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Systems biology of apoptosis 

Martin Bentele and Roland Eils 

Abstract 

New approaches are required for the mathematical modelling and system identifi-
cation of complex signal transduction networks, which are characterized by a large 
number of unknown parameters and partially poorly understood mechanisms. 
Here, a new quantitative system identification method is described, which applies 
the novel concept of 'Sensitivity of Sensitivities' revealing two important system 
properties: high robustness and modular structures of the dependency between 
state variables and parameters. This is the key to reduce the system’s dimensional-
ity and to estimate unknown parameters on the basis of experimental data. The ap-
proach is applied to CD95-induced apoptosis, also called programmed cell death. 
Defects in the regulation of apoptosis result in a number of serious diseases such 
as cancer. With the estimated parameters, it becomes possible to reproduce the ob-
served system behaviour and to predict important system properties. Thereby, a 
novel regulatory mechanism was revealed, i.e. a threshold between cell death and 
cell survival. 

1 Systems biology: paradigm shift from reductionism to 
holism in biology? The whole is greater than the sum of 
its parts 

It is hard to believe that only 40 years ago Watson and Crick discovered the struc-
ture of DNA. Their work was based on a number of studies dating back to the 
work of Oswald Avery, Erwin Chagraff, and others that discovered the four letters 
A,C,G,T of the DNA and Chagraff’s rule that the amount of nucleotides followed 
a simple relationship. Since the discovery of the DNA biology was mostly ori-
ented towards a reductionist approach. Triggered by modern high-throughput se-
quencing technologies the code of life was deciphered letter-by-letter, word-by-
word. It is now well known that the early hope of the genomics age could not be 
met that knowledge of the genetic code would help to comprehensively under-
stand complex biological processes from the function of genes to the pathological 
mechanisms of genetic diseases such as cancer. Thus, the mistrust in the world-
wide sequencing projects by Chagraff, who ironically paved the way for the later 
discovery of the DNA, has been fulfilled: “Niemand hat uns je gelesen, niemand 
wird uns je lesen” (Nobody has ever read us, nobody will ever read us). After al-
most two decades of genome research the leitmotif of reductionism that life is just 
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chemistry and physics and that once we have found the smallest components of 
life we will be able to understand the whole is widely rejected.  

The obvious limitations of the reductionist’s approach to biology has led to a 
revival of holistic approaches in biology. The approach to biology using the tools 
of systems engineering is not new (Bertalanffy 1973). In the first half of the last 
century, Jan C. Smuts laid the foundation for a holistic approach in natural sci-
ences that has even inspired philosophers in their reflection of nature (Smuts 
1926). However, success of a holistic approach has only become possible in the 
postgenomic era since the reductionists have provided information on the basic 
building blocks of many important cellular processes in a quantitative form. Ac-
cordingly, it is probably not correct to name the transition from reductionism to 
holism a paradigm shift in biology. Before the components of life were deciphered 
a holistic approach to biology was condemned to be restricted to a mystic holism 
that was prevalent at the beginning of the 20th century.  

With the help of the reductionism, systems biology has now become an analyti-
cally rigorous discipline that aims at a description of complex biological processes 
by mathematical models. Systems biology can, thus, be considered a new disci-
pline in biology that puts the theoretical foundations of system level dissection of 
living matter into the context of modern high-throughput quantitative experimen-
tal data, mathematics and in silico simulations in order to gain a holistic view on 
the complex workings of life. In this chapter, we will describe a mathematical 
model of programmed cell death called apoptosis. Motivated by this fundamental 
process prevalent in almost all higher organisms we developed a variety of mod-
ern methods for systems biology that are required to tackle complex biochemical 
pathways involved in cellular signalling. 

2 Modelling signal transduction networks 

A better understanding of signal transduction networks is one of the most chal-
lenging areas in systems biology. Cells show information processing by the bio-
chemical interaction between molecules. Signals of external stimuli are, for exam-
ple, passed into the nucleus to regulate gene expression, resulting in proliferation, 
mitosis (nuclear division), changes in metabolism or cell death (Alberts et al. 
2002). Interactions like phosphorylation, exchange of smaller molecules, binding 
or cleavage, are the fundamental mechanisms, which form the signal transduction 
networks. Complexity arises from the huge number of different molecules and in-
teractions between them. In eucaryotic cells, for example, the steadily growing 
number of known signalling molecule species is in the order of magnitude of 104-
105. 

Different methods of transcribing signal transduction networks into the lan-
guage of mathematics exist. Dynamic pathway models are constructed using a di-
versity of mathematical and computational methods. Petri Nets (Reisig 1985) are 
well suited to describe the state transition process of distributed systems. In agent-
based approaches and cellular automata (Wolfram 1994), macroscopic system 
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properties emerge from the individual properties of the single entities, interacting 
with each other. Other methods originate from the analysis of biochemical systems 
ranging from the examination of steady states and flux modes to a large variety of 
control theories (Kell and Westerhoff 1986; Heinrich and Schuster 1996; Schilling 
et al. 1999). More recently, theoretical models for describing the signalling behav-
iour on system levels have been developed, using modular approaches (Kitano 
2002; Csete and Doyle 2002; Lauffenburger 2000). Loosely speaking, simulation 
of signal transduction networks is either based on discrete models describing sig-
nalling as information processing, or on continuous models, where the information 
flux is modelled by a biochemical control system. In the latter approach, which 
goes back to the pioneering work of Garfinkel and Hess in the mid 60s (Garfinkel 
and Hess 1964; Garfinkel 1968), the reaction network is translated into a system 
of ordinary differential equations (Bhalla and Iyengar 1999; Mendes 1997). To-
day, there is a variety of sophisticated simulation methods to analyze complex 
biochemical reaction systems (Mendes 1993; Tomita et al. 1999; Sauro and Fell 
1991).  

3 CD95-induced apoptosis 

Programmed Cell Death, called apoptosis, is the natural and controlled death of 
cells, in which the cell and its nucleus shrinks, condenses, and fragments (Alberts 
et al. 2002; Evan and Littlewood 1998). Apoptosis is one of the most complex 
signalling pathways and an essential property of higher organisms. Defects in 
apoptosis result in a number of serious diseases such as cancer, autoimmunity, and 
neurodegeneration (Krammer 2000; Peter and Krammer 2003). To develop effi-
cient therapies, fundamental questions about molecular mechanisms and regula-
tion of apoptosis remain to be answered. Apoptosis is triggered by a number of 
factors, including UV-light, γ-radiation, chemotherapeutic drugs, growth factor 
withdrawal ('death by neglect'), and signalling from the death receptors (Nagata 
1999; Ashkenazi and Dixit 1999). Apoptosis pathways can generally be divided 
into signalling via the death receptors at the membrane (extrinsic pathway) or the 
mitochondria (intrinsic pathway). Both pathways imply caspases as effector mole-
cules (Salvesen 2002). Caspases belong to the family of proteases, which are en-
zymes that degrade proteins by hydrolyzing some of their peptide bonds 
(Thornberry and Lazebnik 1998). Caspases mostly exist in their inactive proforms 
(procaspases) and become active after getting cleaved. Various caspases are in-
volved in both the initiation of the apoptotic process and the execution of the final 
apoptotic program. CD95-induced apoptosis is one of the best-studied apoptosis 
pathways. A detailed overview on this mechanism is for example given in 
Krammer (2000) and Danial and Korsmeyer (2004).  
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3.1 The CD95-receptor and the DISC 

CD95 is a member of the death receptor family, a subfamily of the TNF-receptor 
superfamily (Nagata 1997). Crosslinking of the CD95-receptor either with its 
natural ligand CD95L or with agonistic antibodies such as anti-APO-1 induces 
apoptosis in sensitive cells. Upon CD95 stimulation with CD95L or anti-APO-1, 
the Death-Inducing Signalling Complex (DISC) is formed. The DISC consists of 
oligomerized CD95, the death domain-containing adaptor molecule FADD, pro-
caspase-8, procaspase-10 and c-FLIP. The interactions between the molecules in 
the DISC are based on homophilic contacts. The death domain (DD) of CD95 in-
teracts with the DD of FADD, while FADD interacts with procaspase-8 via the so-
called death effector domain. Once the DISC is formed, procaspase-8 is autocata-
lytically cleaved: two procaspase-8 molecules bound at the DISC form the inter-
mediate product p43/p41, followed by generation of an active caspase-8 complex 
p18/p10 (Lavrik et al. 2003). This process can be inhibited by c-FLIP, which binds 
to the DISC in various ways and blocks the latter mechanism (Krueger et al. 
2001). 

3.2 The caspase cascade 

After formation of active caspase-8, the apoptotic signalling cascade starts. Cas-
pase-8 cleaves and activates caspase-3 and -7; caspase-3 itself activates caspase-6, 
which again activates caspase-8, thereby, establishing a self-amplifying activation 
loop. Caspase-3, -6, and -7 are involved in the execution of the death process, for 
example, the chromosomal degradation of DNA and, therefore, called executioner 
caspases, whereas the others, responsible for transferring the death signal, are re-
ferred to as initiator caspases. The DNA degradation plays an important role in 
the cell death process. It is started after ICAD gets cut off the CAD-ICAD com-
plex by caspase-3 and -7, thereby, terminating the inhibition of CAD, which di-
rectly fragments the DNA (Nagata 1999). In parallel, PARP, a molecule, which 
repairs broken DNA strands is cleaved by executioner caspases as well. Once the 
DNA fragmentation process is triggered, a complete degradation of the cell starts 
irreversibly. 

3.3 Type I versus type II cells and the regulation of apoptosis 

Two different CD95-signaling pathways are established in different cell types 
(Schmitz et al. 1999; Scaffidi et al. 1998). Type I cells are characterized by inten-
sive DISC formation and mitochondria independent caspase-3 activation. In Type 
II cells, the formation of the DISC complex is reduced and the activation of cas-
pase-3 occurs downstream of the mitochondria: the active form of caspase-8 
cleaves Bid, followed by translocation of the cleavage product tBid to mitochon-
dria, which results in the release of cytochrome-C. Subsequently, apoptosome, a 
complex consisting of Apaf-1, cytochrome-C and caspase-9, is formed (Zou et al. 
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2002), leading to the activation of caspase-9, which then activates caspase-3, trig-
gering the subsequent apoptotic events. Here, a feedback loop is established by 
caspase-2: it is activated by caspase-3 downstream of mitochondria and it cleaves 
Bid, which in response leads to mitochondrial cytochrome-C release. 

Furthermore, CD95-induced signalling is influenced and regulated by many 
other molecules, which mostly inhibit or amplify the apoptotic process, like XIAP, 
IAP1/2 and survivin (inhibitors of caspase-3,-7,-9) (Salvesen and Duckett 2002) or 
the BCL-2 family (Chao and Korsmeyer 1998) consisting of pro-apoptotic (e.g. 
Bak, Bax) and anti-apoptotic (e.g. BCL-XL) members, regulating the critical cyto-
chrome-C release. An overview about the molecule families, which play an impor-
tant role in this pathway, is given in (Westphal and Kalthoff 2003). 

4 Mathematical models of apoptosis 

Despite the steadily increasing number of biological papers on apoptosis, mathe-
matical models of this complex process are very scarce. In a first attempt to theo-
retically describe apoptotic signalling, a mathematical model including more than 
20 reactions was proposed (Fussenegger et al. 2000). However, this model was 
based on ad hoc fixed parameters and, thus, its potential for understanding the 
regulation of apoptosis remains very limited. More recently, the caspase cascade 
was translated into a reductionist model and analytical mathematical methods 
were applied to evaluate the system behaviour within a wide range of parameters 
(Eissing et al. 2004). System identification methods like parameter estimation 
(Deuflhard 1983) based on reliably measured time series of data, as it has been 
successfully applied for chemical reaction system (Bock 1981), are suggested 
(Swameye et al. 2003). However, system identification is severely impaired by the 
high number of unknown parameters and the curse of dimensionality. Curse of 
dimensionality refers to the problem that the space of possible parameter value 
sets grows exponentially with the number of unknown parameters impairing the 
search for the globally most probable parameter values. The high number of un-
known parameters is mainly due to the complexity of signal transduction networks 
and the absence of reliable quantitative information about the underlying mecha-
nisms. Consequently, data-based studies are typically restricted to small models in 
which the biochemical interactions are well understood. 

Despite the ever-increasing number of studies on CD95-induced apoptosis, a 
systemic understanding of this complex signalling pathway is still missing. For 
this reason, we reconstructed the network topology of CD95-induced apoptosis by 
critically searching databases (Schacherer et al. 2001) and the literature. Mole-
cules and reactions directly or indirectly interacting with the main components of 
this pathway were incorporated, leading to a network topology with more than 60 
molecules and about 100 interactions. This complexity cannot be matched by ex-
perimental data at present.  
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Fig. 1. Model of CD95-induced apoptosis combining subsystems of different information 
levels. The grey scale level of the boxes corresponds to the information quality (for details 
see text). 

To tackle the high dimensionality of such systems, we developed an approach 
to large-scale modelling of signal transduction networks, which combines three 
methods (Bentele et al. 2004). Information on different levels of quality are com-
bined in a unified form leading to the ‘Structured Information Models’. Then, a 
global approach to parametric sensitivity analysis is introduced by which the di-
mensionality of the system can be significantly reduced. On this basis, a cluster-
based and sensitivity-controlled parameter estimation method is set up.  

5 Structured information models - The information 
problem 

Information about signal transduction networks can be divided into different levels 
of information quality (Fig. 1). In most cases, interactions between two molecules 
are known on the semantic level only (e.g. A inhibits B or A activates B), thereby 
providing a network topology. For some well-investigated molecules and interac-
tions the biochemical mechanism is also known (e.g. enzymatic process, forma-
tion of complexes) allowing quantitative modelling. However, information about 
the underlying biochemical parameters like reaction rate constants, Michaelis-
Menten constants or dissociation rates, is mostly missing. Even if quantitative in-
formation is available, its usability is limited if it refers to different experimental 
settings, cell types or states of cells. 
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5.1 Network decomposition based on information quality  

To reduce the complexity of the model without sacrificing essential components 
of the network, subsystems of different information qualities were identified and 
incorporated: subsystems mainly consisting of interactions with well-understood 
biochemical mechanisms are modelled as chemical reaction systems, whereas all 
others are modelled as ‘black boxes', defined by their experimentally observed in-
put-output behaviour. The subsystems are identified according to the following 
criteria:  

• The input/output behaviour should be measurable. 
• The number of input/output variables should be low. 
• Subsystems should represent real functional systems (e.g. mitochondria). 
• The information within one subsystem should be on the same level.  

Notably, the black boxes do not assume knowledge of the exact underlying 
mechanisms. Instead, they reproduce the behaviour of the respective subsystems 
in a simplified way. Moreover, minimum sets of state variables and ‘effective' pa-
rameters are introduced that do not necessarily correspond to molecule concentra-
tions and biochemical parameters. As a consequence, the number of unknown pa-
rameters can be drastically reduced a priori.  

Note that this concept is motivated by a typical situation in system identifica-
tion of biochemical networks: due to missing information and limited experimen-
tal data, the models should be small and restricted to those network parts which 
are well understood. On the other hand, parts of biochemical networks can gener-
ally not be regarded independently of their environment. Thus, black boxes are in-
troduced to reproduce the relevant effects of the surrounding network parts on a 
mechanistically well-understood subsystem, rather than for system identification 
of the surrounding network itself, for which the data basis would be missing any-
way.  

The degradation process of CD95-induced apoptosis is, for example, modelled 
as a decay function depending on a virtual state variable describing the ‘apoptotic 
activity', which is influenced by executioner caspases. This function approximates 
the experimental observations, thereby, requiring a few parameters only. 

The decomposition of the complete system into subsystems is an iterative and 
adaptive process. Based on new information, a subsystem might be split into fur-
ther subsystems. A great advantage of the so-obtained ‘Structured Information 
Models' is that it combines heterogeneous information in one model instead of 
dealing with isolated models. 

5.2 Combined model definition 

For the mathematical description of the mechanistic part of structured information 
models, interactions are modelled based on reaction rate equations. The state of a 
system is described by the concentration of l relevant signal transduction mole-
cules (x1, …, xl). The reaction rates depend on these concentrations and also on 
biochemical parameters (Ф1, …, Фr) like binding constants. To describe the tem-
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poral behaviour, a system of Ordinary Differential Equations is generated as linear 
combinations of the reaction rates jv : 
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where ijν denotes the stoichiometric matrix linking the reactions with the mole-
cules affected. Given the initial concentrations, the time evolution of the reaction 
system can be propagated using an ODE Solver (Deuflhard and Bornemann 2002). 
Note that the initial concentrations xi(t=0) are often unknown and are considered 
unknown parameters as well. 

Black boxes are defined by their experimentally observed input-output behav-
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where n denotes the number of reactions and N the number of black boxes. 

5.3 The model of CD95-induced apoptosis  

A quantitative model of CD95-induced apoptosis was derived from the network 
topology, thereby, taking into account the information on all underlying mecha-
nisms (Fig. 2). A detailed reaction mechanism was established for the DISC- and 
the caspase-system. The mechanisms at the DISC are largely described by elemen-
tary reactions, whereas the caspase cleavage process is considered an enzymatic 
process (e.g. Stennicke and Salvesen 1999). In principle, these interactions could 
have been modelled in a more simplified way. The influence of caspase-3 on Bid, 
for example, could have been modelled directly thereby using 'effective' parame-
ters without accounting for the intermediate caspase-2 cleavage. However, since 
time series about the concentration of caspase-2 have been available, this molecule 
was kept in the system in order to gain more information for system identification. 
In contrast, many molecules and interactions with equivalent properties were re-
placed by 'effective' molecules and interactions based on the analysis of parameter 
sensitivity correlations. The molecules XIAP, IAP1/2, survivin and their interac-
tions with caspase-3,-7, and -9 are for example reduced to one 'effective' molecule 
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called IAP and the interactions are described by effective binding parameters. De-
tails about the model are given in Bentele et al. (2004).  

5.4 Black boxes  

Two subsystems with a significant influence on the signalling system were identi-
fied. The death process is described by the degradation of all molecules. It is mod-
elled as an exponential decay-function dependent on the executioner caspase ac-
tivity. The cytochrome-C release of the mitochondria is based on experimental 
observations (Goldstein et al. 2000), which describe a complete release within 5 
minutes as soon as Bid reaches a certain level in comparison to Bcl-2/Bcl-XL. 

To model the degradation process, a virtual state variable called xapop was intro-
duced, which quantifies the 'apoptotic activity', by which the strength of the final 
death process is characterized. It is assumed that the velocity of cell degradation is 
directly influenced by this activity. It is also assumed that the activity itself is 
caused by active caspase-3, -6, and -7 and that the increase of the activity runs in 
parallel to the experimentally observable PARP cleavage. Thus, xapop represents 
the activity of the apoptotic processes triggered by executioner caspases. The deg-
radation process is modelled by a decay function depending on xapop, thus, de-
creasing the concentration of all molecules of the pathway.  

5.5 Experimental data 

A set of experiments to measure time series of concentrations of 14 different 
molecules and complexes (see framed molecules in Fig. 2) after activation of 
CD95-receptors was designed. Cells were stimulated with different concentrations 
of agonistic anti-APO-1 antibody, also referred to as ligands in the following, for 
various periods of time (from 5 minutes to 4 days). Each sample was evaluated by 
three independent approaches. See Bentele et al. (2004) for experimental details. 
In a first set of experiments, time series were measured for a 'fast' activation sce-
nario with an oversaturated ligand concentration corresponding to more than one 
ligand per CD95-receptor. To gain additional information about the system's dy-
namic, several experiments with much lower ligand concentrations were per-
formed resulting in a slower activation of apoptosis. 

6 Model reduction by sensitivity analysis 

The above-described model consists of 41 molecules and molecule complexes, 32 
reactions, and 2 black boxes. It contains more than 50 missing parameters. There-
fore, it is still too complex for reliable system identification and requires further 
reduction of complexity considering the limited number of data points. Here, we 
developed an approach for model reduction by sensitivity analysis. 
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Fig. 2. Structured information model of CD95-induced apoptosis. In the mechanistic part 
(DISC, caspases, IAP), interactions are modelled as elementary reactions including com-
petitive inhibitions and enzymatic reactions. Receptors are activated by ligands initiating 
the DISC formation. After binding to the DISC binding site (DISCbs), procaspase-8 is 
cleaved (initiator caspase), followed by the activation of executioner caspases (3, 6, 7). 
PARP cleavage was chosen as experimental end-point of the pathway. The mitochondria 
and the degradation process, which influences all molecules, are modelled as black boxes 
defined by their input-output behaviour. Experimental time series were measured for the 
molecules framed in red. 

6.1 The sensitivity matrix 

Parametric sensitivity analysis determines the changes of the system behaviour as 
a result of parameter variations (Varma et al. 1999). In a system with m state vari-
ables (x1, …, xm) and n parameters (Ф1, …, Фn), the relative sensitivities 
sij = ( ∂xi /xi) / ( ∂ Ф j / Ф j ) describe the relative changes of the state variables as a 
result of changes of the parameters. In the signal transduction systems, the state 
variables mostly correspond to molecule concentrations. Note that the sensitivities 
are  time-dependent (sij = sij(t)) and that the time points,  for which sensitivities are 
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Fig. 3. Sensitivity Matrix. The sensitivity matrix elements ijŝ  show the relative changes of 
each state variable i (left to right), mostly referring to molecule concentrations, with respect 
to relative changes of each parameter j (front to back). The indices refer to the model defi-
nition of (Bentele et al. 2004). 

computed, have to be chosen carefully. In Metabolic Control Analysis (Kell and 
Westerhoff 1986; Fell 1992) steady states depending on parameter variations are 
investigated, whereas in signal transduction systems, the transient behaviour is of 
high interest to analyse the regulation of a system. As a consequence, the complete 
time period, during which, for example, a signalling pathway is active and exhibits 
a dynamical behaviour, is relevant rather than a distinct time point: 

∫= Δ+
Δ

tt
t ijtij dttss 0

0
)(ˆ 1 . 

The time point t0 corresponds to the start of the investigated scenario and Δt to the 
period, in which the system shows reactions to parameter variations. For the apop-
tosis system, t0 is the time point at which the pathway becomes activated by 
CD95-ligands and the time interval ends when the cell is completely degraded. 
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A sensitivity matrix with elements { ijŝ } is visualized in Fig. 3, showing two 
important facts: 

• Sensitivities are low in general indicating high robustness and a lower 'ef-
fective' dimensionality of the parameter space since many parameters 
have only little impact on most molecules. 

• Apparently, clusters can be identified that contain a subset of molecules, 
whose concentrations depend on a subset of parameters only. This inher-
ent system property is an important feature for further modularization. 

6.2 Local versus global sensitivity analysis 

Usually, sensitivities of huge models can be computed numerically only and a 
general relation between sensitivities )(ˆ Φ

r
ijs  and the parameter set (Ф1, …, Фn), at 

which the sensitivities are determined, cannot be deduced analytically. Instead, 
sensitivities are determined for specific points in parameter space only and are, 
therefore, called local sensitivities. In this study, however, sensitivity analysis is 
used as an essential tool for model reduction, which is required for system identi-
fication. As a consequence, it has to be performed in a virtual experiment prior to 
determination of parameters (see stochastic approach to sensitivity analysis be-
low). 

Global sensitivity analysis, which provides information about sensitivities for 
the complete space of possible parameter values, is impaired by the high dimen-
sionality of the parameter space. Although this situation is ubiquitous for complex 
biological systems, a general solution to this problem does not exist.  

6.3 Stochastic approach to global sensitivity analysis 

In a virtual experiment, sensitivity analysis is performed for a large number of 
randomly chosen points in parameter space within specified ranges. The ranges 
are defined for each parameter type (e.g. bimolecular reaction rate constants, ini-
tial concentrations, Michaelis-Menten constants, etc.), unless more precise infor-
mation was available. Thereby, the concept of ‘Sensitivity of Sensitivities’ is in-
troduced, which examines the robustness of sensitivities with respect to parameter 
variations. This is motivated by two important facts:  

• Biological systems often keep their system properties constant, although 
they are subject to high parameter fluctuations (Barkai and S 1997; Meir 
et al. 2002; Alon et al. 1999) suggesting that at least some sensitivities 
are insensitive with respect to parameter fluctuations (low Sensitivity of 
Sensitivities). 

• Structure and connectivity of biochemical networks suggests that the in-
fluence of some parameters on distant network regions is limited and that 
the corresponding sensitivities are extremely low - independently of the 
parameter values.  
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Fig. 4. Sensitivity Histograms: Sensitivity of Sensitivities. Each box shows a histogram for 
a specific sensitivity ijŝ , computed for a large number of randomly chosen points in pa-
rameter space. Parameter and molecule indices refer to the model definition of Bentele et 
al. (2004). The X-axis represents the relative sensitivity values from 0 to 2 and the Y-axis 
corresponds to the density of occurrences. The blue plot shows the uniformly weighted dis-
tribution of sensitivities, whereas for the red one, each contribution was weighted with the 
Boltzmann factor, resulting in sharper and sometimes slightly shifted peaks. The histo-
grams are exemplary for all matrix elements { ijŝ }. Typically, histograms show clear peaks 
close to zero - an important property for further modularization. However, distributions like 
C, D, J, or M are not informative for modularization. 

The distribution of the computed sensitivities )(ˆ Φ
r

ijs  for a large number of dif-

ferent points in the parameter space, }{ qΦ
r

, are plotted in form of histograms for 
each sensitivity to show their distribution (Fig. 4). The histograms are generated in 
two different ways. In a first approach, all random parameter sets are equally 
weighted, independent of how much the resulting systems dynamics deviate from 
the real system. As an extension, information from experimental data was incorpo-
rated by introducing a Boltzmann factor: based on experimental time series of 
molecule concentrations, an objective function Eq was calculated for each parame-
ter set qΦ

r
based on the differences between the experimental and simulation data: 
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Then, it is assumed that the probability pq that a system with parameter set 
qΦ

r
produces the experimental output { exp

ikx } follows a Boltzmann distribution 
with the objective function as energy term:  

)/exp( kTEp qq −∝  
The assumption is motivated as follows: considering Gaussian random meas-

urement errors, each characterized by σij, the probability pq can be written as 
product (Gershenfeld 1999)  
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which is equivalent to the upper Boltzmann distribution using the definition of Eq. 
For generation of sensitivity histograms, the Boltzmann factor was used as weight-
ing factor: instead of counting the number of parameter sets with sensitivities 
within a certain sensitivity interval, the contribution of each parameter set qΦ

r
 is 

given by )/exp( kTEq− . Thereby, the statistical impact of sensitivities for pa-
rameter sets that are more consistent with the experimental observations are am-
plified. 

Additional information can be gained by varying the factor kT . If a sensitivity 
value is insensitive with respect to parameter variations, particularly within the 
subspace of possible solutions (areas in parameter space with a low objective 
function), ‘cooling down’ the system by decreasing kT  will result in histograms 
with a much sharper peak. Sensitivity histograms showing more than one distinct 
peak when kT is decreased indicate that the respective sensitivity strongly depends 
on the exact parameter set within the parameter subspace of probable solutions. 

6.4 Sensitivity of sensitivities 

The most crucial outcome of the 'global' sensitivity analysis approach presented 
here is the fact that sensitivities of sensitivities are extremely low in most cases, as 
shown in Fig. 4 for some exemplary sensitivity histograms. Obviously, most dis-
tributions show distinct and narrow peaks, indicating high robustness towards 
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large variations of the parameter values. Whenever a sensitivity value ijŝ  is close 
to zero, an extremely sharp peak indicates that the state variable xi is likely not to 
be influenced by parameter Фj, regardless of the exact parameter value set. By in-
troduction of the Boltzmann weighting (Fig. 4, red line), most peaks become even 
sharper. Only in few cases, more than one peak remains or the distribution broad-
ens as a consequence of the ‘cooling’, indicating that the system runs in different 
modes for certain areas of the parameters space. 

As a consequence of the low sensitivity of sensitivities, subsets of parameters 
can be determined, which are unlikely to influence certain state variables. Consid-
ering the high number of sensitivities with 0ˆ ≈ijs , this step is crucial to reduce 
the system's dimensionality even without knowledge of the true parameter values. 
Thus, this method provides a basis for high-dimensional parameter estimation. 

7 Sensitivity-controlled parameter estimation 

Parameters are estimated based on experimental time series of measurable mole-
cule concentrations using the maximum likelihood estimation (Gershenfeld 1999), 
which leads to the least-square problem: 
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Thus, the objective function E, defined as the sum of squares of differences be-
tween experimentally measured and simulated molecule concentrations, divided 
by the standard deviation in order to lower the impact of experimentally less reli-
able values, has to be minimized. A review about methods commonly applied for 
biochemical reaction systems is given in Mendes and Kell (1998).  

7.1 Cluster-based parameter estimation  

This approach takes advantage of the fact that clusters of state variables and pa-
rameters can be identified in such a way as to have subsets of state variables 
whose temporal behaviour depends on a subset of parameters only. Considering 
the sensitivity matrix )ˆ( ijs  of m state variables, n parameters, and an average sen-

sitivity s , it is assumed that sensitivities fulfilling Θ<ijŝ  , ss ⋅Θ=Θ , where 

sΘ  is a low relative threshold (e.g. θs = 0.01), indicate that the respective state 
variable and be considered to be independent of the respective parameter. When-
ever a high percentage of sensitivities fulfil this property – and this is the typical 
case  in  large  signal   transduction   systems – clusters  of  the   remaining  above- 
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Fig. 5. The sensitivity matrix exemplifies the clustered dependence of state variables (verti-
cal axis) and parameters (horizontal axis). Red bars indicate the global parameters on which 
state variables of more than one cluster are dependent. 

threshold sensitivities can be established after reordering the rows of the sensitiv-
ity matrix. A cluster Cq is defined as the sub-matrix of the sensitivity matrix (see 
Fig. 5): 
Cq = ( ijŝ ), i є {Mq,…,Mq+1 –1}, 

j є {1, …, n | Θ≥ijŝ  for at least one i є [Mq,…,Mq+1 –1] }, 
Mq = index of first molecule of cluster q. 

Let Cq denote the q-th cluster and lq the number of ‘local parameters’ of Cq. Lo-
cal parameters are defined as those parameters whose sensitivities are below 
threshold Θ  for all state variables outside the cluster they belong to. If all pa-
rameters of one cluster influence state variables of the same cluster only, they can 
be estimated independently from all other clusters leading to a parameter estima-
tion of much lower dimensionality. In general, this is, however, not the case and a 
cluster-wise estimation would determine the same parameters in the context of dif-
ferent clusters leading to inconsistencies. Therefore, parameters are split into local 
and global ones: a parameter, on which state variables of more than one cluster 
depend on, is called a ‘global parameter’. Consequently, the total number of 
global parameters is given by g = n - ∑ lq. 

Then, a hierarchical approach was designed, in which parameter estimation is 
performed on two levels. On the upper level, global parameters are estimated by 
optimising all clusters: for each cluster, parameter estimation is recursively called 
at the lower level. Thereby, the associated objective function is based on the esti-
mated parameters of the single clusters (lower level). Thus, on the lower level, all 
remaining (local) parameters are estimated separately for each cluster, depending 
on the values of the global parameters proposed by the algorithm of the upper 
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level, but independent of the parameters of all other clusters. This approach sig-
nificantly reduces the dimensionality from the number of all parameters n to the 
sum of the number of global parameters g and the maximum number of local pa-
rameters (g+max(lq)). If W(d) denotes the cost for a parameter estimation of di-
mension d, the total cost Wtot of the algorithms can be compared by 

Unclustered algorithm: Wtot ~ W(n), 
Clustered algorithm: Wtot ~ W(g) • ∑ W(lq). 
Since W(d) strongly increases with dimension d - also known as curse of di-

mensionality, some methods even show an exponential relationship (Mendes and 
Kell 1998) - this relation reflects a drastic reduction of computational cost when-
ever the relative number of global parameters g/n is low, which is typically the 
case in signal transduction systems. To optimize the computation time for very 
large systems, it would be adequate to choose the clusters so that g +max(lq) is 
minimized. 

Since the clustering is applied as a basis for efficient parameter estimation and 
thus before parameter values are given, there is no basis to compute a sensitivity 
matrix, which is, however, required for the clustering. A solution to this problem 
is given by the ‘global’ sensitivity analysis approach. Since the clustering method 
only requires information about which sensitivities are below threshold Θ , the 
sensitivity histograms are evaluated. The clustering is then based on neglecting 
those sensitivities, whose histograms indicate that the property Θ<ijŝ  is likely to 
be fulfilled within the complete space of possible parameters. 

7.2 Parameter estimation algorithm 

In order to further reduce the dimensionality of the parameter estimation problem 
sensitivities, which are below the threshold only locally in parameter space, are 
taken into account by integrating a sensitivity-control in the parameter estimation 
algorithm. As a robust algorithm for nonlinear least-square problems, the Leven-
berg-Marquardt method (Gershenfeld 1999) was chosen and combined with a 
multi-start algorithm. The ranges for the randomly initiated parameter values cor-
respond to those used for sensitivity analysis. For adaptive sensitivity-control, lo-
cal sensitivity analysis is performed after each iteration step. All those parameters, 
whose impact on the objective function is significantly below average are kept 
constant for the next step. This prevents the algorithm from being misguided by 
‘irrelevant’ parameters. Since the distinction between relevant and irrelevant pa-
rameters is generally valid for a specific set of parameter values only, the sensi-
tivities are recalculated after each iteration step. 
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Fig. 6. A: Fast activation scenario: Parameter estimation led to a good fit between model 
simulations (solid lines) and experimental data (dots). Procaspase-8 is cleaved and active 
caspase-8 is formed resulting in the activation of executioner caspases, followed by cell 
death (data not shown). B: The simulation for much lower ligand concentration shows a de-
lay, which is followed by a slow activation of caspase-8, also triggering the death process. 
C: For a below-threshold ligand concentration, the death process is completely stopped. 
According to simulation, active caspase-8 cannot be generated in a number sufficiently high 
to trigger apoptosis. D: Same activation scenario as in C with c-FLIP reduced by 75%. The 
simulation shows a slow and steady cleavage of procaspase-8, until executioner caspases 
are generated in a number sufficiently high to trigger the apoptotic process. Thus, the 
threshold can be shifted by varying the c-FLIP concentration, indicating the crucial role of 
c-FLIP in CD95-induced apoptosis. 

8 Model simulation of apoptosis and experimental results  

8.1 Parameter estimation based on multiple scenarios 

In a first set of experiments, time series were measured for a ‘fast’ activation sce-
nario achieved by 5 μg/ml anti-APO-1 corresponding to a ligand-receptor ratio of 
about 5:1. A good fit between model simulation and experimental data could be 
achieved reproducing the cleavage of procaspase-8 into its active form (Fig. 6A), 
followed by activation of the executioner caspases and cleavage of Bid and PARP. 
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To gain additional information about the system, activation scenarios with lower 
initial ligand concentrations were measured and the parameter estimation was 
based on these multiple conditions. It could be shown that the resulting parameters 
were capable of reproducing several activation scenarios (data not shown). To test 
the predictability of the model, simulations were then performed for scenarios 
with even lower initial ligand concentrations. 

8.2 Threshold mechanism for CD95-induced apoptosis 

The model predictions show that with decreasing ligand concentrations apoptosis 
is slowed down considerably, but cell death is still achieved (Fig. 6B). However, 
below a critical concentration corresponding to a ligand-receptor ratio of approx. 
1:102, apoptosis is completely stopped (Fig. 6C). This prediction was validated by 
experiments (Bentele et al. 2004).  

As a next step, the model was used to reveal the underlying mechanism of the 
threshold. Even for a below-threshold scenario, the number of ligands per receptor 
is sufficient to cleave procaspase-8, thereby, triggering all subsequent caspases. In 
the model, the caspase-8 cleavage capacity at the DISC is assumed to be propor-
tional to the number of active CD95 receptors since the DISCs are supposed to 
remain active after cleaving procaspase-8 molecules. Consequently, it could be as-
sumed that even for a very low ligand concentration apoptosis should not be 
stopped entirely, but would only be slowed down. Instead, the model simulations 
show that c-FLIP, which binds to the DISC and which competes with activation of 
caspase-8 (Krueger et al. 2001), is responsible for completely stopping the death 
process. According to the parameter estimation, there are many more CD95 recep-
tors and procaspase-8 molecules than c-FLIP molecules. The cleavage rate of pro-
caspase-8 is assumed to be dependent on the number of active receptors. When-
ever c-FLIP binds to a DISC, the respective binding site is blocked. Therefore, the 
simulated scenario with subthreshold concentrations of activating ligands shows a 
steady decrease of active DISCs until all of them are blocked by c-FLIP. As a con-
sequence, the simulation shows no significant generation of active caspase-8 as a 
result of the early and complete DISC-blockage. Thus, the c-FLIP mechanism 
identified in the model can be considered a switch, which blocks the activation of 
caspase-8 for signals (ligand concentrations) below a critical quantity and passes 
on the activation signal above this level. As a result, it was predicted that the 
threshold mechanism is highly sensitive to the concentration of c-FLIP (Fig. 6D). 
This prediction was also confirmed by experiments (Bentele et al. 2004). 

8.3 Delay of apoptosis and point of no return 

Another important model prediction addresses the system behaviour above the 
threshold, where the combination of the c-FLIP mechanism with the amplification 
loop does not lead to a steadily decreased caspase cleavage rate upon a decreased 
ligand concentration. Instead, the simulation shows that the caspase cleavage, the 
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amplification loop and the subsequent death process are delayed but not entirely 
stopped. As shown in Fig. 6B, there are no observable system changes for up to 
many hours after activation of the pathway. Then, the death process suddenly 
starts without any external stimulation of the system. This is due to an extremely 
slow increase of active caspase concentration, which reaches a critical level upon 
which the death process is triggered. Thus, for up to many hours, there maybe no 
phenotypic difference observed for cells, which are not (or insufficiently) stimu-
lated by ligands. However, the death process is irreversibly triggered even for 
those cells and cannot be stopped anymore (point of no return). The predicted de-
lays have also been verified by experiments.  

9 Outlook  

The investigation and analysis of complex biological networks and mechanisms in 
cells is probably one of the most challenging and fastest growing fields of science. 
The classic experimental approaches, which mostly focus on the investigation of 
molecule interactions in an isolated context and under specific experimental set-
tings, cannot keep up with the steadily increasing number of potential interaction 
partners and the diversity and complexity of the real networks. The potential of 
entirely experimental approaches towards revealing network functionalities is, 
therefore, limited.  

From a theoretical point of view, system identification of networks, character-
ized by an enormous complexity and a lack of information about the underlying 
mechanisms on both the qualitative and quantitative level, constitutes a new class 
of problems, which has not been sufficiently approached yet. Methods to describe 
complex networks in a qualitative way, for example, as scale free networks 
(Barabasi and Albert 1999), are promising for revealing general principles like ro-
bustness and fragility (Albert et al. 2000; Stelling et al. 2004). Their ability to de-
scribe the real system behaviour is, however, limited since single interactions are 
not quantitatively considered although the properties of real biological networks 
are often related to very concrete features of single mechanisms. 

The emerging field of systems biology, which has been recently started with 
great enthusiasm, is an important step towards the investigation of biological 
processes on systems level. However, it has not been proved yet that it also pro-
vides qualitatively new methods addressing the new dimension of complexity. In-
stead, approaches from the field of engineering and numerical mathematics have 
been widely applied to biological systems, especially to subsystems, where they 
are expected to be well-suited and promising. Moreover, the majority of studies 
address specific applications with the goal of answering specific biological ques-
tions. Although this is a first important step to establish systematic and theoretical 
methods in the field of cell biology, it has to be followed by a second, much more 
challenging step concerning the development of new theoretical approaches for 
the description and system identification of complex and highly underdetermined 
biological systems. 
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It should be noted that numerical parameter identification methods originating 
from disciplines, where experimental data are generated in huge amounts and with 
high precision and where the number of unknown parameters is low, cannot be 
expected to be appropriate for the completely different situation in cell biology. 
Here, uncertain models and a large number of unknown parameters are facing a 
low number of experimental data points with high measurement errors. Current 
numerical methods are based on the assumption that the best parameter fit corre-
sponds to the best solution. For biological systems, a huge solution space is typi-
cally obtained and a single parameter fit can be thus considered rather meaning-
less. One could argue that more experimental data should be generated and more 
quantitative information concerning the single mechanisms should be obtained to 
match the high dimensionality of parameter space. Considering the fact that quan-
titatively reliable in vivo measurements like time series of concentrations are still 
difficult to obtain on a large scale, this demand for a large amount of quantitative 
data cannot be met in the near future. 

It would be fatal though not to attempt extracting information from available 
quantitative experimental data in the context of existing qualitative knowledge 
about, for example, network topologies. Therefore, alternative ways disregarding 
the restrictions of current numerical methods and by-passing the requirement of 
finding one distinct parameter set as suggested here have to be found. The meth-
ods presented here are well suited for theoretically tackling biological systems, as 
it is well-accepted that biological systems mostly keep their system properties 
constant although the real parameters are also subject to high variations. Thus, in-
trinsic biological properties like robustness and the fact that the function of bio-
logical systems does not require fine-tuned parameters indicate that the extraction 
of information is feasible even without exact knowledge of the true parameters. 
This is a new principle, which was approached here by evaluating randomly cho-
sen parameter sets and by the generation of ensembles of estimated parameter fits 
based on randomly chosen initial values. The resulting histograms of parameter 
sensitivities provide a multitude of information, in particular by incorporation of a 
Boltzmann factor based on experimental data. 

The currently developing methods such provided here or in the study of Brown 
and Sethna (2003) mark the beginning of a new methodology to investigate highly 
underdetermined systems. Such approaches have to be further refined, for exam-
ple, by the 'High Dimensional Model Representation' (Li et al. 2001) for a system-
atic description of an 'effective' parameter space. Furthermore, it has to be ex-
tended by the concept of also considering alternative model choices instead of 
different parameter sets only, leading to model discrimination, which is currently 
examined by us (Vacheva et al. 2005). For a better understanding of the regulation 
of programmed cell death, the established loop between modelling, theoretical 
predictions and experiments has already proven to be highly efficient and has 
raised a lot of new detailed questions, for example, concerning the influence of 
spatial aspects on the network function or more detailed investigation of certain 
key regulatory mechanisms. The modular and hierarchical structure of the pre-
sented modelling framework provides a high degree of flexibility for future model 
extensions in various ways, either by adding additional pathways and systems like 
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proliferation or gene expression, or by adding more detailed biochemical mecha-
nisms with more information becoming available. Thus, our methods will be well-
suited for tackling complex and highly underdetermined networks going far be-
yond the field of programmed cell death. 
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