 C H A P T E R 6 P R O C E S S M A N A G E M E N T

The two functions used to get and set variables are as follows:

lpName is the variable name. On setting a value, the variable is added to the
block if it does not exist and if the value is not NULL. If, on the other hand, the
value is NULL, the variable is removed from the block. The “=” character cannot
appear in a value string.

GetEnvironmentVariable returns the length of the value string, or 0 on
failure. If the lpValue buffer is not long enough, as indicated by cchValue, then
the return value is the number of characters actually required to hold the
complete string. Recall that GetCurrentDirectory (Chapter 2) uses a similar
mechanism.

Process Security

Normally, CreateProcess gives PROCESS_ALL_ACCESS rights. There are,
however, several specific rights, including PROCESS_QUERY_INFORMATION,
CREATE_PROCESS, PROCESS_TERMINATE , PROCESS_SET_INFORMATION,
DUPLICATE_HANDLE, and CREATE_THREAD. In particular, it can be useful to limit
PROCESS_TERMINATE rights to the parent process given the frequently mentioned
dangers of terminating a running process. Chapter 15 describes security
attributes for processes and other objects.

UNIX waits for process termination using wait and waitpid, but there are no
time-outs even though waitpid can poll (there is a nonblocking option). These
functions wait only for child processes, and there is no equivalent to the multiple
wait on a collection of processes, although it is possible to wait for all processes in
a process group. One slight difference is that the exit code is returned with wait
and waitpid, so there is no need for a separate function equivalent to GetExit-
CodeProcess.

UNIX also supports environment strings similar to those in Windows. getenv (in
the C library) has the same functionality as GetEnvironmentVariable except

DWORD GetEnvironmentVariable (

LPCTSTR lpName,

LPTSTR lpValue,

DWORD cchValue)

BOOL SetEnvironmentVariable (

LPCTSTR lpName,

LPCTSTR lpValue)

Hart_ch06.fm Page 178 Tuesday, September 28, 2004 2:46 PM

E X A M P L E : P A R A L L E L P A T T E R N S E A R C H I N G 179

that the programmer must be sure to have a sufficiently large buffer. putenv,
setenv, and unsetenv (not in the C library) are different ways to add, change,
and remove variables and their values, with functionality equivalent to
SetEnvironmentVariable.

Example: Parallel Pattern Searching

Now is the time to put Windows processes to the test. This example, grepMP,
creates processes to search for patterns in files, one process per search file. The
pattern search program is modeled after the UNIX grep utility, although the
technique would apply to any program that uses standard output. The search
program should be regarded as a black box and is simply an executable program
to be controlled by a parent process.

The command line to the program is of the form

grepMP pattern F1 F2 ... FN

The program, Program 6–1, performs the following processing:

• Each input file, F1 to FN, is searched using a separate process running the
same executable. The program creates a command line of the form grep
pattern FK.

• The handle of the temporary file, specified to be inheritable, is assigned to the
hStdOutput field of the new process’s start-up information structure.

• Using WaitForMultipleObjects, the program waits for all search processes
to complete.

• As soon as all searches are complete, the results (temporary files) are
displayed in order, one at a time. A process to execute the cat utility (Program
2–3) outputs the temporary file.

• WaitForMultipleObjects is limited to MAXIMUM_WAIT_OBJECTS (64) han-
dles, so it is called multiple times.

• The program uses the grep process exit code to determine whether a specific
process detected the pattern.

Figure 6–3 shows the processing performed by Program 6–1.

Hart_ch06.fm Page 179 Tuesday, September 28, 2004 2:46 PM

180 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Figure 6–3 File Searching Using Multiple Processes

Program 6–1 grepMP: Parallel Searching

/* Chapter 6. grepMP. */
/* Multiple process version of grep command. */

#include "EvryThng.h"
int _tmain (DWORD argc, LPTSTR argv [])
/* Create a separate process to search each file on the

command line. Each process is given a temporary file,
in the current directory, to receive the results. */

{
HANDLE hTempFile;
SECURITY_ATTRIBUTES StdOutSA = /* SA for inheritable handle. */

{sizeof (SECURITY_ATTRIBUTES), NULL, TRUE};
TCHAR CommandLine [MAX_PATH + 100];
STARTUPINFO StartUpSearch, StartUp;
PROCESS_INFORMATION ProcessInfo;
DWORD iProc, ExCode;
HANDLE *hProc; /* Pointer to an array of proc handles. */
typedef struct {TCHAR TempFile [MAX_PATH];} PROCFILE;
PROCFILE *ProcFile; /* Pointer to array of temp file names. */

Parent Process

ExitProcess

grep pattern argv [3]

argv [1], argv [2], ..., argv [N+1]

for (i = 1; i <= N; i++) {

 StartUp.hStdOut =

CreateFile (Temp [i])

 CreateProcess (grep pattern

argv [i+1])

}

WaitForMultipleObjects;

 ···

 /* Display search results */

for (i = 1; i <= N; i++) {

 CreateProcess (cat Temp [i])

 WaitForSingleObject;

}

ExitProcess

grep pattern argv [N+1]

ExitProcess

grep pattern argv [2]

ExitProcess

·

·

·

All Searches

Complete

Hart_ch06.fm Page 180 Tuesday, September 28, 2004 2:46 PM

E X A M P L E : P A R A L L E L P A T T E R N S E A R C H I N G 181

GetStartupInfo (&StartUpSearch);
GetStartupInfo (&StartUp);
ProcFile = malloc ((argc - 2) * sizeof (PROCFILE));
hProc = malloc ((argc - 2) * sizeof (HANDLE));

/* Create a separate "grep" process for each file. */
for (iProc = 0; iProc < argc - 2; iProc++) {

_stprintf (CommandLine, _T ("%s%s %s"),
_T ("grep "), argv [1], argv [iProc + 2]);

GetTempFileName (_T ("."), _T ("gtm"), 0,
ProcFile [iProc].TempFile); /* For search results. */

hTempFile = /* This handle is inheritable */
CreateFile (ProcFile [iProc].TempFile,

GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE, &StdOutSA,
CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

StartUpSearch.dwFlags = STARTF_USESTDHANDLES;
StartUpSearch.hStdOutput = hTempFile;
StartUpSearch.hStdError = hTempFile;
StartUpSearch.hStdInput = GetStdHandle (STD_INPUT_HANDLE);

/* Create a process to execute the command line. */
CreateProcess (NULL, CommandLine, NULL, NULL,

TRUE, 0, NULL, NULL, &StartUpSearch, &ProcessInfo);
/* Close unwanted handles. */
CloseHandle (hTempFile); CloseHandle (ProcessInfo.hThread);
hProc [iProc] = ProcessInfo.hProcess;

}

/* Processes are all running. Wait for them to complete. */
for (iProc = 0; iProc < argc - 2; iProc += MAXIMUM_WAIT_OBJECTS)

WaitForMultipleObjects (/* Allows a large # of processes */
min (MAXIMUM_WAIT_OBJECTS, argc - 2 - iProc),
&hProc [iProc], TRUE, INFINITE);

/* Result files sent to std output using "cat." */
for (iProc = 0; iProc < argc - 2; iProc++) {

if (GetExitCodeProcess(hProc [iProc], &ExCode) && ExCode==0) {
/* Pattern was detected -- List results. */
if (argc > 3) _tprintf (_T ("%s:\n"), argv [iProc + 2]);
fflush (stdout); /* Multiple processes use stdout. */
_stprintf (CommandLine, _T ("%s%s"),

_T ("cat "), ProcFile [iProc].TempFile);
CreateProcess (NULL, CommandLine, NULL, NULL,

TRUE, 0, NULL, NULL, &StartUp, &ProcessInfo);
WaitForSingleObject (ProcessInfo.hProcess, INFINITE);
CloseHandle (ProcessInfo.hProcess);
CloseHandle (ProcessInfo.hThread);

}

Hart_ch06.fm Page 181 Tuesday, September 28, 2004 2:46 PM

182 C H A P T E R 6 P R O C E S S M A N A G E M E N T

CloseHandle (hProc [iProc]);
DeleteFile (ProcFile [iProc].TempFile);

}
free (ProcFile);
free (hProc);
return 0;

}

Processes in a Multiprocessor Environment

In Program 6–1, the processes and their primary (and only) threads run almost
totally independently of one another. The only dependence is created at the end of
the parent process as it waits for all the processes to complete so that the output
files can be processed sequentially. Therefore, the Windows scheduler can and will
run the process threads concurrently on the separate processors of an SMP sys-
tem. This can result in substantial performance improvement when performance
is measured as elapsed time to execute the program, and no explicit actions are
required to get the performance improvement.

Appendix C shows some typical results. The performance improvement is not
linear in terms of the number of processors due to overhead costs and the need to
output the results sequentially. Nonetheless, the improvements are worthwhile
and result automatically as a consequence of the program design, which delegates
independent computational tasks to independent processes.

It is possible, however, to constrain the processes to specific processors if you
wish to be sure that other processors are free to be allocated to other critical tasks.
This can be accomplished using the processor affinity mask (see Chapter 9) in a
job object. Job objects are described in a later section.

Finally, it is possible to create independent threads within a process, and
these threads will also be scheduled on separate SMP processors. Chapter 7
describes threads and performance issues related to their use.

Process Execution Times

You can determine the amount of time that a process requires (elapsed, kernel,
and user times) using the GetProcessTimes function, which is not available on
Windows 9x.

Hart_ch06.fm Page 182 Tuesday, September 28, 2004 2:46 PM

E X A M P L E : P R O C E S S E X E C U T I O N T I M E S 183

The process handle can refer to a process that is still running or to one that
has terminated. Elapsed time can be computed by subtracting the creation time
from the exit time, as shown in the next example. The FILETIME type is a 64-bit
item; create a union with a LARGE_INTEGER to perform the subtraction. The lsW
example in Chapter 3 showed how to convert and display file times.

GetThreadTimes is similar and requires a thread handle for a parameter.
Chapter 7 covers thread management.

Example: Process Execution Times

The next example (Program 6–2) is a command called timep (time print) that is
similar to the UNIX time command (time is supported by the command prompt,
so a different name is required). Elapsed, kernel, and system times can be printed,
although only elapsed time is available on Windows 9x.

One use for this command is to compare the execution times and efficiencies of the
various file copy and ASCII to Unicode functions implemented in previous chapters.

This program uses GetCommandLine, a Windows function that returns the
complete command line as a single string rather than individual argv strings.

The program also uses a utility function, SkipArg, to scan the command line
and skip past the executable name. The SkipArg listing is in Appendix A.

Program 6–2 uses the GetVersionEx function to determine the OS version.
With Windows 9x and CE, only the elapsed time is available. The code for these
systems is shown to illustrate that a program can, in some cases, be made to
operate, at least partially, on a range of Windows versions.

Program 6–2 timep: Process Times

/* Chapter 6. timep. */

#include "EvryThng.h"
int _tmain (int argc, LPTSTR argv [])
{

BOOL GetProcessTimes (

HANDLE hProcess,

LPFILETIME lpCreationTime,

LPFILETIME lpExitTime,

LPFILETIME lpKernelTime,

LPFILETIME lpUserTime)

Hart_ch06.fm Page 183 Tuesday, September 28, 2004 2:46 PM

184 C H A P T E R 6 P R O C E S S M A N A G E M E N T

STARTUPINFO StartUp;
PROCESS_INFORMATION ProcInfo;
union { /* Structure required for file time arithmetic. */

LONGLONG li;
FILETIME ft;

} CreateTime, ExitTime, ElapsedTime;
FILETIME KernelTime, UserTime;
SYSTEMTIME ElTiSys, KeTiSys, UsTiSys, StartTimeSys, ExitTimeSys;
LPTSTR targv = SkipArg (GetCommandLine ());
OSVERSIONINFO OSVer;
BOOL IsNT;
HANDLE hProc;

OSVer.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
GetVersionEx (&OSVer);
IsNT = (OSVer.dwPlatformId == VER_PLATFORM_WIN32_NT);
/* NT (all versions) returns VER_PLATFORM_WIN32_NT. */
GetStartupInfo (&StartUp);
GetSystemTime (&StartTimeSys);

/* Execute the command line; wait for process to complete. */
CreateProcess (NULL, targv, NULL, NULL, TRUE,

NORMAL_PRIORITY_CLASS, NULL, NULL, &StartUp, &ProcInfo);

/* Assure that we have all REQUIRED access to the process. */
DuplicateHandle (GetCurrentProcess (), ProcInfo.hProcess,

GetCurrentProcess (), &hProc,
PROCESS_QUERY_INFORMATION | SYNCHRONIZE, FALSE, 0);

WaitForSingleObject (hProc, INFINITE);
GetSystemTime (&ExitTimeSys);

if (IsNT) { /* W NT. Elapsed, Kernel, & User times. */
GetProcessTimes (hProc, &CreateTime.ft,

&ExitTime.ft, &KernelTime, &UserTime);
ElapsedTime.li = ExitTime.li - CreateTime.li;
FileTimeToSystemTime (&ElapsedTime.ft, &ElTiSys);
FileTimeToSystemTime (&KernelTime, &KeTiSys);
FileTimeToSystemTime (&UserTime, &UsTiSys);
_tprintf (_T ("Real Time: %02d:%02d:%02d:%03d\n"),

ElTiSys.wHour, ElTiSys.wMinute, ElTiSys.wSecond,
ElTiSys.wMilliseconds);

_tprintf (_T ("User Time: %02d:%02d:%02d:%03d\n"),
UsTiSys.wHour, UsTiSys.wMinute, UsTiSys.wSecond,
UsTiSys.wMilliseconds);

_tprintf (_T ("Sys Time: %02d:%02d:%02d:%03d\n"),
KeTiSys.wHour, KeTiSys.wMinute, KeTiSys.wSecond,
KeTiSys.wMilliseconds);

} else {
/* Windows 9x and CE. Elapsed time only. */
...

Hart_ch06.fm Page 184 Tuesday, September 28, 2004 2:46 PM

G E N E R A T I N G C O N S O L E C O N T R O L E V E N T S 185

}
CloseHandle (ProcInfo.hThread); CloseHandle (ProcInfo.hProcess);
CloseHandle (hProc);
return 0;

}

Using the timep Command

timep can now be used to compare the various ASCII to Unicode file copy and
sorting utilities such as atou (Program 2-4) and sortMM (Program 5–5). Appendix
C summarizes and briefly analyzes some results.

Notice that measuring a program such as grepMP (Program 6–1) gives kernel
and user times only for the parent process. Job objects, described near the end of
this chapter, allow you to collect information on a group of processes. Appendix C
shows that, on an SMP system, performance can improve as the separate
processes, or more accurately, threads, run on different processors. There can also
be performance gains if the files are on different physical drives.

Generating Console Control Events

Terminating a process can cause problems because the terminated process cannot
clean up. SEH does not help because there is no general method for one process to
cause an exception in another.1 Console control events, however, allow one process
to send a console control signal, or event, to another process in certain limited
circumstances. Program 4–5 illustrated how a process can set up a handler to
catch such a signal, and the handler could generate an exception. In that example,
the user generated a signal from the user interface.

It is possible, then, for a process to generate a signal event in another specified
process or set of processes. Recall the CreateProcess creation flag value,
CREATE_NEW_PROCESS_GROUP. If this flag is set, the new process ID identifies a
group of processes, and the new process is the root of the group. All new processes
created by the parent are in this new group until another CreateProcess call
uses the CREATE_NEW_PROCESS_GROUP flag. The grouped processes are similar to
UNIX process groups.

One process can generate a CTRL_C_EVENT or CTRL_BREAK_EVENT in a speci-
fied process group, identifying the group with the root process ID. The target pro-
cesses must have the same console as that of the process generating the event. In

1 Chapter 10 shows an indirect way for one thread to cause an exception in another thread, and the
same technique can be used between threads in different processes.

Hart_ch06.fm Page 185 Tuesday, September 28, 2004 2:46 PM

186 C H A P T E R 6 P R O C E S S M A N A G E M E N T

particular, the calling process cannot be created with its own console (using the
CREATE_NEW_CONSOLE or DETACHED_PROCESS flag).

The f irst parameter, then, must be one of either CTRL_C_EVENT or
CTRL_BREAK_EVENT. The second parameter identifies the process group.

Example: Simple Job Management

UNIX shells provide commands to execute processes in the background and to ob-
tain their current status. This section develops a simple “job shell” with a similar
set of commands. The commands are as follows.

• jobbg uses the remaining part of the command line as the command line for a
new process, or job, but the jobbg command returns immediately rather than
waiting for the new process to complete. The new process is optionally given
its own console, or is detached, so that it has no console at all. This approach is
similar to running a UNIX command with the & option at the end.

• jobs lists the current active jobs, giving the job numbers and process IDs.
This is similar to the UNIX command of the same name.

• kill terminates a job. This implementation uses the TerminateProcess
function, which, as previously stated, does not provide a clean shutdown.
There is also an option to send a console control signal.

It is straightforward to create additional commands for suspending existing
jobs or moving them to the foreground.

Because the shell, which maintains the job list, may terminate, the shell
employs a user-specific shared file to contain the process IDs, the command, and
related information. In this way, the shell can restart and the job list will still be
intact. Furthermore, several shells can run concurrently. An exercise places this
information in the registry, rather than in a temporary file.

Concurrency issues will arise. Several processes, running from separate com-
mand prompts, might perform job control simultaneously. The job management

BOOL GenerateConsoleCtrlEvent (

DWORD dwCtrlEvent,

DWORD dwProcessGroup)

Hart_ch06.fm Page 186 Tuesday, September 28, 2004 2:46 PM

E X A M P L E : S I M P L E J O B M A N A G E M E N T 187

functions use file locking (Chapter 3) on the job list file so that a user can invoke
job management from separate shells or processes.

The full program on the book’s Web site has a number of additional features,
not shown in the listings, such as the ability to take command input from a file.
JobShell will be the basis for a more general “service shell” in Chapter 13
(Program 13–3). Windows NT services are background processes, usually servers,
that can be controlled with start, stop, pause, and other commands.

Creating a Background Job

Program 6–3 is the job shell that prompts the user for one of three commands and
then carries out the command. This program uses a collection of job management
functions, which are shown in Programs 6–4, 6–5, and 6–6.

Program 6–3 JobShell: Create, List, and Kill Background Jobs

/* Chapter 6. */
/* JobShell.c -- job management commands:

jobbg -- Run a job in the background.
jobs -- List all background jobs.
kill -- Terminate a specified job of job family.

There is an option to generate a console control signal. */

#include "EvryThng.h"
#include "JobMgt.h"

int _tmain (int argc, LPTSTR argv [])
{

BOOL Exit = FALSE;
TCHAR Command [MAX_COMMAND_LINE + 10], *pc;
DWORD i, LocArgc; /* Local argc. */
TCHAR argstr [MAX_ARG] [MAX_COMMAND_LINE];
LPTSTR pArgs [MAX_ARG];

for (i = 0; i < MAX_ARG; i++) pArgs [i] = argstr [i];
/* Prompt user, read command, and execute it. */
_tprintf (_T ("Windows Job Management\n"));
while (!Exit) {

_tprintf (_T ("%s"), _T ("JM$"));
_fgetts (Command, MAX_COMMAND_LINE, stdin);
pc = strchr (Command, '\n');
*pc = '\0';
/* Parse the input to obtain command line for new job. */
GetArgs (Command, &LocArgc, pArgs); /* See Appendix A. */
CharLower (argstr [0]);

Hart_ch06.fm Page 187 Tuesday, September 28, 2004 2:46 PM

188 C H A P T E R 6 P R O C E S S M A N A G E M E N T

if (_tcscmp (argstr [0], _T ("jobbg")) == 0) {
Jobbg (LocArgc, pArgs, Command);

}
else if (_tcscmp (argstr [0], _T ("jobs")) == 0) {

Jobs (LocArgc, pArgs, Command);
}
else if (_tcscmp (argstr [0], _T ("kill")) == 0) {

Kill (LocArgc, pArgs, Command);
}
else if (_tcscmp (argstr [0], _T ("quit")) == 0) {

Exit = TRUE;
}
else _tprintf (_T ("Illegal command. Try again\n"));

}
return 0;

}

/* jobbg [options] command-line [Options are mutually exclusive]
-c: Give the new process a console.
-d: The new process is detached, with no console.
If neither is set, the process shares console with jobbg. */

int Jobbg (int argc, LPTSTR argv [], LPTSTR Command)
{

DWORD fCreate;
LONG JobNo;
BOOL Flags [2];
STARTUPINFO StartUp;
PROCESS_INFORMATION ProcessInfo;
LPTSTR targv = SkipArg (Command);

GetStartupInfo (&StartUp);
Options (argc, argv, _T ("cd"), &Flags [0], &Flags [1], NULL);

/* Skip over the option field as well, if it exists. */
if (argv [1] [0] == '-') targv = SkipArg (targv);

fCreate = Flags [0] ? CREATE_NEW_CONSOLE :
Flags [1] ? DETACHED_PROCESS : 0;

/* Create job/thread suspended. Resume once job entered. */
CreateProcess (NULL, targv, NULL, NULL, TRUE,

fCreate | CREATE_SUSPENDED | CREATE_NEW_PROCESS_GROUP,
NULL, NULL, &StartUp, &ProcessInfo);

/* Create a job number and enter the process ID and handle
into the job "data base." */

JobNo = GetJobNumber (&ProcessInfo, targv); /* See "JobMgt.h" */
if (JobNo >= 0)

ResumeThread (ProcessInfo.hThread);
else {

TerminateProcess (ProcessInfo.hProcess, 3);

Hart_ch06.fm Page 188 Tuesday, September 28, 2004 2:46 PM

E X A M P L E : S I M P L E J O B M A N A G E M E N T 189

CloseHandle (ProcessInfo.hProcess);
ReportError (_T ("Error: No room in job list."), 0, FALSE);
return 5;

}
CloseHandle (ProcessInfo.hThread);
CloseHandle (ProcessInfo.hProcess);
_tprintf (_T (" [%d] %d\n"), JobNo, ProcessInfo.dwProcessId);
return 0;

}

/* jobs: List all running or stopped jobs. */
int Jobs (int argc, LPTSTR argv [], LPTSTR Command)
{

if (!DisplayJobs ()) return 1; /* See job mgmt functions. */
return 0;

}

/* kill [options] JobNumber
-b Generate a Ctrl-Break
-c Generate a Ctrl-C

Otherwise, terminate the process. */
int Kill (int argc, LPTSTR argv [], LPTSTR Command)
{

DWORD ProcessId, JobNumber, iJobNo;
HANDLE hProcess;
BOOL CntrlC, CntrlB, Killed;

iJobNo =
Options (argc, argv, _T ("bc"), &CntrlB, &CntrlC, NULL);

/* Find the process ID associated with this job. */
JobNumber = _ttoi (argv [iJobNo]);
ProcessId = FindProcessId (JobNumber); /* See job mgmt. */
hProcess = OpenProcess (PROCESS_ALL_ACCESS, FALSE, ProcessId);
if (hProcess == NULL) { /* Process ID may not be in use. */

ReportError (_T ("Process already terminated.\n"), 0, FALSE);
return 2;

}
if (CntrlB)

GenerateConsoleCtrlEvent (CTRL_BREAK_EVENT, ProcessId);
else if (CntrlC)

GenerateConsoleCtrlEvent (CTRL_C_EVENT, ProcessId);
else

TerminateProcess (hProcess, JM_EXIT_CODE);
WaitForSingleObject (hProcess, 5000);
CloseHandle (hProcess);
_tprintf (_T ("Job [%d] terminated or timed out\n"), JobNumber);
return 0;

}

Hart_ch06.fm Page 189 Tuesday, September 28, 2004 2:46 PM

190 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Notice how the jobbg command creates the process in the suspended state
and then calls the job management function, GetJobNumber (Program 6–4), to
get a new job number and to register the job and its associated process. If the job
cannot be registered for any reason, the job’s process is terminated immediately.
Normally, the job number is generated correctly, and the primary thread is
resumed and allowed to run.

Getting a Job Number

The next three programs show three individual job management functions. These
functions are all included in a single source file, JobMgt.c.

The first, Program 6–4, shows the GetJobNumber function. Notice the use of
file locking with a completion handler to unlock the file. This technique protects
against exceptions and inadvertent transfers around the unlock call. Such a trans-
fer might be inserted accidentally during code maintenance even if the original
program is correct. Also notice how the record past the end of the file is locked in
the event that the file needs to be expanded with a new record.

Program 6–4 JobMgt: Creating New Job Information

/* Job management utility function. */

#include "EvryThng.h"
#include "JobMgt.h" /* Listed in Appendix A. */
void GetJobMgtFileName (LPTSTR);
LONG GetJobNumber (PROCESS_INFORMATION *pProcessInfo,

LPCTSTR Command)

/* Create a job number for the new process, and enter
the new process information into the job database. */

{
HANDLE hJobData, hProcess;
JM_JOB JobRecord;
DWORD JobNumber = 0, nXfer, ExitCode, FsLow, FsHigh;
TCHAR JobMgtFileName [MAX_PATH];
OVERLAPPED RegionStart;

if (!GetJobMgtFileName (JobMgtFileName)) return -1;
/* Produces "\tmp\UserName.JobMgt" */

hJobData = CreateFile (JobMgtFileName,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if (hJobData == INVALID_HANDLE_VALUE) return -1;

Hart_ch06.fm Page 190 Tuesday, September 28, 2004 2:46 PM

E X A M P L E : S I M P L E J O B M A N A G E M E N T 191

/* Lock the entire file plus one possible new
record for exclusive access. */

RegionStart.Offset = 0;
RegionStart.OffsetHigh = 0;
RegionStart.hEvent = (HANDLE)0;
FsLow = GetFileSize (hJobData, &FsHigh);
LockFileEx (hJobData, LOCKFILE_EXCLUSIVE_LOCK,

0, FsLow + SJM_JOB, 0, &RegionStart);

__try {
/* Read records to find empty slot. */
while (ReadFile (hJobData, &JobRecord, SJM_JOB, &nXfer, NULL)

&& (nXfer > 0)) {
if (JobRecord.ProcessId == 0) break;
hProcess = OpenProcess(PROCESS_ALL_ACCESS,

FALSE, JobRecord.ProcessId);
if (hProcess == NULL) break;
if (GetExitCodeProcess (hProcess, &ExitCode)

&& (ExitCode != STILL_ACTIVE)) break;
JobNumber++;

}

/* Either an empty slot has been found, or we are at end
of file and need to create a new one. */

if (nXfer != 0) /* Not at end of file. Back up. */
SetFilePointer (hJobData, -(LONG)SJM_JOB,

NULL, FILE_CURRENT);
JobRecord.ProcessId = pProcessInfo->dwProcessId;
_tcsnccpy (JobRecord.CommandLine, Command, MAX_PATH);
WriteFile (hJobData, &JobRecord, SJM_JOB, &nXfer, NULL);

} /* End try. */

__finally {
UnlockFileEx (hJobData, 0, FsLow + SJM_JOB, 0,

&RegionStart);
CloseHandle (hJobData);

}
return JobNumber + 1;

}

Listing Background Jobs

Program 6–5 shows the DisplayJobs job management function.

Hart_ch06.fm Page 191 Tuesday, September 28, 2004 2:46 PM

192 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Program 6–5 JobMgt: Displaying Active Jobs

BOOL DisplayJobs (void)

/* Scan the job database file, reporting job status. */
{

HANDLE hJobData, hProcess;
JM_JOB JobRecord;
DWORD JobNumber = 0, nXfer, ExitCode, FsLow, FsHigh;
TCHAR JobMgtFileName [MAX_PATH];
OVERLAPPED RegionStart;

GetJobMgtFileName (JobMgtFileName);
hJobData = CreateFile (JobMgtFileName,

GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

RegionStart.Offset = 0;
RegionStart.OffsetHigh = 0;
RegionStart.hEvent = (HANDLE)0;
FsLow = GetFileSize (hJobData, &FsHigh);
LockFileEx (hJobData, LOCKFILE_EXCLUSIVE_LOCK,

0, FsLow, FsHigh, &RegionStart);

__try {
while (ReadFile (hJobData, &JobRecord, SJM_JOB, &nXfer, NULL)

&& (nXfer > 0)){
JobNumber++;
if (JobRecord.ProcessId == 0)

continue;
hProcess = OpenProcess (PROCESS_ALL_ACCESS, FALSE,

JobRecord.ProcessId);
if (hProcess != NULL)

GetExitCodeProcess (hProcess, &ExitCode);
_tprintf (_T (" [%d] "), JobNumber);
if (hProcess == NULL)

_tprintf (_T (" Done"));
else if (ExitCode != STILL_ACTIVE)

_tprintf (_T ("+ Done"));
else _tprintf (_T (" "));
_tprintf (_T (" %s\n"), JobRecord.CommandLine);

/* Remove processes that are no longer in system. */

if (hProcess == NULL) { /* Back up one record. */
SetFilePointer (hJobData, -(LONG)nXfer,

NULL, FILE_CURRENT);
JobRecord.ProcessId = 0;

Hart_ch06.fm Page 192 Tuesday, September 28, 2004 2:46 PM

E X A M P L E : S I M P L E J O B M A N A G E M E N T 193

WriteFile (hJobData, &JobRecord, SJM_JOB, &nXfer, NULL);
}

} /* End of while. */
} /* End of __try. */

__finally {
UnlockFileEx (hJobData, 0, FsLow, FsHigh, &RegionStart);
CloseHandle (hJobData);

}

return TRUE;
}

Finding a Job in the Job List File

Program 6–6 shows the final job management function, FindProcessId, which
obtains the process ID of a specified job number. The process ID, in turn, can be
used by the calling program to obtain a handle and other process status infor-
mation.

Program 6–6 JobMgt: Getting the Process ID from a Job Number

DWORD FindProcessId (DWORD JobNumber)

/* Obtain the process ID of the specified job number. */
{

HANDLE hJobData;
JM_JOB JobRecord;
DWORD nXfer;
TCHAR JobMgtFileName [MAX_PATH];
OVERLAPPED RegionStart;

/* Open the job management file. */
GetJobMgtFileName (JobMgtFileName);

hJobData = CreateFile (JobMgtFileName, GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

if (hJobData == INVALID_HANDLE_VALUE) return 0;

/* Position to the entry for the specified job number.
 * The full program assures that JobNumber is in range. */

SetFilePointer (hJobData, SJM_JOB * (JobNumber - 1),
NULL, FILE_BEGIN);

/* Lock and read the record. */

Hart_ch06.fm Page 193 Tuesday, September 28, 2004 2:46 PM

194 C H A P T E R 6 P R O C E S S M A N A G E M E N T

RegionStart.Offset = SJM_JOB * (JobNumber - 1);
RegionStart.OffsetHigh = 0; /* Assume a "short" file. */
RegionStart.hEvent = (HANDLE)0;
LockFileEx (hJobData, 0, 0, SJM_JOB, 0, &RegionStart);
ReadFile (hJobData, &JobRecord, SJM_JOB, &nXfer, NULL);
UnlockFileEx (hJobData, 0, SJM_JOB, 0, &RegionStart);
CloseHandle (hJobData);
return JobRecord.ProcessId;

}

Job Objects

Processes can be collected together into job objects where the processes can be
controlled as a group, resource limits can be specified for all the job object member
processes, and accounting information can be maintained. Job objects were
introduced with Windows 2000 and are supported in all NT5 systems.

The first step is to create an empty job object with CreateJobObject, which
takes two arguments, a name and security attributes, and returns a job object
handle. There is also an OpenJobObject function to use with a named object.
CloseHandle destroys the job object.

AssignProcessToJobObject simply adds a process specified by a process
handle to a job object; there are just two parameters. A process cannot be a
member of more than one job, so AssignProcessToJobObject fails if the
process associated with the handle is already a member of some job. A process
that is added to a job inherits all the limits associated with the job and adds its
accounting information to the job, such as the processor time used.

By default, a new child process created with CreateProcess will also belong
to the job unless the CREATE_BREAKAWAY_FROM_JOB flag is specified in the
dwCreationFlags argument to CreateProcess. In the default case, Assign-
ProcessToJobObject will fail if you attempt to assign the child process to a job.

Finally, you can specify control limits on the processes in a job using
SetInformationJobObject.

BOOL SetInformationJobObject (

HANDLE hJob,

JOBOBJECTINFOCLASS JobObjectInformationClass,

LPVOID lpJobObjectInformation,

DWORD cbJobObjectInformationLength)

Hart_ch06.fm Page 194 Tuesday, September 28, 2004 2:46 PM

S U M M A R Y 195

• hJob is a handle for an existing job object.

• JobObjectInformationClass specifies the information class for the limits
you wish to set. There are five values; JobObjectBasicLimitInformation
is one value and is used to specify information such as the total and per-
process time limits, working set size limits,2 limits on the number of active
processes, priority, and processor affinity (the processors of an SMP system
that can be used by threads in the job processes).

• lpJobObjectInformation points to the actual information required by the
preceding parameter. There is a different structure for each class.

• JOBOBJECT_BASIC_ACCOUNTING_INFORMATION allows you to get the total
time (user, kernel, and elapsed) of the processes in a job.

• The last parameter is the length of the preceding structure.

QueryJobInformationObject obtains the current limits. Other information
classes impose limits on the user interface, I/O completion ports (see Chapter 14),
security, and job termination.

Summary

Windows provides a straightforward mechanism for managing processes and
synchronizing their execution. Examples have shown how to manage the parallel
execution of multiple processes and how to obtain information about execution
times. Windows does not maintain a parent-child relationship among processes, so
the programmer must manage this information if it is required.

Looking Ahead

Threads, which are independent units of execution within a process, are described
in the next chapter. Thread management is similar in some ways to process man-
agement, and there are exit codes, termination, and waiting on thread handles. To
illustrate this similarity, grepMP (Program 6–1) will be reimplemented with
threads in the first example program of Chapter 7.

Chapter 8 will then introduce synchronization, which can be used to
coordinate operation between threads in the same or different processes.

2 The working set is the set of virtual address space pages that the OS determines must be loaded in
memory before any thread in the process is ready to run. This subject is covered in most OS texts.

Hart_ch06.fm Page 195 Tuesday, September 28, 2004 2:46 PM

196 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Exercises

6–1. Extend Program 6–1 (grepMP) so that it accepts command line options and
not just the pattern.

6–2. Rather than pass the temporary file name to the child process in Program
6–1, convert the inheritable file handle to a DWORD (a HANDLE requires 4
bytes) and then to a character string. Pass this string to the child process on
the command line. The child process, in turn, must convert the character
string back to a handle value to use for output. The catHA.c and grepHA.c
programs on the book’s Web site illustrate this technique.

6–3. Program 6–1 waits for all processes to complete before listing the results. It is
impossible to determine the order in which the processes actually complete
within the current program. Modify the program so that it can also determine
the termination order. Hint: Modify the call to WaitForMultipleObjects
so that it returns after each individual process terminates. An alternative
would be to sort by the process termination times.

6–4. The temporary files in Program 6–1 must be deleted explicitly. Can you use
FILE_FLAG_DELETE_ON_CLOSE when creating the temporary files so that
deletion is not required?

6–5. Determine any grepMP performance advantages (compared with sequential
execution) when you have an SMP system or when the files are on separate
or network drives. Appendix C presents some partial results.

6–6. Can you find a way, perhaps using job objects, to collect the user and kernel
time required by grepMP? It may be necessary to modify grepMP to use job
objects.

6–7. Enhance the DisplayJobs function (Program 6–5) so that it reports the
exit code of any completed job. Also, give the times (elapsed, kernel, and us-
er) used so far by all jobs.

Hart_ch06.fm Page 196 Tuesday, September 28, 2004 2:46 PM

E X E R C I S E S 197

6–8. The job management functions have a defect that is difficult to fix. Suppose
that a job is killed and the executive reuses its process ID before the process
ID is removed from the job management file. There could be an
OpenProcess on the process ID that now refers to a totally different
process. The fix requires creating a helper process that holds duplicated
handles for every created process so that the ID will not be reused. Another
technique would be to include the process start time in the job management
file. This time should be the same as the process start time of the process
obtained from the process ID. Note: Process IDs will be reused quickly.
UNIX, however, increments a counter to get a new process ID, and IDs will
repeat only after the 32-bit counter wraps around. Therefore, Windows
programs cannot assume that IDs will not, for all practical purposes, be
reused.

6–9. Modify JobShell so that job information is maintained in the registry
rather than in a temporary file.

6–10. Extend JobShell so that the processes are associated with a job object.
Impose time and other limits on the jobs, allowing the user to enter some of
these limits.

6–11. Enhance JobShell so that the jobs command will include a count of the
number of handles that each job is using. Hint: Use GetProcessHandle-
Count, which requires NT 5.1.

6–12. Build project Version (on the Web site), which uses version.c. Run the
program on as many different Windows versions as you can access,
including Windows 9x and NT 4.0 systems if possible. What are the major
and minor version numbers for those systems, and what other information
is available?

Hart_ch06.fm Page 197 Tuesday, September 28, 2004 2:46 PM

Hart_ch06.fm Page 198 Tuesday, September 28, 2004 2:46 PM

