Timetabling at Purdue University

March 31, 2010

Part II: Iterative Forward Search

Iterative Forward Search

 $\mathsf{IFS}(P, F_{\mathsf{wcsp}}, <_{\mathsf{wcsp}}, \emptyset) \qquad P = (V, \mathcal{D}, C, w_c, w_\theta)$ 1: function $\mathsf{IFS}(P, F, <, \delta)$ 2: i = 03: $\omega = \emptyset$ 4: $\sigma = \emptyset$ 5: while canContinue(ω , *i*) do 6: i = i + 17: $v = selectVariable(P, \omega)$ $d = \text{selectValue}(P, \omega, \delta, F, <, v)$ 8: 9: $\gamma = hardConflicts(P, \omega, v/d)$ 10: $\omega = \omega \setminus \gamma \cup \{ v/d \}$ if $F(\omega, \delta) < F(\sigma, \delta)$ then $\sigma = \omega$ 11: 12: end while 13: return σ

14: end function

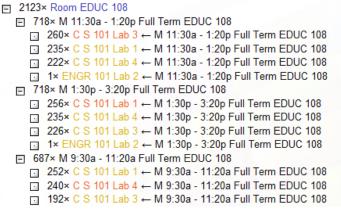
Function for computing conflicting variables

1: function hardConflicts($P, \omega, v/d$) if $\exists d_v : v/d_v \in \omega$ then $\gamma = \{v/d_v\}$ 2: 3: else $\gamma = \emptyset$ 4: for $c \in C_h \land v \in scope(c)$ do $\beta = \omega \backslash \gamma \cup \{ v/d \}$ 5: 6: if $\beta \models \neg c$ then 7: find $\alpha \subseteq \omega \setminus \gamma$ such that $\beta \setminus \alpha \vDash c$ 8: $\gamma = \gamma \cup \alpha$ end if 9: end for 10: 11: return γ 12: end function

Conflict-based statistics for class CS 101 Lab 2

Current Assignment of C S 101 Lab 2

Not assigned.


Room Locations:

Time Locations:

1 (EDUC 108)

3 (M 9:30a, M 11:30a, M 1:30p)

Conflict-based Statistics

Conflict-based statistics

• Example

$$x = 1 \Rightarrow 3 \times \neg y = 2, 4 \times \neg y = 3, 2 \times \neg z = 1, 120 \times \neg v = 1$$

• $CBS[x = d_x \rightarrow \neg y = d_y] = c_{xy}$: the assignment $x = d_x$ caused a hard conflict with the assignment $y = d_y c_{xy}$ times in the past.

Conflict-based statistics

• Example

$$x = 1 \Rightarrow 3 \times \neg y = 2, 4 \times \neg y = 3, 2 \times \neg z = 1, 120 \times \neg v = 1$$

• $CBS[x = d_x \rightarrow \neg y = d_y] = c_{xy}$: the assignment $x = d_x$ caused a hard conflict with the assignment $y = d_y c_{xy}$ times in the past.

• If a value *d* is selected for a variable *v* within the IFS, then hardConflicts($P, \omega, v/d$) chooses previous assignments $\gamma = \{v_1/d_1, v_2/d_2, \dots, v_n/d_n\}$ to be unassigned in order to enforce consistency of the new partial assignment.

As a consequence, the counters are incremented

$$CBS[v = d \rightarrow \neg v_1 = d_1], CBS[v = d \rightarrow \neg v_2 = d_2], ..., \\CBS[v = d \rightarrow \neg v_n = d_n].$$

Conflict-based statistics

• Example

$$x = 1 \Rightarrow 3 \times \neg y = 2, 4 \times \neg y = 3, 2 \times \neg z = 1, 120 \times \neg v = 1$$

- $CBS[x = d_x \rightarrow \neg y = d_y] = c_{xy}$: the assignment $x = d_x$ caused a hard conflict with the assignment $y = d_y c_{xy}$ times in the past.
- If a value *d* is selected for a variable *v* within the IFS, then hardConflicts($P, \omega, v/d$) chooses previous assignments $\gamma = \{v_1/d_1, v_2/d_2, \dots, v_n/d_n\}$ to be unassigned in order to enforce consistency of the new partial assignment.

As a consequence, the counters are incremented

 $CBS[v = d \rightarrow \neg v_1 = d_1], CBS[v = d \rightarrow \neg v_2 = d_2], ...,$ $CBS[v = d \rightarrow \neg v_n = d_n].$

 $CBS[v = d \rightarrow \neg v_i = d_i]$

• Conflict-based statistics are used as part of the value selection criterion. Evaluation for value d of v

 $v_i/d_i \in \omega \land v_i/d_i \in hardConflicts(P, \omega, v/d)$ Hana Rudová (FI MU): Timetabling at Purdue University

Particular runs with results for student enrollments (S), time preferences (T), room preferences (R), distribution preferences (D)

	Final				Run separately				Run combined				Bound		
Problem	S	т	R	D	S	т	R	D	S	т	R	D	s	т	R
pu-spr07-llr	98.63	89.71	92.86	66.67	98.86	93.20	86.90	72.22	97.67	90.11	84.86	63.47	99.42	98.82	99.4
pu-fal07-llr	98.76	81.77	91.69	96.55	99.00	89.49	78.05	93.56	98.25	88.18	74.98	63.69	99.54	96.29	98.9
pu-spr07-ms	99.37	68.34	76.22	57.14	99.62	75.45	75.96	48.39	98.28	77.42	73.98	55.98	99.87	86.11	94.5
pu-fal07-ms	97.80	71.48	80.00	72.73	99.62	71.88	86.33	63.68	98.99	70.60	85.42	52.86	99.71	84.39	97.5
pu-spr07-cs	94.85	83.86	100.00	33.33	97.15	73.91	100.00	33.33	93.56	70.92	100.00	44.17	98.55	86.27	100.0
pu-fal07-cs	94.14	83.20	90.48	100.00	98.53	76.40	83.49	89.67	97.15	76.09	83.17	70.19	99.28	96.91	100.0
pu-spr07-cfs	93.72	87.32	94.44	100.00	97.66	89.74	82.22	82.50	93.70	93.32	79.63	64.17	98.42	99.12	100.0
pu-fal07-cfs	94.09	96.30	50.00	86.67	98.12	97.14	85.00	92.67	94.70	94.97	66.67	84.30	98.52	100.00	100.0
pu-spr07-vpa	92.70	2.44	40.00	100.00	97.08	88.62	76.67	100.00	95.41	81.30	76.00	100.00	97.69	90.24	100.0
pu-fal07-vpa	93.19	0.00	100.00	100.00	96.79	0.00	100.00	100.00	95.06	0.00	100.00	100.00	96.79	0.00	100.0
pu-spr07-lab	97.45	87.60	75.76	68.02	99.39	94.08	69.19	50.30	97.71	94.58	68.15	57.00	99.82	97.67	83.3
pu-fal07-lab	85.42	89.74	71.46	77.03	97.71	84.73	44.25	38.15	97.29	85.95	39.32	22.00	98.12	93.69	87.6
pu-spr07-c8	97.99	84.87	82.81	61.39	98.69	90.16	77.37	50.70	98.16	89.91	75.79	56.58	98.95	97.55	91.9
pu-fal07-c8	98.35	83.01	87.55	78.00	98.63	86.70	73.49	61.04	98.55	86.62	70.43	54.18	99.35	95.76	96.3

• IFS for classical initial problem:

$$\mathsf{IFS}(P, F_{\mathrm{wcsp}}, <_{\mathrm{wcsp}}, \emptyset)$$

• IFS for feasibility problem:

$$\mathsf{IFS}(P, F_{\mathrm{csp}}, <_{\mathrm{csp}}, \emptyset)$$

• IFS for minimal perturbation problem:

 $\mathsf{IFS}(P, F_{\mathrm{mpp}}, <_{\mathrm{mpp}}, \delta)$

Feasibility Problem

- Feasibility problem allows the detection of possible inconsistencies in hard constraints
- Any inconsistencies must be removed from the problem by the human schedule manager
- Cost of feasibility problem

$$F_{\mathrm{csp}}\omega = \|\omega\|$$
 .

• The ordering \leq_{csp} between costs of feasibility problem of two consistent assignments:

$$F_{\mathrm{csp}}\omega\leq_{\mathrm{csp}}F_{\mathrm{csp}}\eta\equiv (\|\omega\|\geq\|\eta\|)$$
.

• Any solution σ has the best possible value $F_{csp}\sigma$ corresponding to the number of the variables in the problem.

Minimal Perturbation Problem (MPP)

Existing timetable + requests for changes

MPP: minimization of changes to the original solution (perturbations)

Definition of MPP:

- constraint satisfaction problem (V, D, C) to be solved
- initial assignment δ : consistent assignment of the original problem
- distance function Φ: evaluates the number of changes between two assignments

Minimal Perturbation Problem (MPP)

Existing timetable + requests for changes

MPP: minimization of changes to the original solution (perturbations)

Definition of MPP:

- constraint satisfaction problem (V, D, C) to be solved
- initial assignment δ : consistent assignment of the original problem
- distance function Φ: evaluates the number of changes between two assignments

Distance functions:

- $\Phi_{\mathrm{var}}(\omega, \delta) = \|\{x/d_1|x/d_1 \in \omega \land x/d_2 \in \delta \land d_1 \neq d_2\}\|$
- $\Phi_{\text{time}}(\omega, \delta) = \|\{x/d_1|x/d_1 \in \omega \land x/d_2 \in \delta \land \text{time}(d_1) \neq \text{time}(d_2)\}\|$

Optimal solution of MPP:

• solution σ of (V, \mathcal{D}, C) having minimal distance $\Phi(\sigma, \delta)$

Weighted constraint satisfaction problem $P = (V, D, C, w_c, w_\theta)$ Cost of MPP

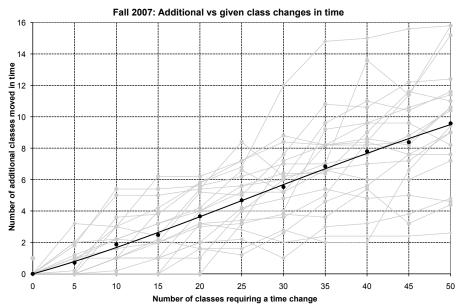
$$F_{\mathrm{mpp}}(\omega, \delta) = (\|\omega\|, F_{s}\omega + w_{\mathrm{mpp}}\Phi(\omega, \delta))$$
.

The ordering between costs of MPP for two consistent assignments ω and η wrt. the same initial assignment δ :

 $\begin{aligned} F_{\mathrm{mpp}}(\omega,\delta) &\leq_{\mathrm{mpp}} F_{\mathrm{mpp}}(\eta,\delta) \equiv \\ ((\|\omega\| > \|\eta\|) \lor ((\|\omega\| = \|\eta\|) \land (F_{s}\omega + w_{\mathrm{mpp}}\Phi(\omega,\delta) \le F_{s}\eta + w_{\mathrm{mpp}}\Phi(\eta,\delta)) \end{aligned}$

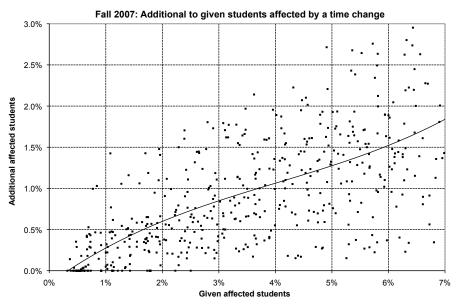
Consistent assignment ω and an initial assignment δ with $F_{mpp}\omega = (\|\omega\|, F_s\omega + w_{mpp}\Phi(\omega, \delta))$

New assignment v/d, v not in ω

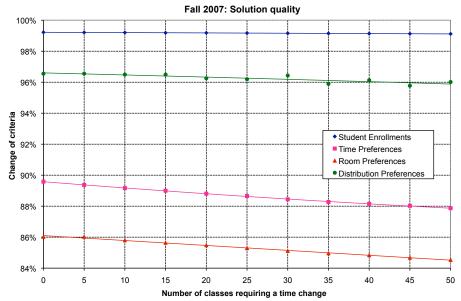

The possible contribution to $F_s(\omega)$ is $\Delta F_s(\omega, v/d)$: same as for the initial problem

The contribution to the distance function $\Phi_{\rm var}$:

$$\Delta \Phi_{\mathrm{var}}(\delta, \mathbf{v}/d) = \left\{egin{array}{cc} w_{mpp} & \exists \mathbf{v}/d_i \in \delta \wedge d_i
eq d \ 0 & \mathrm{otherwise} \end{array}
ight.$$


The total contribution: $\Delta F_s(\omega, v/d) + \Delta \Phi(\delta, v/d)$ used as a value ordering heuristic

Evaluation of MPP: Additional Classes Moved in Time


Hana Rudová (FI MU): Timetabling at Purdue University

Evaluation of MPP: Additional Affected Students

Hana Rudová (FI MU): Timetabling at Purdue University

Evaluation of MPP: Changes in Criteria

