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Abstract

We offer a view on how probability is related to logic. Specifically, we argue against the widely held belief that standard classical
logics have no direct way of modelling the certainty of assumptions in theories and no direct way of stating the certainty of theorems
proved from these (uncertain) assumptions. The argument rests on the observation that probability densities, being functions, can
be represented and reasoned with naturally and directly in (classical) higher-order logic.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The search for a tight integration of probability and logic is a problem that is currently attracting substantial
interest [19,21,23,34,36,43,45]. Unfortunately, there does not seem to be any widely agreed statement of exactly what
the problem of integrating logic and probability actually is, much less a widely agreed solution to the problem [12,
20,39,49]. However, the following quote from Williamson [49] captures the generally agreed essence of the problem:
“Classical logic has no explicit mechanism for representing the degree of certainty of premises in an argument, nor
the degree of certainty in a conclusion, given those premises”. Thus, intuitively, the problem is to find some way
of effectively doing probabilistic reasoning in a logical formalism that may involve the invention of “probabilistic
logics”.

We show how probability can be handled in higher-order logic in this paper and, in doing so, offer a counter-
argument to the widely held belief that standard classical logics have no direct way of modelling the certainty of
assumptions in theories and no direct way of stating the certainty of theorems proved from these (uncertain) assump-
tions. To set the scene and also to provide a contrast with the approach to integration adopted in this paper, we now
briefly discuss the most common approach in the literature. A more extensive survey of this and other approaches can
be found in [35].

The standard logical setting adopted for integrating logic and probability is first-order logic. Imagine that an agent
is operating in some environment for which there is some uncertainty (for example, the environment might be partially
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observable). The environment is modelled as a probability distribution over the collection of first-order models (over
some suitable alphabet for the application at hand). The intuition is that any of these models could be the actual
environment but that some models are more likely than others and this information is given by the distribution on
the models. If the agent actually knew this distribution, then it could answer probabilistic questions of the form: if
(closed) formula ψ holds, what is the probability that the (closed) formula ϕ holds? In symbols, the question is: what
is Pr(ϕ | ψ)?

We now formalise this situation. Let I be the set of interpretations and p a probability measure on the σ -algebra
of all subsets of this set. Define the random variable Xϕ : I → R by

Xϕ(I) =
{

1 if ϕ is true in I

0 otherwise,

with a similar definition for Xψ . Then Pr(ϕ | ψ) can be written in the form

p(Xϕ = 1 | Xψ = 1)

which is equal to

p(Xϕ = 1 ∧ Xψ = 1)

p(Xψ = 1)

and, knowing p, can be evaluated.
Of course, the real problem is to know the distribution on the interpretations. To make some progress on this, most

systems intending to integrate logical and probabilistic reasoning make simplifying assumptions. For a start, most are
based on Prolog. Thus theories are first-order Horn clause theories, maybe with negation as failure. Interpretations
are limited to Herbrand interpretations and often function symbols are excluded so the Herbrand base (and therefore
the number of Herbrand interpretations) is finite. Let I denote the (finite) set of Herbrand interpretations and B the
Herbrand base. We can identify I with the product space {0,1}B in the natural way. Thus the problem amounts to
knowing the distribution on this product space. At this point, there is a wide divergence in the approaches. For example,
the distribution can be represented either directly or more compactly using formalisms like Bayesian networks or
Markov random fields. In [43], the occurrences of atoms in the same clause are used to give the arcs and the weights
attached to clauses are used to give the potential functions in a Markov random field. In [23], conditional probability
distributions are attached to clauses to give a Bayesian network. Closely related to [23] is [41], in which probability
distributions are attached to sets of literals capturing alternative scenarios and logic programming is used to generate
a distribution on possible worlds. In [4], A-Prolog [18] is extended with so-called probabilistic atoms to generate
distributions on possible worlds using answer set programming. In [34], a program is written that specifies a generative
distribution for a Bayesian network. In all cases, the logic is exploited to give some kind of compact representation of
what is usually a very large graphical model. Generally, the theory is only used to construct the graphical model and
reasoning proceeds probabilistically, as described above.

Here we follow a different approach. To begin with, we use a more expressive logic, higher-order logic. Also, in our
approach, the theory plays a central role and probabilistic reasoning all takes place in the context of the theory. The
key idea is simply to allow probability density functions and operations on them to appear explicitly in theories. This
is possible because higher-order logic is a function-based language, and densities are just a special kind of function.
As we shall see, the higher-orderness of the logic will also be essential to achieve the desired integration of logic and
probability.

The main contributions of this paper can be summarised as follows.

– We show how higher-order logic can be used to naturally represent probabilistic concepts.
– We outline a reasoning system (essentially a functional logic programming language) for reasoning with theories

that include probabilistic concepts.
– We illustrate the ideas with a wide variety of examples, most of which have been studied by other authors and

therefore allow a comparison of existing approaches with that of this paper.

The next section gives some mathematical preliminaries. The reasoning system is then described in Section 3. Ex-
amples illustrating our approach to reasoning with uncertainty are presented in Sections 4 and 5. A general discussion
then follows in Section 6.
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2. Mathematical preliminaries

We review a formulation of higher-order logic based on Church’s simple theory of types [9] in Section 2.1. (More
complete accounts of the logic can be found in [28] and [29]. Other references on higher-order logic include [3,26,
47,48], and [46].) We then introduce a modicum of measure theory in Section 2.2 and show how probability density
functions can be naturally represented in the logic.

2.1. Logic

Definition 1. An alphabet consists of three sets: a set T of type constructors; a set C of constants; and a set V of
variables.

Each type constructor in T has an arity. The set T always includes the type constructor Ω of arity 0. Ω is the type
of the booleans. Each constant in C has a signature. The set V is denumerable. Variables are typically denoted by
x, y, z, . . . .

Definition 2. A type is defined inductively as follows.

1. If T is a type constructor of arity k and α1, . . . , αk are types, then T α1 . . . αk is a type. (Thus a type constructor
of arity 0 is a type.)

2. If α and β are types, then α → β is a type.
3. If α1, . . . , αn are types, then α1 × · · · × αn is a type.

We use the convention that → is right associative. So when we write α → β → γ → κ , we mean α → (β → (γ →
κ)).

Besides Ω , here are some other common types we will need.

Example 1. The type of the integers is denoted by Int, and the type of the reals by Real. Also (List σ) is the type of
lists whose elements have type σ . Here Int,Real and List are all type constructors. The first two have arity 0 and the
last has arity 1.

Example 2. A function that maps elements of type α to elements of type β has type α → β . Since sets are identified
with predicates in the logic (see Example 5 below), sets whose elements have type σ have type σ → Ω . We sometimes
write {σ } as a synonym for σ → Ω when we want to make a distinction between sets and predicates.

The set C always includes the following constants: � and ⊥ having signature Ω ; =α having signature α → α → Ω

for each type α; ¬ having signature Ω → Ω ; ∧, ∨, −→, and ←− having signature Ω → Ω → Ω ; and Σα and Πα

having signature (α → Ω) → Ω for each type α. The intended meaning of � is true, and that of ⊥ is false. The
intended meaning of =α is identity (that is, =α x y is � iff x and y are identical), and the intended meanings of the
connectives ¬, ∧, ∨, −→ and ←− are as usual. The intended meanings of Σα and Πα are that Σα maps a predicate
to � iff the predicate maps at least one element to � and Πα maps a predicate to � iff the predicate maps all elements
to �.

Other useful constants we will usually have in applications include the integers, the real numbers, the characters,
and data constructors like #σ : σ → (List σ) → (List σ) and []σ : List σ for constructing lists where the elements have
type σ . The notation C : σ is used to denote that the constant C has signature σ .

Definition 3. A term, together with its type, is defined inductively as follows.

1. A variable in V of type α is a term of type α.
2. A constant in C having signature α is a term of type α.
3. (Abstraction) If t is a term of type β and x a variable of type α, then λx.t is a term of type α → β .
4. (Application) If s is a term of type α → β and t a term of type α, then (s t) is a term of type β .
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5. (Tuple) If t1, . . . , tn are terms of type α1, . . . , αn, respectively, then (t1, . . . , tn) is a term of type α1 × · · · × αn.

Terms of the form (Σα λx.t) are written as ∃αx.t and terms of the form (Πα λx.t) are written as ∀αx.t (in accord
with the intended meaning of Σα and Πα). Thus, in higher-order logic, each quantifier is obtained as a combination
of an abstraction acted on by a suitable function (Σα or Πα).

Example 3. Constants like �, 42, 3.11, and + with signature Int → Int → Int are terms. Variables like x, y, z are
terms. An example of a term that can be formed using abstraction is λx.((+ x) x), whose intended meaning is a
function that takes a number x and returns x + x. To apply that function to the constant 42, for example, we use
application to form the term (λx.((+ x) x) 42).

Example 4. The term (#Int 2 (#Int 3 []Int)) represents a list with the numbers 2 and 3 in it, obtained via a series of
applications from the constants #Int, []Int,2, and 3, each of which is a term. For convenience, we sometimes write
[2,3] to represent the same list.

Example 5. Sets are identified with predicates in the logic. Thus, the term

(1)λx.((∨ ((=Int x) 2)) ((=Int x) 3))

can be used to represent a set with the integers 2 and 3 in it. We often use infix notation for common function
symbols like equality and the connectives. We also adopt the convention that applications are left-associative; thus,
(f x y) means ((f x )y). The above conventions allow us to write λx.((x =Int 2) ∨ (x =Int 3)) to mean (1) above. For
convenience, we sometimes also write {2,3} to represent the same set. Since sets are predicates, set membership test
is obtained using function application. Let s denote (1) above. To check whether a number y is in the set, we write
(s y).

The polymorphic version of the logic extends what is given above by also having available type variables (denoted
by a, b, c, . . .). The definition of a type as above is then extended to polymorphic types that may contain type variables
and the definition of a term as above is extended to terms that may have polymorphic types. We work in the polymor-
phic version of the logic in the remainder of the paper. In this case, we drop the α in constants like ∃α , ∀α , =α , []α
and #α , since the types associated with these are now inferred from the context. The universal closure of a formula ϕ

is denoted by ∀(ϕ).
The logic can be given a rather conventional Henkin semantics. For each type σ , Dσ denotes the domain of σ in

the semantics of the logic.

2.2. Densities

Probability distributions can be described formally using measure theory. We will assume familiarity with the basic
concepts of measure theory in the following. Readers are referred to [5,14] for more details. Suppose an experiment
is performed that randomly returns some element of a set Y (according to some distribution). This is modelled prob-
abilistically by supposing that there is a σ -algebra A of measurable subsets (that is, events) of Y and a probability
measure ν on A giving the probability space (Y, A, ν). Then the probability that a randomly chosen element (that is,
sample point) lies in a subset A of Y is given by ν(A).

Probability measures are not convenient to deal with in many applications (partly because the σ -algebra that is the
domain of the probability would have to be made explicit); instead, it is easier to work with densities of probability
measures. To set this up, suppose there is an underlying σ -finite measure μ on A. Under a weak condition (the
absolute continuity of ν with respect to μ), the Radon–Nikodym theorem [14, Theorem 5.5.4] states that there exists
a non-negative integrable function h such that

ν(A) =
∫

A

hdμ,

for all A ∈ A. Conversely, given such an h, the preceding equation defines a finite measure on A that is absolutely
continuous with respect to μ.
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There are two cases of particular interest for the underlying measure μ. In the first case, Y is a countable set and μ

is the counting measure; this is the discrete case. In the second case, Y is R
n (n � 1) and μ is Lebesgue measure; this

is the continuous case.
A density is a non-negative, integrable function h on a set Y such that

∫
Y

hdμ = 1. In effect, in all the situations
that are likely to be met in practice, the Radon–Nikodym theorem shows that one can work with densities instead of
probability measures.

To capture the above notions in our logical setting, we introduce in the logic the type synonym Density a ≡ a →
Real. (Here a is a parameter, that is, type variable; so Density a is a polymorphic type.) The intended meaning of a
term of type Density τ in the semantics is a density over Dτ , not some arbitrary real-valued function. Any term of
type Density τ , for some τ , is called a density. We will see some common operations for manipulating densities in
Section 3.

3. A reasoning system

We next define a suitable reasoning system. Before doing that, we give some remarks on the expressiveness of
the logic and how that can be controlled, noting that although higher-order logic is already widely used in many
areas of computer science, there remain some reservations about its use in AI applications, which is manifested in the
widespread belief that higher-order logic is too expressive and is thus computationally hard to control.

The language is indeed expressive. In higher-order logic, one can quantify over arbitrary domains, including over
sets of functions. One can also have higher-order functions, i.e., functions that take functions as arguments and/or
return functions as values. Both these facilities, which are extremely useful in practice and serve important roles in
our approach to integrating logic and probability, are not readily available in first-order logic.

The assumption that higher-order logic is, by virtue of its expressiveness, necessarily hard to control computa-
tionally is, however, not true. There are some problematic operations in higher-order logic: unification of terms, for
example, is undecidable. But the point to note is simply that one can do a lot in the logic without ever resorting to these
operations. To illustrate this point, observe that the reasoning system described in the following is a useful subset of
higher-order logic that is both expressive and tractable, in the sense that it admits the usual higher-order constructs but
is still efficient enough to be used as a programming language. The system uses the linear-time (one-way) matching
of terms instead of the difficult (two-way) unification of terms for pattern matching. Also it captures a significant part
of theorem-proving via a mechanism for doing equational reasoning.

The reasoning system described next is a subset of a more general system called Bach [30]. This subset is a com-
putation system that significantly extends existing functional programming languages by adding logic programming
facilities. For convenience, we will call this subsystem Bach in this paper. Bach is closely related to Haskell, being
a strict superset. Haskell allows pattern matching only on data constructors. Bach extends this by allowing pattern
matching on function symbols and lambda abstractions in addition to data constructors. Bach also allows reduction of
terms inside lambda abstractions, an operation not permitted in Haskell. There is also a big overlap between Bach and
Prolog: any pure Prolog program can be mechanically translated into Bach using Clark’s completion [10].

The inference mechanism underlying Bach is given in Definition 4 below. We first establish some terminology. The
occurrence o of a subterm s in a term t is a description of the path from the root of t to s. The notation t[s/r]o denotes
the term obtained from t by replacing s at occurrence o with r . The notation t{x/r} denotes the term obtained from t

by replacing every free occurrence of variable x in t with r . Two terms are α-equivalent if they are identical up to a
change of bound variable names.

Definition 4. Let T be a theory. A computation with respect to T is a sequence {ti}ni=1 of terms such that for i =
1, . . . , n − 1, there is a subterm si of ti at occurrence oi , a formula ∀(ui = vi) in T , and a substitution θi such that
uiθi is α-equivalent to si and ti+1 is ti[si/viθi]oi

.
The term t1 is called the goal of the computation and tn is called the answer. Each subterm si is called a redex

(short for reducible expression). The formula ∀(t1 = tn) is called the result of the computation.

Theorem 1. The result of a computation with respect to T is a consequence of T .
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Theorem 1 shows that computation as defined is essentially a form of theorem proving. The proof of Theorem 1 is
rather involved and is omitted here; the proof of a more general case of the theorem can be found in [30, Sect. 6].

Computations generally require use of definitions of =, the connectives and quantifiers, and some other basic
functions. These definitions constitute what we call the standard equality theory. The complete list of equations in its
various versions can be found in [27,29,30]. Here we give some examples of equations we need.

(2)(if � then u else v) = u

(3)(if ⊥ then u else v) = v

(4)(w (if x = t then u else v)) = (if x = t then (w{x/t} u) else (w v)) −− where x is a variable.

(5)((if x = t then u else v) w) = (if x = t then (u w{x/t}) else (v w)) −− where x is a variable.

(6)(λx.u t) = u{x/t}
(7)∃x1. · · · ∃xn.(x ∧ (x1 = u) ∧ y) = ∃x2. · · · ∃xn.(x{x1/u} ∧ y{x1/u}) −− where x1 is not free in u.

(8)∀x1. · · · ∀xn.(x ∧ (x1 = u) ∧ y −→ v) = ∀x2. · · · ∀xn.(x{x1/u} ∧ y{x1/u} −→ v{x1/u})
−− where x1 is not free in u.

The first two equations are standard. The other equations are schemas. A schema is intended to stand for the
collection of formulas that can be obtained from the schema by replacing its syntactical variables (typeset in bold
above) with terms that satisfy the side conditions, if there are any. The first four equations above are useful for
simplifying if _then_else expressions. Eq. (6) provides β-reduction. Equations like (7) and (8) are used to provide
logic programming idioms in the context of functional computations. Note that the if _then_else function has the
signature Ω × a × a → a. A term of the form if x then y else z is really syntactic sugar for (if _then_else (x, y, z)).

Example 6. We now look at an example computation. Consider the following definition of f : Char → Int:

(f x) = if x = A then 42 else if x = B then 21 else if x = C then 42 else 0,

where A,B,C : Char. With such a definition, it is straightforward to compute in the ‘forward’ direction. Thus, for
example, (f B) can be computed in the obvious way to produce the answer 21. Less obviously, the definition can be
used to compute in the ‘reverse’ direction. For example, Fig. 1 shows the computation of {x | (f x) = 42 }, which
produces the answer {A,C}. (The notation {x | t } is syntactic sugar for the term λx.t when t has type Ω .) The
computation makes essential use of Eqs. (4) and (5) from the standard equality theory.

{x | (= (f x) 42)}
{x | (= (if x = A then 42 else if x = B then 21 else if x = C then 42 else 0) 42)}
{x | (if x = A then (= 42) else (= (if x = B then 21 else if x = C then 42 else 0)) 42)}
{x | if x = A then (42 = 42) else (= (if x = B then 21 else if x = C then 42 else 0) 42)}
{x | if x = A then � else (= (if x = B then 21 else if x = C then 42 else 0) 42)}
{x | if x = A then � else (if x = B then (= 21) else (= (if x = C then 42 else 0)) 42)}
{x | if x = A then � else if x = B then (21 = 42) else (= (if x = C then 42 else 0) 42)}
{x | if x = A then � else if x = B then ⊥ else (= (if x = C then 42 else 0) 42)}
{x | if x = A then � else if x = B then ⊥ else ((if x = C then (= 42) else (= 0)) 42)}
{x | if x = A then � else if x = B then ⊥ else if x = C then (42 = 42) else (0 = 42)}
{x | if x = A then � else if x = B then ⊥ else if x = C then � else (0 = 42)}
{x | if x = A then � else if x = B then ⊥ else if x = C then � else ⊥}

Fig. 1. Computation of {x | (f x) = 42}. The redexes are underlined.
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Some useful functions

In addition to the rules in the standard equality theory, we will find the functions discussed below useful for
probabilistic reasoning.

We first introduce some functions for doing summations, a ubiquitous operation needed in the manipulation of
discrete density functions. We will need a function sum1 that computes

∑
x f (x), where f is a real-valued function

having finite support (that is, takes a non-zero value on at most finitely many elements of its domain) and x ranges
over the domain of f .

sum1 : (a → Real) → Real

(sum1 λx.if x = u then v else w) = v + (sum1 λx.w)

(sum1 λx.0) = 0

Here it is assumed that the argument to sum1 has the syntactic form of an abstraction over a nested if _then_else for
which there are no repeated occurrences of the tests x = u. If there are such repeats, it is easy enough to remove them
[29, p.189]. Similar remarks apply to sum2 below.

The function sum2 is used to compute expressions of the form
∑

x∈S f (x), where f is a real-valued function
having finite support and S is a subset of the domain of f .

sum2 : {a} → (a → Real) → Real

(sum2 s λx.if x = u then v else w) = (if (s u) then v else 0) + (sum2 s λx.w)

(sum2 s λx.0) = 0

Note that sum1 and sum2 are closely related in that (sum2 λy.� f ) = (sum1 f ).
The last of our summation functions is a variant of sum2 where we exploit the fact that the S in

∑
x∈S f (x) can be

enumerated in the form of either a nested if _then_else or a nested disjunction.

sum3 : {a} → (a → Real) → Real

(sum3 λx.if (x = y) then � else w f ) = (f y) + (sum3 λx.w f )

(sum3 λx.(x = y) f ) = (f y)

(sum3 λx.((x = y) ∨ w) f ) = (f y) + (sum3 λx.w f )

(sum3 λx.(w ∨ (x = y)) f ) = (f y) + (sum3 λx.w f )

(sum3 λx.(v ∨ w) f ) = (sum3 λx.v f ) + (sum3 λx.w f )

(sum3 λx.⊥ f ) = 0

The second set of functions below plays a crucial role in connecting probabilistic and non-probabilistic function
definitions in reasoning. The indicator function I : Ω → Real is defined by (I �) = 1 and (I ⊥) = 0. Composition of
functions is handled using


 : (a → b) → (b → c) → (a → c)

defined by ((f 
 g) x) = (g (f x)). We also have various kinds of convolutions for composing densities. Two such
functions are given here; more examples can be found in [32]. The mathematical definitions are stated first, followed
by their definitions in the logic.

Definition 5. The function

§ : Density Y → (Y → Density Z) → Density Z

is defined by

(f § g)(z) =
∫

Y

f (y) × g(y)(z)dν(y),
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where f : Density Y , g : Y → Density Z, and z ∈ Z. Specialised to the discrete case, the definition is

(f § g)(z) =
∑
y∈Y

f (y) × g(y)(z).

Definition 6. The function

$ : Density Y → (Y → Z) → Density Z

is defined by

(f $ g)(z) =
∫

g−1(z)

f (y)dν(y),

where f : Density Y , g : Y → Z, and z ∈ Z. Specialised to the discrete case, the definition is

(f $ g)(z) =
∑

y∈g−1(z)

f (y).

We define in the logic the discrete case of the two functions as follows:

§ : Density b → (b → Density c) → Density c

(f § g) = λz.(sum1 λy.((f y) × ((g y) z)))

$ : Density b → (b → c) → Density c

(f $ g) = λz.(sum2 λy.((g y) = z) f ).

4. Logical reasoning with uncertain premises: An extended example

The key idea behind our approach to integrating logic and probability is to model uncertainty by using densities
in the definitions of (some) functions in theories. Consider a function f : σ → τ for which there is some uncertainty
about its values that we want to model. We do this with a function

f ′ : σ → Density τ,

where, for each argument t , (f ′ t) is a suitable density for modelling the uncertainty in the value of the function (f t).
The intuition is that the actual value of (f t) is likely to be where the ‘mass’ of the density (f ′ t) is most concentrated.
Of course, (unconditional) densities can also be expressed by functions having a signature of the form Density τ .

This simple idea turns out to be a powerful and convenient way of modelling uncertainty with logical theories in
diverse applications. Note carefully the use that has been made of higher-order logic here. Functions whose values
are densities are higher-order functions that can only be modelled by indirect and cumbersome ways with first-order
logic.

We now give an extended example showing how an agent can logically reason with a mix of certain and uncertain
premises expressed in theories. Consider an agent that makes recommendations of TV programs to a user. The agent
has access to the TV guide through the definition of the function tv_guide. It also knows about the user’s preferences
for TV programs through the definition of the function likes, the uncertainty in which is modelled by densities in its
codomain. Suppose now that the agent is asked to make a recommendation about a program at a particular occurrence
(that is, date, time, and channel), except that there is some uncertainty in the actual occurrence intended by the user;
this uncertainty, which is modelled in the definition of the density choice, could come about, for example, if the user
asked the somewhat ambiguous question “Are there any good programs on ABC during dinner time?”. The question
the agent needs to answer is the following: given the uncertainty in choice and likes, what is the probability that the
user likes the program that is on at the occurrence intended by the user.

This situation is modelled as follows. First, we give some type synonyms.

Occurrence = Date × Time × Channel

Date = Day × Month × Year
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Time = Hour × Minute

Program = Title × Duration × Genre × Classification × Synopsis.

Here is the definition of the density choice that models the uncertainty in the intended occurrence.

choice : Density Occurrence

∀x.((choice x) =
if x = ((21,7,2007), (19,30),ABC) then 0.8

else if x = ((21,7,2007), (20,30),ABC) then 0.2

else 0).

So the uncertainty is in the time of the program; it is probably 7.30 pm, but it could be 8.30 pm. Note that an equivalent
form of the definition for choice is

choice = λx.if x = ((21,7,2007), (19,30),ABC) then 0.8

else if x = ((21,7,2007), (20,30),ABC) then 0.2

else 0,

which is the form of the definition that is used below.
Next there is the TV guide that maps occurrences to programs.

tv_guide : Occurrence → Program

∀x.((tv_guide x) =
if x = ((20,7,2007), (11,30),Win) then (“NFL Football ”, 60, Sport, G, “The Buffalo . . . ”)

else if x = ((21,7,2007), (19,30), ABC) then (“Seinfeld ”,30, Sitcom, PG, “Kramer . . . ”)

else if x = ((21,7,2007), (20,30), ABC) then (“The Bill”,50, Drama, M, “Sun Hill . . . ”)

else if x = ((21,7,2007), (21,30), ABC) then (“Numb3rs”,60, Crime, M, “When . . . ”)

else if x = ((21,7,2007), (22,30), ABC) then (“ABC News”,60, News, G, “Today . . . ”)
...

else (“ ”,0, NULL, NA, “ ”)).

Finally, here is the definition of the function likes. (A discussion about how such functions are learned is contained
in [8].)

likes : Program → Density Ω

∀x.((likes x) =
if (projTitle 
 (= “NFL Football”) x) then λy.if y = � then 1 else 0

else if (projGenre 
 (= Sitcom) x) then λy.if y = � then 0.9 else 0.1

else if (projGenre 
 (= Movie) x) then λy.if y = � then 0.75 else 0.25

else if (projGenre 
 (= Documentary) x) then λy.if y = � then 1 else 0

else if (projGenre 
 (= Drama) x) then λy.if y = � then 0.2 else 0.8

else λy.if y = ⊥ then 1 else 0).

Recall that the agent needs to compute the probability that the user likes the program which is on at the occurrence
intended by the user. This amounts to computing the value of the term

((choice $ tv_guide) § likes),
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which is a term of type Density Ω . The answer for this computation given by Bach is

λz.if z = � then 0.76 else if z = � then 0.12 else 0.24,

which can be simplified to

λz.if z = � then 0.76 else 0.24.

Thus

((choice $ tv_guide) § likes) = λz.if z = � then 0.76 else 0.24

is a consequence of the belief base of the agent. On this basis, the agent can now decide whether to recommend the
program or not.

The computation is somewhat complicated. To make it easier to understand, we break it up into two steps. Fig. 2
gives the computation of (choice $ tv_guide) which gives the answer

λy.if y = (“The Bill”,50, Drama, M, “Sun Hill . . . ”) then 0.2 else

if y = (“Seinfeld ”,30, Sitcom, PG, “Kramer . . . ”) then 0.8 else 0,

which is a term of type Density Program. Then the second part of the computation in Fig. 3 is that of

((λy.if y = (“The Bill ”, . . .) then 0.2 else if y = (“Seinfeld ”, . . .) then 0.8 else 0) § likes)

that has the answer

λz.if z = � then 0.76 else if z = � then 0.12 else 0.24.

The preceding example contradicts a widely held view that standard logics have no direct way of modelling the cer-
tainty of assumptions in theories and no direct way of stating the certainty of theorems proved from these (uncertain)
assumptions: witness the quote from Williamson [49] in the introduction. For first-order logic, this view seems rea-
sonable. But, for higher-order logic, which surely must be accepted as a ‘classical’ logic, the statement is not true, as
the preceding example shows. The higher-orderness of this logic allows one to directly model uncertainty in assump-
tions and theorems. In the example, reasoning proceeds via computation, which is a form of theorem proving. Further,
the chaining of assumptions (both deterministic and probabilistic) in the theory is done by composing functions in
different ways. These composition functions are, of course, higher-order functions.

(choice $ tv_guide)

λz.(sum2 λy.((tv_guide y) = z) choice)

λz.(sum2 λy.((if y = ((20,7,2007), (11,30), Win) then . . .) = z) choice)

λz.(sum2 λy.((if y = ((20,7,2007), (11,30), Win) then . . .) = z)

λx.if x = ((21,7,2007), (19,30), ABC) then 0.8 . . .)

.

.

.

λz.(if z = (“Seinfeld ”, . . .) then 0.8 else 0
+(sum2 λy.((if y = ((20,7,2007), (11,30), Win) then . . .) = z)

λx.if x = ((21,7,2007), (20,30), ABC) then 0.2 . . .)

.

.

.

λz.(if z = (“Seinfeld ”, . . .) then 0.8 else 0
+ if z = (“The Bill ”, . . .) then 0.2 else 0
+ (sum2 λy.((if y = ((20,7,2007), (11,30), Win) then . . .) = z) λx.0)

λz.(if z = (“Seinfeld ”, . . .) then 0.8 else 0
+ if z = (“The Bill ”, . . .) then 0.2 else 0 + 0)

λz.(if z = (“Seinfeld ”, . . .) then 0.8 else 0 + if z = (“The Bill ”, . . .) then 0.2 else 0)

.

.

.

λz.if z = (“The Bill ”, . . .) then 0.2 else if z = (“Seinfeld ”, . . .) then 0.8 else 0

Fig. 2. Computation of (choice $ tv_guide).
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((λy.if y = (“The Bill ”, . . .) then 0.2 else if y = (“Seinfeld ”, . . .) then 0.8 else 0) § likes)
λz.(sum1 λy.(((λy.if y = (“The Bill ”, . . .) then 0.2 else

if y = (“Seinfeld ”, . . .) then 0.8 else 0) y) × ((likes y) z)))

λz.(sum1 λy.((if y = (“The Bill ”, . . .) then 0.2 else
if y = (“Seinfeld ”, . . .) then 0.8 else 0)×((likes y) z)))

.

.

.

λz.(sum1 λy.(if y = (“The Bill ”, . . .) then 0.2 × ((likes (“The Bill ”, . . .)) z)

else ((if y = (“Seinfeld ”, . . .) then 0.8 else 0) × ((likes y) z))))

.

.

.

λz.(sum1 λy.(if y = (“The Bill ”, . . .) then 0.2 × (λy.if y = � then 0.2 else 0.8 z)

else ((if y = (“Seinfeld ”, . . .) then 0.8 else 0) × ((likes y) z))))

λz.(sum1 λy.(if y = (“The Bill ”, . . .) then 0.2 × (if z = � then 0.2 else 0.8)

else ((if y = (“Seinfeld ”, . . .) then 0.8 else 0) × ((likes y) z))))

.

.

.

λz.(sum1 λy.(if y = (“The Bill ”, . . .) then (if z = � then 0.04 else 0.16) else
((if y = (“Seinfeld ”, . . .) then 0.8 else 0) × ((likes y) z))))

.

.

.

λz.(sum1 λy.(if y = (“The Bill ”, . . .) then (if z = � then 0.04 else 0.16) else
if y = (“Seinfeld ”, . . .) then (if z = � then 0.72 else 0.08) else 0))

.

.

.

λz.((if z = � then 0.04 else 0.16) + (if z = � then 0.72 else 0.08))

λz.if z = � then (0.04 + 0.72) else (if z = � then 0.04 else 0.16 + 0.08)

λz.if z = � then 0.76 else (if z = � then 0.04 else 0.16+ 0.08)

λz.if z = � then 0.76 else (if z = � then (+ 0.04) else (+ 0.16)0.08)

λz.if z = � then 0.76 else if z = � then (0.04 + 0.08) else (0.16 + 0.08)

λz.if z = � then 0.76 else if z = � then 0.12 else (0.16 + 0.08)

λz.if z = � then 0.76 else if z = � then 0.12 else 0.24

Fig. 3. Computation of ((λy.if y = (“The Bill ”, . . .) then 0.2 else . . .) § likes). The last few steps of the computation make crucial use of Eqs. (4)
and (5) in the standard equality theory.

5. More probabilistic reasoning examples

We show in this section how the different kinds of probabilistic reasoning problems being tackled in the first-order
probabilistic languages literature can be handled in our framework. The aim is to demonstrate the generality of our
approach; most existing first-order systems can only deal with a subset of these problems.

The example shown in Section 4 illustrates the kind of problems being investigated in formalisms like stochastic
logic programs [36]. Section 5.1 presents a neat solution to a classical puzzle in probability theory. Section 5.2 gives
a solution to a generative probabilistic model problem described in [34]. Section 5.3 uses an example from [15] and
[23] to show how logic can be used to obtain compact representations of large Bayesian networks. Section 5.4 shows
an example of inference with continuous densities. The general strategy employed in all these problems is to write
down a joint distribution (corresponding to a probabilistic network) and then reason with it.

5.1. Monty Hall problem

The problem can be stated as follows. An honest game-show host has placed a car behind one of three doors. There
is a goat behind each of the other doors. You have no prior knowledge that allows you to distinguish among the doors.
“First you pick a door”, he says. “Then I will open one of the other doors to reveal a goat. After I’ve shown you the
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Fig. 4. A Bayesian network for the Monty Hall problem.

Fig. 5. A Bayesian network for the balls problem.

goat, you make a final decision whether to stick to your initial choice or to switch to the remaining door. You win
whatever is behind the door.”

Fig. 4 shows a Bayesian network that models the above. The random variable carDoor gives the door with the
car behind; initChoice gives the door initially chosen by the player; hostDoor gives the door opened by the host.
Clearly, the host’s choice of doors is dependent on the actual values of carDoor and initChoice, and that carDoor and
initChoice are independent of each other.

We have three constants D1,D2,D3 : Door representing the three doors. The following specifies the Bayesian
network in full.

carDoor : Density Door

(carDoor x) = 1/3

initChoice : Density Door

(initChoice x) = 1/3

hostDoor : Door → Door → Density Door

(hostDoor xc xi) = if (xc = xi) then λx.if (x �= xi) then 0.5 else 0

else λx.(I ((x �= xc) ∧ (x �= xi)))

joint : Density (Door × Door × Door)

(joint (xc, xi, xh)) = (carDoor xc) × (initChoice xi) × (hostDoor xc xi xh)

Let Di be the door chosen by the player, Dh the door revealed by the host, and Dr the remaining unopened door.
We only need to know the posterior probability of the car door given Di and Dh to know how to act and this is given
by the density

fcd : Density Door

fcd = λx.
(joint (x,Di,Dh))

(joint (D1,Di,Dh)) + (joint (D2,Di,Dh)) + (joint (D3,Di,Dh))
.

Given the above, Bach returns the following results

(fcd Di) = 1/3, (fcd Dr) = 2/3, and (fcd Dh) = 0,

showing that the player should indeed switch to double her chance of winning.

5.2. Urn and balls

We next look at an interesting problem from [34]. We want to model the following scenario. An urn contains
an unknown number of balls – say, a number chosen from a Poisson distribution with mean 6. Balls are assigned
the colour blue and green with equal probability. We draw some balls from the urn, observing the colour of each
and replacing it. We cannot tell two identically coloured balls apart. Furthermore, observed colours are wrong with
probability 0.2.

It was claimed in [34] that this problem is hard to model in most existing first-order probabilistic languages because
there is an unknown and unbounded number of balls in the urn. Interestingly, there is a simple Bayesian network for
the problem (Fig. 5) if we can define densities over structured objects like sets and lists.

The Bayesian network can be understood as follows. We first pick a number n from the appropriate Poisson
distribution. A set s of balls of size n is then constructed. We represent a ball by an integer identifier and its colour:
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Ball = Int ×Colour. The balls in s are labelled 1 to n, and the colours are picked randomly. Given s, we then construct
a list consisting of d balls by drawing successively at random with replacement from s. The observed colours of the
drawn balls are recorded. The Bayesian network is specified in full as follows.

colour : Colour → Ω

(colour x) = (x = Blue) ∨ (x = Green)

numOfBalls : Density Int

(numOfBalls x) = (poisson 6 x)

poisson : Int → Density Int

(poisson x y) = e−xxy/y!
setOfBalls : Int → Density {Ball}
(setOfBalls ns) = if ∃x1 · · · ∃xn.((colour x1) ∧ · · · ∧ (colour xn) ∧ (s = {(1, x1), . . . , (n, xn)}) then 0.5n else 0

ballsDrawn : Int → {Ball} → Density (List Ball)

(ballsDrawn d s x) = if ∃x1 · · · ∃xd.((s x1) ∧ · · · ∧ (s xd) ∧ (x = [x1, . . . , xd ])) then (card s)−d else 0

observations : (List Ball) → Density (List Colour)

(observations x y) = if (length x) = (length y) then (obsProb x y) else 0

obsProb : (List Ball) → (List Colour) → Real

(obsProb [] []) = 1

(obsProb (# (x1, y1) z1) (# y2 z2)) = (if (y1 = y2) then 0.8 else 0.2) × (obsProb z1 z2)

joint : Int → Density (Int × {Ball} × (List Ball) × (List Colour))

(joint d (n, s, x, y)) = (numOfBalls n) × (setOfBalls n s) × (ballsDrawnd s x) × (observations x y)

The function card returns the cardinality of a set and length returns the size of a list. The functions setOfBalls and
ballsDrawn are defined informally above; formal recursive definitions can be easily given.

We can compute marginalisations of the given density to obtain answers to different questions. For example, the
following gives the probability that the number of balls in the urn is m after we have seen the colours [o1, o2, . . . , od ]
from d draws:

(9)
1

K

∑
s

∑
l

(joint d (m, s, l, [o1, o2, . . . , od ])),

where K is a normalisation constant, s ranges over the set { s | (setOfBalls m s) > 0 }, and l ranges over the set
{ l | (ballsDrawn d s l) > 0 }. The expression (9) is an informal mathematical expression. The corresponding term in
the logic is

1

K
× (sum3 λs.((setOfBalls ms) > 0)

λs.(sum3 λl.((ballsDrawn d s l) > 0) λl.(joint d (m, s, l, [o1, o2, . . . , od ])))).
The elements of the two sets

λs.((setOfBalls ms) > 0) and λl.((ballsDrawn d s l) > 0)

are automatically enumerated by Bach during computations via rewrites involving Eq. (7) and a few others in the
standard equality theory. It is the extensional forms of these two sets that are needed by the definition of sum3 and we
get that transformation for free with the way Bach works.

Fig. 6 shows the posterior distribution of m after drawing ten and fifteen balls and observing that they are all blue.
Consistent with intuition, the lower numbers of m become increasingly probable as more blue balls are observed.

Other questions like “What is the probability that the same ball was drawn twice given observations [o1, o2, . . . ,

od ]?” can be answered in a similar way.
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Fig. 6. The posterior distributions of the number of balls in the urn after some observations. The Poisson curve is the prior distribution on the
number of balls.

Fig. 7. A Bayesian network modelling the inheritance of blood types within a family. The variables mc_X and pc_X represent respectively the m

and p-chromosomes of person X. The variable bt_X represents the blood type of person X.

5.3. Genetics

We next look at an application taken from [23] (the problem was introduced earlier in [15]). It is a genetic model of
the inheritance of a single gene that determines a person’s blood type. Each person has two copies of the chromosome
containing this gene, one, the m-chromosome, inherited from the mother, and one, the p-chromosome, inherited
from the father. Fig. 7 taken from [23] shows a Bayesian network modelling the inheritance of blood types within a
particular family.

Note that although different families are associated with different Bayesian networks, each instance of these net-
works has essentially the same basic structure. By separating the descriptions of family-dependent and -independent
parts, logic can be used to compactly represent and reason with a large class of similar Bayesian networks. This is the
general strategy employed by formalisms like BLP [23].

We now show one way the Bayesian logic program given in [23, Fig. 1.4] for the Bayesian network shown in Fig. 7
can be encoded in a theory. We define a probability density function over triples (l1, l2, l3), where l1 and l2 are lists of
chromosomes representing the m- and p-chromosomes of each person in the family, and l3 is a list representing the
blood type of each person in the family. The ith entry in each list refers to the ith person in the list family : List Person.
By changing the definitions of

family,mother : Person → Person and father : Person → Person,

we get different Bayesian networks for different families.

A,B,O : Chromosome

A,B,AB,O : BloodType

Ann, Brian, Dorothy, Unknown : Person

family = [Ann, Brian, Dorothy]
(mother x) = if (x = Dorothy) then Ann else Unknown

( father x) = if (x = Dorothy) then Brian else Unknown
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joint : Density (List Chromosome) × (List Chromosome) × (List BloodType)

(joint (x1, x2, x3)) = (joint2 family (x1, x2, x3) (x1, x2))

joint2 : (List Person) → (List Chromosome) × (List Chromosome) × (List BloodType)

→ (List Chromosome) × (List Chromosome) → Real

(joint2 [] ([], [], []) l) = 1

(joint2 (# p t0) ((# x1 t1), (# x2 t2), (# x3 t3)) l) =
(mc p l x1) × (pc p l x2) × (bt x1 x2 x3) × (joint2 t0 (t1, t2, t3) l)

mc : Person → (List Chromosome) × (List Chromosome) → Chromosome → Real

(mc p (l1, l2) x) = if (mother p) = Unknown then 1/3

else (mc2 (getVal (mother p) l1) (getVal (mother p) l2) x)

mc2 : Chromosome → Chromosome → (Density Chromosome)

(mc2 A A z) = if (z = A) then 0.98 else 0.01

(mc2 B A z) = if (z = B) then 0.98 else 0.01 . . . etc.

pc : Person → (List Chromosome) × (List Chromosome) → Chromosome → Real

(pc p (l1, l2) x) = if ( father p) = Unknown then 1/3

else (pc2 (getVal ( father p) l1) (getVal ( father p) l2) x)

pc2 : Chromosome → Chromosome → (Density Chromosome)

(pc2 A A z) = if (z = A) then 0.98 else 0.01

(pc2 B A z) = if (z = A) then 0.98 else 0.01 . . . etc.

bt : Chromosome → Chromosome → (Density BloodType)

(bt A A z) = if (z = A) then 0.97 else 0.01

(bt B A z) = if (z = AB) then 0.97 else 0.01 . . . etc.

The function getVal returns the nth element in a list indexed by a person. The functions bt, mc2 and pc2 are
reproductions of the conditional probability tables given in [23]. It is assumed that all the arguments to the function
joint have the same length.

Just like in [23] and [15], the m-chromosome, p-chromosome, and blood type of each person is a random variable in
the given joint distribution. One can verify that the term ( joint ([x1, x2, x3], [y1, y2, y3], [z1, z2, z3])), when expanded,
expresses the exact same factorisation of the distribution on the random variables as that given by the Bayesian network
in Fig. 7.

Given the above, one can answer questions like “What is the probability that Dorothy has blood type A given that
the m-chromosome of Brian is A and the p-chromosome of Ann is O?” by computing the mathematical expression

(10)

∑
xi ,yi ,zi

( joint ([x1,A,x2], [O,y1, y2], [z1, z2,A]))∑
xi ,yi ,zi

( joint ([x1,A,x2], [O,y1, y2], [z1, z2, z3])) ,

where xi ∈ {A,B,O}, yi ∈ {A,B,O}, and zi ∈ {A,B,AB,O}. It is straightforward to write down the term represen-
tation of an expression like (10) and compute its value.

5.4. Wages

We next present an example taken from [37] to illustrate inference with continuous densities. Suppose Mr Dobson
has a job that pays $10 an hour and he is expected to work 40 hours per week. However, he is not guaranteed 40
hours every week. He estimates the number of hours worked in a week to be normally distributed with mean 40 and
standard deviation 5. He has not fully investigated the benefits such as bonus pay and nontaxable deductions such as
contributions to a retirement program. He estimates these other influences on his gross taxable weekly income also
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Fig. 8. A Bayesian network for Mr Dobson’s weekly income.

to be normally distributed with mean 0 (i.e. he believes they approximately offset each other) and standard deviation
30. Furthermore, Mr Dobson assumes that these other benefits influences are independent of the number of hours he
works each week. Mr Dobson’s gross taxable weekly income is simply the sum of his paid work and the extra benefits.
The Bayesian network shown in Fig. 8 can be used to capture the scenario just described.

One can show (see [37]) that the conditional density of Mr Dobson’s gross taxable weekly income given the number
x of hours worked is normally distributed with mean 10x and standard deviation 30. This leads us to the following
theory:

gaussian : Real → Real → Density Real

(gaussian μ σ) = λx.
1

σ
√

2π
e
− (x−μ)2

2σ2

weeklyHours : Density Real

(weeklyHours x) = (gaussian 40 5 x)

weeklyIncome : Real → Density Real

(weeklyIncome x y) = (gaussian y 30 10x)

joint : Density (Real × Real)

(joint (x, y)) = (weeklyHours x) × (weeklyIncome x y),

where we have exploited the fact that

(gaussian μσ x) = (gaussian x σ μ)

in the definition of weeklyIncome.
Given the above, one can try to find out, for example, the (unconditional) density of Mr Dobson’s weekly income,

which is given by the term

(11)λy.(integrate λx.( joint (x, y))),

where integrate : (a → Real) → Real is the integration function. By introducing into the theory additional known
facts about normal distributions like

(gaussian μσ ax) = 1

a
×

(
gaussian

μ

a

σ

a
x

)
and

(integrate λx.((gaussian μ1 σ1 x) × (gaussian y σ2 x))) = (
gaussian μ1

√
σ 2

1 + σ 2
2 y

)
,

Bach can simplify (11) to λy.(gaussian 400
√

3400 y), showing that Mr Dobson’s taxable weekly income is normally
distributed with mean 400 and standard deviation 58.3.

6. Discussion

General approach

We begin our discussion by comparing what is proposed in this paper with existing (first-order) approaches to inte-
grating logic and probability. Perhaps the main point is the value of working in a higher-order logic. All other logical
approaches to this integration that we know of use first-order logic and thereby miss the opportunity of being able to
reason about densities in theories. This is an important point. (Classical) logic is often criticised for its inability to
cope with uncertainty. We believe this view is simply wrong—higher-order logic is quite capable of modelling prob-
abilistic statements about knowledge directly in theories themselves, thus providing a powerful method of capturing
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uncertainty. In first-order logic, there is a preoccupation with the truth or falsity of formulas, which does seem to pre-
clude the possibility of capturing uncertainty. However, looked at from a more general perspective, first-order logic
is impoverished. It is not natural to exclude higher-order functions—these are used constantly in everyday (informal)
mathematics. Also the rigid dichotomy between terms and formulas in first-order logic gets in the way. In higher-order
logic, a formula is a term whose type just happens to be boolean; also it is just as important to compute the value of
arbitrary terms, not only formulas. Higher-order logic is essentially the language of everyday mathematics and no-
one would ever claim situations involving uncertainty and structural relationships between entities cannot be modelled
directly and in an integrated way using mathematics—therefore they can also be so modelled using higher-order logic.

Another significant difference concerns the semantic view that is adopted. In the most common approach to in-
tegration explained earlier there is assumed to be a distribution on interpretations and answering queries involves
performing computations over this distribution. In principle, this is fine; given the distribution, one can answer queries
by computing with this distribution. But this approach is intrinsically more difficult than computing the value of terms
in the traditional case of having one intended interpretation, the difficulty of which has already led to nearly all artifi-
cial intelligence systems using the proof-theoretic approach of building a theory (that has the intended interpretation as
a model) and proving theorems with this theory instead. Here we adopt the well-established method of using a theory
to model a situation and relying on the soundness of theorem proving to produce results that are correct in the intended
interpretation. We simply have to note that this theory, if it is higher-order, can include densities that can be reasoned
with. Thus no new conceptual machinery at all needs to be invented. In our approach, whatever the situation, there is a
single intended interpretation, which would include densities in the case where uncertainty is being modelled, that is
a model of the theory. Our approach also gives fine control over exactly what uncertainty is modelled—we only intro-
duce densities in those parts of the theory that really need them. Furthermore, the probabilistic and non-probabilistic
parts of a theory work harmoniously together.

On the expressiveness of higher-order logic

Higher-order logic (also known as type theory) is a language that was developed for formalising mathematics
[3,26]. It is thus not surprising that everyday mathematical concepts including probabilistic ones can be represented
in higher-order logic. We illustrate this point in the following.

We will first show how Bayesian networks and Markov random fields can be represented in higher-order logic. It
is well known [6,22] that the joint distribution given by a Bayesian network with K nodes is

(12)p(x) =
K∏

k=1

p(xk |pak),

where x ≡ {x1, . . . , xK } is the set of random variables associated with the nodes of the graph, and pak denotes the
set of parents of xk . Each factor p(xk |pak) in (12) is represented by either a conditional probability table or more
generally a function that takes n arguments, where n is the cardinality of pak , and returns a density over the domain
of xk . The joint distribution associated with a Markov random field is given by an expression of the form

(13)p(x) = 1

Z

∏
C

ψC(xC),

where x is the set of random variables associated with the nodes of the graph, Z is a normalisation constant, each
xC ⊆ x is a maximal clique of the graph, and ψC is a potential function over xC . Clearly, expressions like (12) and
(13) can be written down directly in higher-order logic. Some specific examples of this translation from graphical
models into theories are shown earlier in Section 5.

We next examine the syntactic features of a few representative examples of (first-order) probabilistic logics and
show how they can be expressed in higher-order logic. In the logic of [16], one can write expressions such as w(ϕ) <

1/3 and w(ϕ) � 2w(ψ), where ϕ and ψ are (first-order) formulas. The first statement means that “ϕ has probability
less than 1/3” and the second means “ϕ is at least twice as probable as ψ”. To write such expressions in higher-order
logic, one replaces the formula ϕ in the logic of [16] by a density on the booleans denoted by ϕ′. Then w(ϕ) < 1/3 is
written in higher-order logic as (ϕ′ �) < 1/3 and w(ϕ) � 2w(ψ) is written as (ϕ′ �) � 2(ψ ′ �).
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The actual meaning attached to the word probability is often important in studies on probabilistic logics. We note
here that both the frequentist and degree-of-belief interpretations of probability are realised in the same logical form in
our setting, that of a density. This point is now illustrated with some examples introduced in [20]. Halpern described
several approaches to giving semantics to first-order logics of probability. His type 1 probability structure gives a
logic with a frequentist semantics. A typical statement that can be made in that setting is “The probability that a
randomly chosen bird flies is greater than 0.9”. Halpern’s type 2 probability structure gives a logic with a degree-of-
belief semantics. A typical statement that can be made in this second setting (but not the first) is “The probability
that Tweety (a particular bird) flies is greater than 0.9”. Finally, his type 3 probability structure gives a logic that
accommodates both the frequentist and degree-of-belief interpretations of probability. A typical statement that can be
made in this last setting is “The probability that Tweety flies is greater than the probability that a randomly chosen
bird flies”. All of the statements above can be formulated in higher-order logic as follows:

aRandomBird : Density Bird

flies : Bird → Density Ω

(14)aRandomBird = λx.(1/m) −− where m is the total number of birds in the domain

(15)((aRandomBird § flies) �) > 0.9

(16)((flies Tweety) �) > 0.9

(17)((flies Tweety) �) > ((aRandomBird § flies) �),

where (14)–(15) captures the first frequentist statement above, (16) captures the second degree-of-belief statement,
and (17) captures the last mixed-semantics statement.

We will now show how probabilistic logic programs [33,40] can be represented in our setting, using an example
motivated by [13]. We want to capture statements in probabilistic logic programming like the following:

(18)priceDrops(C) : [0.4,0.9] ←− (ceoSellsStock(C) ∨ ceoRetires(C)) : [0.6,1],
which says that the stock of a company will drop with probability between 0.4 and 0.9 if the probability that the
CEO of the company will sell the stock or that he will retire is more than 0.6. Note that the antecedent of (18) talks
about the probability of a joint event, the exact details of which is not specified. We could duplicate the different
forms of disjunction and conjunction introduced in [13] to capture different assumptions on the relationship between
ceoSellsStock and ceoRetires. For our purpose here, we will assume that whether or not a CEO retires is an independent
company-specific event, but that a retiring CEO is more likely than not to sell his stocks. The following theory captures
the scenario just described. Formulas (19)–(22) capture the additional assumption we have made. Formula (23) is a
direct translation of (18) above.

ceoRetires : Stock → Density Ω

(19)(ceoRetires WOW) = λx.if (x = �) then 0.9 else 0.1

(20)(ceoRetires PBL) = λx.if (x = �) then 0.05 else 0.95

. . . etc.

ceoSellsStock : Ω → Density Ω

(ceoSellsStock y) = if (y = �) then λx.if (x = �) then 0.8 else 0.2

(21)else λx.if (x = �) then 0.1 else 0.9

ceoJoint : Stock → Density Ω × Ω

(22)(ceoJoint s (x, y)) = (ceoRetires s x) × (ceoSellsStock x y)

priceDrops : Stock → Density Ω

(23)((ceoJoint s (�,�)) + (ceoJoint s (�,⊥)) + (ceoJoint s (⊥,�)) > 0.6)

−→ (0.4 < (priceDrops s �) < 0.9)
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The above demonstrates the expressive power of higher-order logic. However, the interesting question is not so
much what can be represented in higher-order logic, but what kind of reasoning can be effectively supported in
higher-order logic. Being able to represent the desired probabilistic concepts directly is clearly a good start. We have
seen in this paper how equational reasoning can be used to support a wide range of probabilistic reasoning tasks. The
paragraph on future work below outlines what currently is not supported in our system and what needs to be done to
overcome existing limitations.

Complexity issues

We now discuss the complexity of probabilistic reasoning in Bach. Subject to proper encodings of problems, the
complexity of specific probabilistic-reasoning tasks in Bach can be analysed independently of Bach. This is because
Bach is effectively a programming language and, as with Prolog or Haskell, carrying out a computational procedure
of a certain complexity in Bach does not result in a computation that is more complex than the original procedure,
nothing beyond a small constant factor anyway. This means many known complexity results continue to hold in our
setting. In particular, hardness results for general exact inference in graphical models [11,25] still hold, unsurprisingly.
More pleasantly, the many positive results for inference on densities with ‘nice’ factorisations [2,24] also continue to
hold in our setting.

We remark also that we are not trying to give a complete axiomatisation of probabilistic reasoning in higher-order
logic in this paper; the results of [20] and others demonstrate that this cannot be done in general. What we are propos-
ing instead is that in many practical applications of interest, one can write down a theory in higher-order logic that
captures neatly both the probabilistic and non-probabilistic elements of the underlying application domain. Further,
reasoning efficiently with such a theory is often easy. Indeed, we believe a great deal of interesting probabilistic
reasoning can be carried out this way.

Other related work

In [17], the authors explore ways of defining probability distributions over basic terms, a class of terms in higher-
order logic introduced in [29] for the specific purpose of representing individuals in applications. The class of
distributions identified in [17] are all defined by induction on the structure of basic terms. An efficient sampling
algorithm is also given for these distributions. We remark that the use of higher-order logic in [17] is restricted to the
definition of basic terms and is quite different to our use of higher-order logic for representing probabilistic concepts.
In particular, the distributions on basic terms identified in [17] are not actually defined and manipulated in higher-order
logic, although the techniques of this paper show that this is indeed possible. We note also that the class of distribu-
tions identified in [17] forms only a small subset of the kind of distributions that can be represented in higher-order
logic.

There are also related works on adding probabilistic reasoning support to functional programming languages. These
come in the form of language extensions to the λ-calculus. In [44], the authors show how probability distributions
can be captured using monads. They also introduced a simple language called measure terms that allows certain
operations on (discrete) distributions to be computed efficiently. The measure terms is a subset of the language we use
for representing and manipulating densities in this paper. In [42], a probabilistic language based on sampling functions
is presented. The language supports all kinds of probability distributions and exploits the fact that sampling functions
form a so-called state monad.

In [1], the Haskell language is used to describe a family of statistical models based on the MML principle. The
generalisation of the various models, and the natural mappings between them, are shown by the use of Haskell classes,
types, and functions.

Current limitations and future work

We end this section by stating the limitations of what has been done in this paper and suggest some future work.
All the examples given in this paper are solved via exact inference. In some problems, exact inference can be

extremely expensive. For example, it would take a long time to compute in the context of Section 5.2 the exact answer
to the question “What is the probability that the urn contains 30 balls given that 100 balls are drawn and 75 appear
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blue and 25 appear green?”. Efficient approximate algorithms need to be developed to handle these questions. The
main technical problem is coming up with efficient ways of sampling from different classes of terms.

The type of reasoning problems that can be solved using our present system is limited also by the fact that the ver-
sion of Bach we use here only performs equational reasoning. So, for example, inequality type of reasoning cannot be
easily solved at present. The computation system described in this paper can be extended with constraints-processing
capabilities to help with such problems. Also, the full Bach system as defined in [30] contains a tableaux theorem
prover as a subsystem. This full system, once completed, can be used to tackle a wider class of probabilistic reasoning
problems.

We have not discussed the problem of learning in this paper. We are currently pursuing ways of upgrading the
Alkemy system [29,31,38] to learn probabilistic theories, building on the work of [7] and maximum entropy methods.

7. Conclusion

The foundations of probability theory can be stated in the language of mathematics. It should thus come as no
surprise that probability and probabilistic reasoning can be incorporated naturally and directly in higher-order logic,
which is essentially the formal version of the (informal) everyday language of mathematics. We believe it is better
to start off from higher-order logic instead of first-order logic in the search for a language that tightly integrates
probability and logic. Indeed, taking this route, one may discover that there is actually no need to invent any new
machinery to achieve the desired integration.
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