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CoUniverse

e Framework for building and self-organization of ad-hoc
collaborative environments developed by Milos Liska and
Petr Holub (FI MUNI)

» Continuous adaptation on changing conditions based on built-in
monitoring — re-planning from scratch on change

» Support for media streams with bitrate comparable to capacity of
network links (e.g. HD video) — sophisticated scheduler needed

 Visualization of the environment for the users to make 1t
understandable

 Uses a constraint based scheduler implemented 1n Java using
a CHOCO solver library

* My work extends the original scheduler and adds some new features
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CoUniverse - GLIF2007 conference
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Problem Description

* Network Organization

* Media Applications

* Media Application Distributor
 Applications on Nodes Restrictions
 Stream Links

* Media Streams Planning Problem

* Network Topology Examples
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Network Organization |

» Network represented as a graph G = (V, E)
* Vertices = Nodes
* Edges = Links

* Sites — geographical or logical (virtual) collocation of nodes
— used to specify source for applications consuming data
 Subnetworks — separated parts of the network
* Interfaces — used to connect nodes within particular subnetworks
— they describe a physical network infrastructure
* Nodes — configured with data processing applications
— applications define capabilities of the node

* Links — full-mesh network topology between interfaces (of two

different nodes) belonging to the same subnetwork
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Network Organization Il

» subnet(i;) = subnet(i,) = subnet(i,) = net,
e subnet(i,) = subnet(i;) = net,
* node, — “gateway” between net, and net,

Nodes, interfaces and links example
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Network Organization Il

e Links are comprehended as end-to-end links between node
interfaces and thus they do not reflect the structure of real
physical network topology

 Each Link in our model may be built using a number of physical
network links, switches and routers

Physical network infrastructure vs. Link
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Media Applications

* Running on nodes
 Capable of producing and/or consuming data
« Communicate using streams of particular types
 Stream — abstract entity
— defined by its Producer and its Stream Type
» Stream Type— data (video) format (e.g. HDTV, HDV MPEG2)
— bandwidth, quality
» Media Application Producer / Consumer
— capable of producing / consuming one or more stream types
— e.g. UltraGrid, VideoLAN Client (VLC), Polycom device
« Media Application Distributor
— special application for data distribution
— recelves a stream and proliferates it to other applications

April 14, 2010 Jakub Stoklasa 9



Media Application Distributor

 Application used for data distribution

* Consumes exactly one stream and is able to proliferate this
(possibly transcoded) stream to more than one consumer
(or other distributor/s)

 Transcoding type distributor (e.g. Active Element)
— stream type of the input stream can be transcoded to some
other stream type (dependent on distributor’s capability)
— stream producer 1s always preserved!
* Reflector type distributor
— no transcoding capabilities
— only exact copies of the input stream can be distributed
— used 1n previous version of constraint based scheduler
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Applications on Nodes Restrictions

 There are some restrictions on applications running on nodes for
the input network:
» Each node has to run either

just one d € D and no other application
* Or

| producers and/or j consumers where (1+])>0,1>0,]>0

» Two applications (consumers) processing a stream from the same
source cannot run on the same node

» For example, two instances of UltraGrid consumers use fixed port
number for addressing, thus cannot be listening for incoming media
stream on a single node at the same time
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Stream Links

 Abstraction of a fact that a stream 1s being transmitted over
particular network link

» Basic entity to be scheduled in the proposed model

» Representation of stream link in proposed model: sl(l, p, 1),
where | is a network link, p is a producer and t is a stream type
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Media Streams Planning Problem

» The goal 1s to find such a set of media stream distribution trees
(a forest) that all consumers are covered by producer/s from
requested sites while satisfying all other conditions (distributors
transcoding capabilities, links/interfaces capacities etc.)

* We want to optimize latency and/or quality of the solution

stream producer type
S app, A
S5 app, B

Media streams distribution tree example
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Network Topologies Examples

 Used for testing the simplified media streams planning problem

* (a) 1:n topology with a single distributor having sufficient capacity

* (b) 1:n topology with several distributors creating a distribution
network

* (¢) m:n full-mesh topology with a number of distributors

LI
LA

(b)
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Entities and Notation |

* Nodes (V)
Vv e V:
site(v) — particular site the node belongs to
Interfaces(v) — a set of interfaces belonging to the node v

* Interfaces (I)
Viel:
subnet(i) — just one subnet the interface belongs to
capacityl(i) — capacity of the interface

e Links (E)
— directed link € = (1, J) where I, ] € | are the terminal interfaces
— such e exists iff subnet(i) = subnet(})
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Entities and Notation |1

e Links (cont.)

ve e E:

beginl(e) — beginning interface of the link e

endl(e) — ending interface of the link e

begin(e) — beginning node of the link e

end(e) — ending node of the link e

Note: one interface can be shared by more links!

capacity(e) — capacity of the link e

— determined by its interfaces (i.e. min(capacityl(i), capacityl(j)))
or further by the network monitoring

latency(e) — latency of the link e

— determined solely by the network monitoring
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Entities and Notation |1l

 Stream Types (T)
Vte T:
bandwidth(t) — bandwidth needed to transfer a stream of type t
quality(t) — quality of a stream of type t

 Producers (P)
vp e P:
node(p) — parent node of the producer p
stream_types(p) — a set of stream types the producer p 1s able
to produce
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Entities and Notation 1V

e Consumers (C)
vc e C:
node(c) — parent node of the consumer C
stream_types(c) — a set of stream types the consumer C is able
to consume
requested_site(c) — a site from which the consumer ¢ wants to
receive data and where appropriate producer
1s sought
* Distributors (D)
vd € D:
node(d) — parent node of the distributor d
transcode _ pairs(d) = {(t, ,t )|t eT}

in? tout
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Entities and Notation V

Additional notation

« “Belongs to node’’ notation
vx e PuCuDul we write X € Vmeaning that
producer/consumer/distributor/interface X belongs to the node v

* Sites (SI)
consumers(si)={ ¢ |c e C A requested _site(c) = si |

* Distributors
transcode_in(d) =1t | (t,.t,,) € transcode _ pairs(d) At,, €T}
transcode_out(d) =1{t,, | (t,.t,,) € transcode _pairs(d) at, T |
transcode(d, t.) ={t , | (t,.t,,) etranscode _pairs(d)At,, €T}
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Entities and Notation VI

* Producers
possible types(p) — a set of all types that streams of producer p can
acquire 1n the given network configuration
= stream_types(p) + their possible transcoding

 Distributors & Producers

indeg(d,p) = ). > sl(l, p,t)
(leE)A te possible types(p)m
(node(d)=end(l)) transcode in(d)
outdeg(d,p)= > >, sldp
(leE)A te possible types(p)m
(node(d)=begin(l))  transcode out(d)
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Pre-processing part |

 Eliminate inactive consumers (1.e. those where
requested_site(c) = null)

 Eliminate producers from non-requested sites

» Generate a possible_types(p) set for each producer p

» Replace multi-input-type distributors by a set of virtual distributors
(single-1nput type)
* Motivation example:

d: transcode_pairs(d) = {(A, B), (A, C), (B, C)}
A :: C B :: C
— we are not able to distinguish whether the type C was transcoded
from type A or type B
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Pre-processing part ||

* Solution: we replace the original distributor by a set of virtual
distributors on the particular node

d: transcode_pairs(d) = {(A, B), (A, C), (B, C)}
d,: transcode_pairs(d,) = {(A, B), (A, C)}
d,: transcode_pairs(d,) = {(B, C)}

« number of virtual distributors = transcode_in(d)

* restriction on just one distributor on a node does not apply any
more (it 1s restriction on the input network)

* only one of the virtual distributors can be active

* Network links elimination
— helps to reduce number of network links and consequently the
number of domain variables, thus making the problem smaller
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Network Links Elimination

 Eliminate edges that cannot be used for data transfer in our problem
* We will obtain significantly smaller number of stream links

o Stream link sl(l, p, t) will not be created for eliminated link |

* We want to find a set of edges

Eum = E\{ Ly UL UL ULy |
where
L., = {1 € E | capacity(l) < min({ bandwidth(t) | t € possible _types(p) A p € P})}

L. ={1<€E|pgbegin(l) Ad begin(l)}
L ={leE|ceend()Ad gend(l)]
L.. = {1 < Esite(begin(l)) = site(end (1))}

cap

* In the following text we still denote a set of links as E for sake of brevity

but we treat it as E ;.
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Constraint Model

 Domain Variables

 Capacity and Bandwidth
 Links to Node

e Links from Node

 Distributors

 Cycle Elimination

e Direct Links

e Optimization

» Constraint Satisfaction Problem
» Search Strategies
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Domain Variables

 We want to place requests (streams) to resources (network)
e Stream = producer + type

e Stream Links

X={sl(l,p,t)|l €E,peP,te possible _types(p) }

* Boolean domain (D = {0, 1})

sl(l, p, t) = 0 — stream from producer p of type t is not transmitted
over link |

sl(l, p, t) = 1 — stream from producer p of type t is transmitted
over link |
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Capacity and Bandwidth

» Capacity of each interface | must be sufficient to transfer all streams
that are transmitted over links using the interface

viel: Y ) > si(l, p,t) x bandwidth (t) < capacityl (i)

leE: peP tepossible types(p) (1)
(i=beginl (1))
A(i=endl (1))

» Capacity of each link | must be sufficient to transfer all streams that
are transmitted over the link

VIeE: > sl(l, p,t) x bandwidth(t) < capacity(l) (2)

peP tepossible types(p)

 Each link | must have sufficient capacity to transmit the stream of
type t (redundant constraint)

VIl e E Vp € P Vt € possible types(p) 3
(bandwidth(t) > capacity(l)): sl(, p,t)=0 (3)
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Links to Node

* Each consumer C receives data by just one link carrying a stream of type t
it 1s able to consume and which contains data produced by a producer p
from the requested site

vceC: ) > 2. sllpty =1 (g

(leE) (peP) A te possible types(p)m
A (ceend(l)) (site(node(p))= stream _ types(c)
requested _site(c))
e [f there 1s neither an appropriate consumer nor an appropriate distributor
at the ending node of the link |, this link cannot be used for transmitting

the particular stream
VIl e E Vp e P Vt € possible types(p)

((w3c e C ((c eend(l)) A (site(node(p)) =
requested site(c)) A (t € stream _types(c)))) A
(—3d € D ((d eend(l)) A (t etranscode in(d)))): sl{, p,t)=0

()
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Links from Node |

 Each producer p sends data by at most one link out of all beginning
at the node 1t is placed on

VpeP: > > sldpt) <1 (6)

(leE)A(pebegin(l)) testream types(p)

« At least one producer from each requested site has to send data
to the respective consumer/s (possibly distributed by distributors)

Vsi e SI 3¢ € C (requested site(c) = si):

> 2. > slg,pt 21 (7)

(leE)A(pebegin(l))  (peP)A(site(node(p))=si) testream types(p)
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Links from Node Il

* If there is neither an appropriate producer nor an appropriate
distributor at the beginning node of the link |, this link cannot
be used for transmitting the particular stream

VIl e E Vp e P Vt € possible types(p)
((p ¢ begin(l)) v (t ¢ stream _types(p))) (8)
A (—3d € D ((d € begin(l)) A (t etranscode out(d)))): sl(s,1)=0
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Distributors |

* Only one out of all (virtual!) distributors sharing a common parent
node can be active

vveV 3d',d"e D (d'evad'ev): Z Zindeg(d,p)ﬁl (9)

(deD)A(dev) peP

— applied only if number of distributors on a node is more than one
— 1n case of one distributor (original) this constraint 1s not used
as 1t would match the following constraint

e Each distributor d can be used for distribution of at most one
input stream (1.€. 1t receives the data by one link at most)

vd e D: ) indeg(d, p)<1 (10)

peP
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Distributors |l

 Data distribution constraints (distributors have to satisfy the
following rules)

vdeDVpeP: if indeg(d,p) = 0 then outdeg(d,p) =0

if indeg(d,p) = 1 then outdeg(d,p) > 1
vdeDVpeP: ifoutdeg(d,p) =0 then indeg(d,p) =0

 Constraint for the first part of rules for indeg(d, p)
vd e D VpeP: indeg(d, p)xoutdeg(d, p) =outdeg(d, p) (11)

 Constraint for the second part of rules for outdeg(d, p)
vVd e DVpeP: indeg(d, p)+outdeg(d, p) =1 (12)
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Cycle Elimination

 To avoid cycles among the nodes with distributors, the cycle
elimination constraint has to be used for each possible producer
* N = number of nodes with distributors (i1.e. number of distributors
before generating the virtual distributors)

VpePVIeEVKk(2<k<n)Vi(<i<())):
> > sl p,ty < (k—1) (13)

te possible types(p) J1,j2€C ) (D)
(v, =begin()A (v, =end (1))
A (lesl(l, p,t))

* For each possible producer and for each k smaller or equal than n,

this constraint ensures that cycles among k distributor nodes
are prohibited
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Direct LiInks

« [f there 1s more than one consumer for a particular site, data should
be sent using some distributor and not directly from possible
producer to respective consumers (redundant constraint)

Vsi e Sl VI e E Vp e P V¢ e consumers(si) Vt € possible types(p)
((|consumers(si)|| > 1) A (site(node( p)) = si) (14)

A(p ebegin(l)) A(ceend(l))): sld, p,t)=0

* Problem: this constraint can eliminate some feasible solutions
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Optimization

 Latency minimization

minimize ) )’ > si(l, p,t) x latency(l) (15)

leE peP tepossible _types(p)

 Quality maximization

maximize Z Z Z sl(l, p,t)x quality(t) (16)

IecE peP tepossible types(p)
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Constraint Satisfaction Problem |

* A set of domain variables — X ={sl(, p,t)|1 € E, p € P,t € possible _types(p) }
* A domain of the variables — D = {0, 1}

* A set of essential constraints — C
= 1(1), 2), (4 -(13)}

* A set of all constraints (including the redundant ones) — C*
= (1) -4

* A set of constraints for minimization problem - C_. /C*
={C/CruU (15)}

* A set of constraints for maximization problem-C__ /C*
={C/CTuU (16)}

* A set of constraints for optimization problem — C
={C/Cru (15),(16)}

min

max

/ C*

multi multi
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Constraint Satisfaction Problem Il

* Consequently, we can define these corresponding CSPs:

P=(X,D,0C)
P*=(X, D, C)
Pmin - (X9 D? Cmin) / I:)-I-mm (X D C+m1n)
- (X D Cmax) / P+max ( > D max)
mult1 (X D Cmulti) / P+mu1t1 - (X D C+multi)

 Each solution of described problems defines a forest where one tree
in this forest corresponds to the data distribution of a set of streams
from one producer to consumers

* We can have more distribution trees for one requested site (more
than one producer can be active)
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Search Strategies

 Value ordering
boolean variables — increasing (default), decreasing

 Variable ordering
static:
leftmost — simple linearization of sl(l, p, t) array over | first
(outer loop) and then over p and its t (inner loop)
rightmost — simple linearization of sl(l, p, t) array over p and
its t first (outer loop) and then over | (inner loop)
DEFS — depth first search traversal from each possible producer
BFS — breadth first search traversal from each possible producer
dynamic:
degree — based on the maximum number of constraints related
with each variable
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Experimental Testing Proposal

Input instances configuration:

 Several different topologies (1:n, m:n, ...)

» Consumers capable of receiving more than one stream type to be
able to evaluate the maximization of the quality feature

» More sophisticated link latency values if possible to better evaluate
the minimization of the latency feature

Experimental tests evaluation:

 Usage of different value and variable orderings

» Times needed to find a solution for different input instances and
different types of CSP (optimization, all solutions, usage of the
redundant constraints, ...)

 Time to find only a first solution — appropriate for siginificantly large
problems where finding optimal solution can take a long time
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Simplified Problem

 Solved by the original scheduler implemented by Milo§ Liska
and Petr Holub

* Precomputed matching of consumers and producers

* Only one producer from requested site can be active

* Selection of the producer is not unambiguous — there can be more
suitable producers in the requested site, in such case the producer
1s chosen as a first match

e X={sl(l, p) || € E, p € P} —significantly smaller problem

e producer(c) — just one producer for the consumer C

e consumers(p) — a set of consumers of the producer p

 Only reflector type distributors
 Only latency minimization as an objective function
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Evaluation of the Simplified P. |

Parameters of different topologies:

topology-|SIp|l VIl DI IEI  [|Eetimll [ Xetim |l wnass(Xepm) 1D 107,01 F

elim
1:n-s-2 5 1 40 10 20 6 0 3 22
1:n-s-4 11 1 220 44 176 13 0 1 77
1:n-s-8 23 1 1,012 184 1,472 29 0 1 165
I:n-s-16 47 1 4,324 752 12,032 61 0 1 341
1:m-s-32 95 1 17.860 3,040 97,280 125 0 1 693
1:m-r-2 5 1 40 10 20 6 0 3 22
1:n-r-3 9 2 144 36 108 22 3 6 55
1:m-r-4 13 3 312 78 312 57 16 39 7T
1:m-7r-5 17 4 544 136 680 116 55 292 99
1:m-r-6 21 5 %40 210 1,260 205 156 2505 121
1:n-r-7 25 6 1,200 300 2,100 300 399 24,306 143
m:n-2 6 2 60 18 36 14 2 7 22
m:n-3 12 3 264 60 1580 45 12 6 99
m:n-4 20 4 760 140 560 112 44 24 176
m:n-5 30 5 1,740 270 1,350 225 130 120 275
m:n-6 42 6 3.444 462 2,772 396 342 720 396
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Evaluation of the Simplified P. II

1:n-s topology [ms]

1SIp || 2 1 3 16 32
first 2.0£0.4  6.4£0.5  40.440.5 6646 5.600-£200
min 2.0£0.4  5.640.5  40.6+0.5 65246 5,400-£300
1:n-r topology [ms]

ISIp]| 2 3 1 5 6 7
first 20404 40404 96405 206405  40.040.4 8142
min 20404  4.8+04  13.6£0.5 392405 240.8404  3,050+70
m:n topology [ms]

1SIp|| 2 3 1 5 6
first 2.0£04  6.0+£04 1841 442404  107.440.8
min 2.0£0.4 64405 202404  65.0+0.4 31343
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Evaluation of the Simplified P. Il

Computational results for different variable and value ordering
heuristics for selected topologies

1:n-s-32 I:n-r-5 m:n-r-4
dec [ms] inc [ms] dec [ms] inc [ms] dec [ms] inc [ms]
leftmost 15,5004+£200 14,700£200 62,350+£50 57,000+£100 219.3004+300 198,300+£600
stream  15,400£200 14.700£200 510420 47541 88.440.5 84.84+0.4
dfs 16,4004+80 16,2004+300 304.6£0.8  283.44+0.8 5140 48+0

degree  15,100£140 15,000+£300 42.64+0.8  38.84+0.4 21.6+0.5 20.640.5

 All experimental tests results presented here have been taken
from the Data Transfer Planning with Tree Placement for
Collaborative Environments article written by Petr Holub,
MiloS$ Liska and Hana Rudova. I thank for being able to use
them for this presentation.
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