Timetabling at Purdue University

April 21, 2010

Part III: Interactive Timetabling

Changes with class "PSY 120 Lec 5" are considered

Score	Class	Date	Time	Room	Students
+43	PSY 120 Lec 5	Full Term	MWF 7:30a	WTHR 200 \rightarrow CL50 224	0
+48.4	PSY 120 Lec 5	Full Term	MWF 7:30a \rightarrow TTh 7:30a	WTHR 200 \rightarrow CL50 224	+10
+63.3	PSY 120 Lec 5	Full Term	MWF 7:30a \rightarrow MWF 4:30p	WTHR 200 \rightarrow LILY 1105	+14
	POL 130 Lec 2	Full Term	MWF 4:30p \rightarrow MWF 9:30a	LILY 1105 \rightarrow RHPH 172	
+63.9	PSY 120 Lec 5	Full Term	MWF 7:30a \rightarrow MWF 4:30p	WTHR 200 \rightarrow LILY 1105	+16
	POL 130 Lec 2	Full Term	MWF 4:30p	LILY 1105 \rightarrow FRNY G140	
+63.9	PSY 120 Lec 5	Full Term	MWF 7:30a \rightarrow MWF 4:30p	WTHR 200 \rightarrow LILY 1105	+16
	POL 130 Lec 2	Full Term	MWF 4:30p	LILY 1105 \rightarrow LYNN 1136	

(all 235 possibilities up to 2 changes were considered, top 5 of 22 suggestions displayed) Search Deeper

See http://www.unitime.org/uct_demo.php for online demo

Timetabling problem $P = (V, D, C, w_c, w_\theta)$

• weighted constraint satisfaction problem

Initial solution δ

initial timetable of the interaction process Selected assignments μ : changes made with the timetable δ during current interaction Selected class v_{bb}

to modify its placement or to be placed into the timetable

Timetabling problem $P = (V, D, C, w_c, w_\theta)$

• weighted constraint satisfaction problem

Initial solution δ

initial timetable of the interaction process Selected assignments μ : changes made with the timetable δ during current interaction Selected class v_{bb} to modify its placement or to be placed into the timetable

to modify its placement of to be placed into the timetable

Suggestions Ω : set of generated assignments ω making the timetable feasible (all hard constraints are satisfied) Conflicting assignments γ

set of assignments conflicting with selected assignments $\boldsymbol{\mu}$

procedure INTERACTION(P, δ, v_{bb})

 $\mu = \emptyset$ $A = \emptyset$ while true do $\Omega = BB(P \cup A, \delta, \mu, v_{bb})$

procedure INTERACTION(P, δ, v_{bb})

 $\mu = \emptyset$ $A = \emptyset$ while true do

$$\Omega = \mathsf{BB}(P \cup A, \delta, \mu, v_{bb})$$

S = COMMUNICATION(Ω)

procedure INTERACTION(P, δ, v_{bb})

$$\begin{split} \mu &= \emptyset \\ \mathcal{A} &= \emptyset \\ \text{while true do} \\ \Omega &= \mathsf{BB}(P \cup \mathcal{A}, \delta, \mu, v_{bb}) \end{split}$$

 $S = \text{COMMUNICATION}(\Omega)$

case (S) commit($\omega \in \Omega$): $\delta = \text{join}(\delta, \mu \cup \omega)$; return abort: return selectAssignment(d_n): $\mu = \mu \cup \{v_{bb}/d_n\}$ selectFilter(α): $A = \alpha v_{bb}$

end case end while end procedure

procedure INTERACTION(P, δ, v_{bb})

 $\mu = \emptyset$ $A = \emptyset$ while true do $(\Omega, \gamma) = BB(P \cup A, \delta, \mu, v_{bb})$ $S = COMMUNICATION(\Omega, \gamma)$

> case (S) $commit(\omega \in \Omega)$: $\delta = join(\delta, \mu \cup \omega)$; return abort: return $selectAssignment(d_n)$: $\mu = \mu \cup \{v_{bb}/d_n\}$ $selectFilter(\alpha)$: $A = \alpha v_{bb}$ $selectClass(c \in \{\mu \cup \gamma \cup \Omega\})$: $v_{bb} = c$ $removeClass(c \in \mu)$: $\mu = \mu \setminus \{c/d_c\}$ end case

end while end procedure

Variables

- weighted constraint satisfaction problem with filter $P = P \cup A$
- initial timetable δ
- $\bullet\,$ selected assignments $\mu\,$
- class to be (re-)placed v_{bb}

Initialization

 \bullet compute conflicting assignment caused by μ

Run BB to find assignments of variables for

- class v_{bb}
- classes involved in conflicting assignments

Branch and Bound (continues)

Run BB

- *n* best suggestions ω are given to user
- search with timeout
- best values based on $\Delta F_s(\delta, v/d)$ explored first
 - conflict-based statistics not taken into account (too expensive)

Bounds

- limited search depth
 - to allow changes of small number of variables only
 - to include changes of one new class it does make sense to change too many other classes
 - *M*: maximum depth
- $F_{\rm wcsp}$ must be better than the *n*-th best found suggestion
 - $\Omega[n]$: *n*-th best suggestion

Branch and Bound (continues)

Run BB

- *n* best suggestions ω are given to user
- search with timeout
- best values based on $\Delta F_s(\delta, v/d)$ explored first
 - conflict-based statistics not taken into account (too expensive)

Bounds

- limited search depth
 - to allow changes of small number of variables only
 - to include changes of one new class it does make sense to change too many other classes
 - M: maximum depth
- F_{wcsp} must be better than the *n*-th best found suggestion
 - $\Omega[n]$: *n*-th best suggestion

Repeat BB: process another run of BB with

- increased search depth or
- increased timeout

- 1: function BB(P, δ, μ, v_{bb}) if $\{v_{bb}/d\} \subset \delta$ then $\delta = \delta \setminus \{v_{bb}/d\}$ 2: 3: else d = nil4: $\gamma = \{v_{bb}/d\}$ 5: for $v_i/d_i \in \mu$ do 6: if $\{v_i/d_o\} \subset \delta$ then $o = \{v_i/d_o\}$ else $o = \emptyset$ 7: 8: $\gamma = \gamma \cup \mathsf{hardConflicts}(P, \delta, v_i/d_i) \setminus o$ $\delta = \delta \setminus o \cup \{v_i/d_i\}$ 9: end for 10:
- 11: **return** backtrack($P, \delta, \mu, \gamma, \emptyset, 0$)
- 12: end function

Function backtrack

1: function backtrack($P, \delta, \mu, \gamma, \Omega, m$) if $\|\gamma\| + m > M + \|\mu\|$ then return \emptyset 2: 3: if $\gamma = \emptyset$ then return δ 4: if timeout then return \emptyset if $LB(F_{wcsp}(\delta \cup \gamma)) \geq_{wcsp} F_{wcsp}(\Omega[n])$ then return \emptyset 5: 6: v =selectVariableBB(γ) 7: let $v/d_o \in \gamma$ for $d \in D_v$ ordered by $\Delta F_s(\delta, v/d)$ do 8: 9: if $d = d_0$ then continue $\alpha = hardConflicts(P, \delta, v/d)$ 10: if $\alpha \cap \mu \neq \emptyset$ then continue 11: $\Omega = \Omega \cup \mathsf{backtrack}(P, \delta \cup \{v/d\}, \mu \cup \{v/d\}, k \in \mathbb{Z})$ 12: $\gamma \setminus \{ v/d_o \} \cup \alpha, \Omega, m+1 \}$ 13: end for

- 14: return Ω
- 15: end function

Experiments

Problem	pu-fal07-llr		pu-spr07-llr	
Classes	891		803	
Classes fixed in time & room (%)	31.0		33.8	
Classes not fixed in time & room (%)	69.0		66.2	
Time limit (s)	_	5	_	5
Time spent (s)	128.6	4.7	39.9	4.2
Complete space explored	98.4	21.5	99.2	33.3
No suggestion found (%)	1.6	2.3	0.8	0.8
Number of suggestions	232.8	174.9	228.6	184.5
Number of backtracks	66367.9	2886.9	13949.1	2592
Optimal suggestion found (%)	98.4	51.5	99.2	67.0
Improvements in objective function (%)	+1.1	+0.8	+0.9	+0.7