
CreateProcess
The CreateProcess function creates a new process and its primary thread. The new process runs the specified
executable file in the security context of the calling process.

If the calling process is impersonating another user, the new process uses the token for the calling process, not
the impersonation token. To run the new process in the security context of the user represented by the
impersonation token, use the CreateProcessAsUser or CreateProcessWithLogonW function.

BOOL CreateProcess(
 LPCTSTR lpApplicationName,
 LPTSTR lpCommandLine,
 LPSECURITY_ATTRIBUTES lpProcessAttributes,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 BOOL bInheritHandles,
 DWORD dwCreationFlags,
 LPVOID lpEnvironment,
 LPCTSTR lpCurrentDirectory,
 LPSTARTUPINFO lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

Parameters

lpApplicationName
[in] Pointer to a null-terminated string that specifies the module to execute. The specified module can be a
Windows-based application. It can be some other type of module (for example, MS-DOS or OS/2) if the
appropriate subsystem is available on the local computer.

The string can specify the full path and file name of the module to execute or it can specify a partial name.
In the case of a partial name, the function uses the current drive and current directory to complete the
specification. The function will not use the search path. If the file name does not contain an extension, .exe
is assumed. Therefore, if the file name extension is .com, this parameter must include the .com extension.

The lpApplicationName parameter can be NULL. In that case, the module name must be the first white
space-delimited token in the lpCommandLine string. If you are using a long file name that contains a space,
use quoted strings to indicate where the file name ends and the arguments begin; otherwise, the file name
is ambiguous. For example, consider the string "c:\program files\sub dir\program name". This string can be
interpreted in a number of ways. The system tries to interpret the possibilities in the following order:

c:\program.exe files\sub dir\program name
c:\program files\sub.exe dir\program name
c:\program files\sub dir\program.exe name
c:\program files\sub dir\program name.exe

If the executable module is a 16-bit application, lpApplicationName should be NULL, and the string pointed
to by lpCommandLine should specify the executable module as well as its arguments.

lpCommandLine
[in, out] Pointer to a null-terminated string that specifies the command line to execute. The maximum
length of this string is 32K characters.

The Unicode version of this function, CreateProcessW, will fail if this parameter is a const string.

The lpCommandLine parameter can be NULL. In that case, the function uses the string pointed to by
lpApplicationName as the command line.

If both lpApplicationName and lpCommandLine are non-NULL, the null-terminated string pointed to by
lpApplicationName specifies the module to execute, and the null-terminated string pointed to by
lpCommandLine specifies the command line. The new process can use GetCommandLine to retrieve the
entire command line. Console processes written in C can use the argc and argv arguments to parse the
command line. Because argv[0] is the module name, C programmers generally repeat the module name as
the first token in the command line.

If lpApplicationName is NULL, the first white-space – delimited token of the command line specifies the
module name. If you are using a long file name that contains a space, use quoted strings to indicate where
the file name ends and the arguments begin (see the explanation for the lpApplicationName parameter). If
the file name does not contain an extension, .exe is appended. Therefore, if the file name extension is .com,
this parameter must include the .com extension. If the file name ends in a period (.) with no extension, or if
the file name contains a path, .exe is not appended. If the file name does not contain a directory path, the
system searches for the executable file in the following sequence:

1. The directory from which the application loaded.

2. The current directory for the parent process.

3. The 32-bit Windows system directory. Use the GetSystemDirectory function to get the path of this
directory.

 Platform SDK: DLLs, Processes, and Threads

Windows Me/98/95: The Windows system directory. Use the GetSystemDirectory function to
get the path of this directory.

4. The 16-bit Windows system directory. There is no function that obtains the path of this directory, but
it is searched. The name of this directory is System.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

6. The directories that are listed in the PATH environment variable.

The system adds a null character to the command line string to separate the file name from the arguments.
This divides the original string into two strings for internal processing.

lpProcessAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be
inherited by child processes. If lpProcessAttributes is NULL, the handle cannot be inherited.

The lpSecurityDescriptor member of the structure specifies a security descriptor for the new process. If
lpProcessAttributes is NULL or lpSecurityDescriptor is NULL, the process gets a default security descriptor.
The ACLs in the default security descriptor for a process come from the primary or impersonation token of
the creator.

lpThreadAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be
inherited by child processes. If lpThreadAttributes is NULL, the handle cannot be inherited.

The lpSecurityDescriptor member of the structure specifies a security descriptor for the main thread. If
lpThreadAttributes is NULL or lpSecurityDescriptor is NULL, the thread gets a default security descriptor.
The ACLs in the default security descriptor for a thread come from the primary or impersonation token of
the creator.

bInheritHandles
[in] If this parameter TRUE, each inheritable handle in the calling process is inherited by the new process. If
the parameter is FALSE, the handles are not inherited. Note that inherited handles have the same value and
access rights as the original handles.

dwCreationFlags
[in] Flags that control the priority class and the creation of the process. For a list of values, see Process
Creation Flags.

This parameter also controls the new process's priority class, which is used to determine the scheduling
priorities of the process's threads. For a list of values, see GetPriorityClass. If none of the priority class
flags is specified, the priority class defaults to NORMAL_PRIORITY_CLASS unless the priority class of the
creating process is IDLE_PRIORITY_CLASS or BELOW_NORMAL_PRIORITY_CLASS. In this case, the child
process receives the default priority class of the calling process.

lpEnvironment
[in] Pointer to an environment block for the new process. If this parameter is NULL, the new process uses
the environment of the calling process.

An environment block consists of a null-terminated block of null-terminated strings. Each string is in the
form:

name=value

Because the equal sign is used as a separator, it must not be used in the name of an environment variable.

An environment block can contain either Unicode or ANSI characters. If the environment block pointed to by
lpEnvironment contains Unicode characters, be sure that dwCreationFlags includes
CREATE_UNICODE_ENVIRONMENT.

Note that an ANSI environment block is terminated by two zero bytes: one for the last string, one more to
terminate the block. A Unicode environment block is terminated by four zero bytes: two for the last string,
two more to terminate the block.

lpCurrentDirectory
[in] Pointer to a null-terminated string that specifies the current drive and directory for the new process.
The string must be a full path that includes a drive letter. If this parameter is NULL, the new process will
have the same current drive and directory as the calling process. (This feature is provided primarily for
shells that need to start an application and specify its initial drive and working directory.)

lpStartupInfo
[in] Pointer to a STARTUPINFO structure that specifies the window station, desktop, standard handles, and
appearance of the main window for the new process.

lpProcessInformation
[out] Pointer to a PROCESS_INFORMATION structure that receives identification information about the
new process.

Handles in PROCESS_INFORMATION must be closed with CloseHandle when they are no longer needed.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The process is assigned a process identifier. The identifier is valid until the process terminates. It can be used to
identify the process, or specified in the OpenProcess function to open a handle to the process. The initial
thread in the process is also assigned a thread identifier. It can be specified in the OpenThread function to
open a handle to the thread. The identifier is valid until the thread terminates and can be used to uniquely
identify the thread within the system. These identifiers are returned in the PROCESS_INFORMATION
structure.

The calling thread can use the WaitForInputIdle function to wait until the new process has finished its
initialization and is waiting for user input with no input pending. This can be useful for synchronization between
parent and child processes, because CreateProcess returns without waiting for the new process to finish its
initialization. For example, the creating process would use WaitForInputIdle before trying to find a window
associated with the new process.

The preferred way to shut down a process is by using the ExitProcess function, because this function sends
notification of approaching termination to all DLLs attached to the process. Other means of shutting down a
process do not notify the attached DLLs. Note that when a thread calls ExitProcess, other threads of the
process are terminated without an opportunity to execute any additional code (including the thread termination
code of attached DLLs). For more information, see Terminating a Process.

A parent process can directly alter the environment variables of a child process during process creation. This is
the only situation when a process can directly change the environment settings of another process. For more
information, see Changing Environment Variables.

If an application provides an environment block, the current directory information of the system drives is not
automatically propagated to the new process. For example, there is an environment variable named =C: whose
value is the current directory on drive C. An application must manually pass the current directory information to
the new process. To do so, the application must explicitly create these environment variable strings, sort them
alphabetically (because the system uses a sorted environment), and put them into the environment block.
Typically, they will go at the front of the environment block, due to the environment block sort order.

One way to obtain the current directory information for a drive X is to call GetFullPathName("X:",. .). That
avoids an application having to scan the environment block. If the full path returned is X:\, there is no need to
pass that value on as environment data, since the root directory is the default current directory for drive X of a
new process.

Note The name of the executable in the command line that the operating system provides to a process
is not necessarily identical to that in the command line that the calling process gives to the
CreateProcess function. The operating system may prepend a fully qualified path to an executable name
that is provided without a fully qualified path.

When a process is created with CREATE_NEW_PROCESS_GROUP specified, an implicit call to
SetConsoleCtrlHandler(NULL,TRUE) is made on behalf of the new process; this means that the new process
has CTRL+C disabled. This lets shells handle CTRL+C themselves, and selectively pass that signal on to sub-
processes. CTRL+BREAK is not disabled, and may be used to interrupt the process/process group.

Windows Me/98/95: CreateProcessW is supported by the Microsoft Layer for Unicode. To use this, you
must add certain files to your application, as outlined in Microsoft Layer for Unicode on Windows Me/98/95
Systems.

Security Remarks

The first parameter, lpApplicationName, can be NULL, in which case the executable name must be in the white
space-delimited string pointed to by lpCommandLine. If the executable or path name has a space in it, there is
a risk that a different executable could be run because of the way the function parses spaces. The following
example is dangerous because the function will attempt to run "Program.exe", if it exists, instead of
"MyApp.exe".

CreateProcess(NULL, "C:\\Program Files\\MyApp", ...)

If a malicious user were to create an application called "Program.exe" on a system, any program that
incorrectly calls CreateProcess using the Program Files directory will run this application instead of the
intended application.

To avoid this problem, do not pass NULL for lpApplicationName. If you do pass NULL for lpApplicationName, use
quotation marks around the executable path in lpCommandLine, as shown in the example below.

CreateProcess(NULL, "\"C:\\Program Files\\MyApp.exe\" -L -S", ...)

Example Code

For an example, see Creating Processes.

Requirements

Client: Included in Windows XP, Windows 2000 Professional, Windows NT Workstation, Windows Me,

Windows 98, and Windows 95.
Server: Included in Windows Server 2003, Windows 2000 Server, and Windows NT Server.
Unicode: Implemented as Unicode and ANSI versions. Note that Unicode support on Windows Me/98/95
requires Microsoft Layer for Unicode.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also

Processes and Threads Overview, Process and Thread Functions, CloseHandle, CreateProcessAsUser,
CreateProcessWithLogonW, ExitProcess, GetCommandLine, GetEnvironmentStrings,
GetExitCodeProcess, GetFullPathName, GetStartupInfo, OpenProcess, PROCESS_INFORMATION,
SECURITY_ATTRIBUTES, SetErrorMode, STARTUPINFO, TerminateProcess, WaitForInputIdle

Platform SDK Release: February 2003
What did you think of this topic? Order a Platform SDK CD

