
[19:38 20/7/2010 Bioinformatics-btq318.tex] Page: 1932 1932–1937

BIOINFORMATICS ORIGINAL PAPER Vol. 26 no. 16 2010, pages 1932–1937
doi:10.1093/bioinformatics/btq318

Genome analysis Advance Access publication July 2, 2010

Rapid match-searching for gene silencing assessment
Mark E.T. Horn1,∗ and Peter M. Waterhouse2

1Division of Mathematics, Informatics and Statistics, CSIRO, Locked Bag 17, North Ryde NSW 1670 and 2School of
Biological Sciences, University of Sydney, NSW 2006, Australia
Associate Editor: Ivo Hofacker

ABSTRACT

Motivation: Gene silencing, also called RNA interference, requires
reliable assessment of silencer impacts. A critical task is to find
matches between silencer oligomers and sites in the genome, in
accordance with one-to-many matching rules (G–U matching, with
provision for mismatches). Fast search algorithms are required to
support silencer impact assessments in procedures for designing
effective silencer sequences.
Results: The article presents a matching algorithm and data
structures specialized for matching searches, including a kernel
procedure that addresses a Boolean version of the database task
called the skyline search. Besides exact matches, the algorithm is
extended to allow for the location-specific mismatches applicable in
plants. Computational tests show that the algorithm is significantly
faster than suffix-tree alternatives.
Availability: Source code, executable, data and test results are freely
available at ftp://ftp.csiro.au/Horn/RapidMatch
Contact: mark.horn@csiro.au
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Gene silencing involves mechanisms to suppress the expression of
particular genes. These mechanisms, also called RNA interference
(RNAi), contribute to the development of organisms and
to protection against viral attacks; they also have important
experimental and therapeutic applications. The silencing process
studied in this article commences with the formation of double-
stranded RNA (dsRNA) molecules, either as part of an organism’s
normal functions or via a synthetic pathway. The dsRNAs are
processed into single-stranded RNA oligomers called microRNA
(miRNA) or small interfering RNA (siRNA), depending on the
origin of the dsRNA: miRNA is formed from irregular pseudo-
hairpin miRNA-precursor molecules, whereas siRNA is formed
from long double-stranded or hairpin RNA. The RNA oligomers
then are inserted into RISC protein complexes, which they guide
to matching sites on messenger RNA (mRNA) molecules encoded
by the genome. When a match is found between a guiding oligomer
and an mRNA, the RISC cleaves the mRNA, causing its destruction.
In plants (the main focus of the present research), the oligomers
directly involved in the silencing process are predominantly 21 bases
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in length, in both the miRNA and siRNA pathways (Eamens et al.,
2008; Fusaro et al., 2006; Ossowski et al., 2008).

In synthetic RNAi applications, the RNA oligomers are used to
suppress the expression of one or more target genes. An important
task here is to formulate sequences for the oligomers (and in practice
their precursors), so that they will have substantial impact on the
targets, while minimizing their impact on non-target genes (i.e.
cross-silencing). One strand of research in this respect concerns
the identification of sites in mRNA where silencing is likely to
occur (Reynolds et al., 2004; Santoyo et al., 2005; Yamada and
Morishita, 2005). In addition, methods have been developed for
assessing the silencing impact expected from any given candidate
silencer, based on an identification of all matching sites in the
mRNA (Rajewsky and Socci, 2004; Rehmsmeier et al., 2004). These
methods use classical energy-minimizing RNA-folding techniques
and are evidently highly reliable, but they are extremely demanding
in terms of computational time.

Fast performance in identifying matching sites is important
because the search for an effective design may require an assessment
of large numbers of candidates. This is so especially in the case of
long hairpin silencers, where the complexity of the design task is
augmented by the spawning of multiple overlapping oligomers from
a single hairpin RNA molecule.

A matching relationship involves a pairing of the reverse-
complement of a silencer candidate with an mRNA location, with
allowance for G–U variants and some tolerance for mismatches. A
widely used technique for finding matches commences by taking
the reverse-complement of the candidate silencer, for which a
direct match is then sought in the mRNA, which allows the use
of suffix-tree algorithms (Gusfield, 1997). The suffix-tree approach
has been extended in recent years in the GUUGle software, which
implements a direct search for complementary matches, including
built-in provision for G–U matching (Gerlach and Giegerich, 2006).
Suffix-tree algorithms have been adapted also to handle a wide range
of mismatches, notably in the flexible pattern-matching capabilities
provided by the STAN software (Nicolas et al., 2005).

This article proposes an alternative to the suffix-tree approach.
The genome is represented as an in-memory map of 21-mers, and
the matching rules are incorporated in an algorithm that seeks
matches within this map. The aim has been to develop a fast search
procedure with modest memory requirements, for use especially in
optimization procedures for constructing effective hairpin silencers.

2 SYSTEM AND METHODS
In the remainder of this article, we refer to a silencing oligomer simply as a
silencer and the mRNA sites which it matches as the silencer’s objects.
The impact made by a given silencer can be estimated by a search for
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13-21: up to 4 non-adjacent 
mismatches allowed. 

2-12: up to 1 mismatch 
allowed, except 10 or 11. 

12 & 13: at most one mismatch is allowed.

1: mismatch 
allowed. 

5’ 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 3’

Fig. 1. Locational matching rules.

matching objects, followed by a quantitative assessment of silencing efficacy
aggregated over all the silencer–object pairs. The latter assessment—which
lies beyond the scope of the present article—involves estimation of the free
energy of pairwise RNA foldings (the silencer–object pairs are linked to form
hairpins and analyzed using self-folding techniques described by Zuker et al.,
1999); in the case of siRNA, an estimation is required also of strand-selection
probability for the silencer.

Matching between the respective bases of a given silencer–object pair
is determined by the canonical chemical bondings between RNA bases.
The potential base-wise matches are C–G and G–C (three H-bonds), A–
U and U–A (two H-bonds), together with the wobble pairs G–U and U–G
(one H-bond). A silencer makes an exact match with an object if all the
silencer’s bases, taken in reverse order, match the corresponding bases in
the object. For technical purposes, it is convenient to consider also a one-off
rule allowing a single mismatched base pair.

Extensive recent research in plant biology (see Ossowski et al., 2008;
Schwab et al., 2006) has shown that the possibility of silencing in reality
is determined by the locations and configurations within the silencer–object
pair of any mismatches, and has confirmed the effectiveness of silencers
designed in the light of these findings. The findings are encapsulated in the
‘locational’ matching rules set out below and illustrated in Figure 1.

• Location 1: a mismatch is tolerated.

• Locations 2–12 (except 10 or 11): a single mismatch is tolerated.

• Locations 13–21: up to four mismatches can occur in this region,
provided none are adjacent to each other or to a mismatch at location 12.

3 ALGORITHMS

3.1 Modeling of bases and sequences
Let each RNA base p be represented as a pair of Boolean variables
(p′,p′′) with the following values in each case.

A=(0,0)

C =(1,0)

G=(0,1)

U =(1,1).

It follows from the base-wise matching rules (see Section 2 above)
that a silencer-base p matches an object-base q if and only if both
of the following conditions are true:

∼p′ =q′, and (3.1)

∼p′′ ≤q′′. (3.2)

These conditions are verified in Table 1. Conditions (3.1) and (3.2)
apply similarly to 21-mers, in that a silencer m matches an object o
if and only if both conditions are true for each pair of bases (i, 22-i)
in the two 21-mers. A 21-mer m can be recorded as a pair of 21-bit

Table 1. Encoding of base-wise matching rules

Silencer base Object base Condition (3.1) Condition (3.2)

P′ q′ ∼p′ = q′ p′′ q′′ ∼p′′ ≤ q′′

A A 0 0 0 0 0
A C 0 1 1 0 0 0
A G 0 0 0 0 1
A U 0 1 1 0 1 1

C A 1 0 1 0 0 0
C C 1 1 0 0 0
C G 1 0 1 0 1 1
C U 1 1 0 0 1

G A 0 0 0 1 0
G C 0 1 1 1 0 1
G G 0 0 0 1 1
G U 0 1 1 1 1 1

U A 1 0 1 1 0 1
U C 1 1 0 1 0
U G 1 0 1 1 1 1
U U 1 1 0 1 1

Boolean arrays (m′, m′′), such that the parts (p′, p′′) of each base
m(i) are recorded in the corresponding m′(i) and m′′(i). Then, for a
silencer m and object o, the matching conditions can be given as:

∼m′(i)=o′(22−i) ∀i :1≤ i≤21 (3.3)

∼m′′(i)∨o′′(22−i)=o′′(22−i) ∀i :1≤ i≤21 (3.4)

These conditions can be tested efficiently on a modern computer
using built-in arithmetic operations, with the arrays m′ and m′′
representing each 21-mer implemented as native machine words.

3.2 Search procedures
Let m be a silencer and let A be the set of all objects to be searched,
normally comprising an entire genome. To evaluate silencer impacts,
a procedure is required for finding all matches of m in A, including
duplicates (i.e. multiple sites in A matched by m). As indicated in
Section 2, this search is not limited to exact matches, but must
include locational variants.

Such variants can be found by a tailored application of an exact
matching procedure, as illustrated by the simpler case of one-off
matching. Let N1(x) be the set of all words that differ from a
word x in one position. To find all one-off matches of a silencer
m in the object-sequence (or set) A, one approach is to carry out
an interleaved search for any objects o ∈ A such that o ∈ N1(m)
(Gerlach and Giegerich, 2006). An equivalent approach (adopted in
the present research) is to search with each member of N1(m) in turn,
looking for an exact match of any of these in A (in fact, a suitably
defined subset of N1(m) suffices for this purpose).

This approach to variant searching is illustrated in procedure find-
one-offs, which finds all one-off matches of m in A by seeking
the exact matches of the single-base variants of m. The following
description of the procedure is simplified in that a search is actually
required for only about half the variants of each base.
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p:     1         1  1  1    1   1  1             1  1    1       1   1   1

q:    1                  1        1  1             1   1            1   1   1      

r:    1                   1                           1   1             1   1     

Fig. 2. Dominance with p≥q and q≥r ⇒p≥r.

Procedure find-one-offs
(1) Define one-off s = ∅.
(2) For each base m(i), i∈ (1,21):

Set m∗=m.
For each variant v∈ (A,C,G,U) �=m(i):

Set m∗(i)=v.
Find all exact matches of m∗with objects
in A, and record each pair (m∗, o∗) in one-offs.

The locational matching rules are handled in a similar way,
through enumeration and testing of all variants satisfying those
rules. The key to any search for locational matches is thus an exact-
matching procedure. For this purpose, a specialized map of A is
constructed prior to any searching. To build this map, A is defined
as a list of word-pairs (o′, o′′) as indicated in Section 3.1, and the list
is sorted by ascending values of o′. A is thus formed into clusters of
objects, such that all objects with common values of o′ are adjacent.
The clusters are referred to here as complement-subsets S(A), and the
members of a complement-subset ϕ∈ S(A) are defined as Boolean
arrays {o′(ϕ), o′′(ϕ)}, where by definition o′(ϕ) is common to all
members of ϕ.

Given this ordering, procedure find-exact-matches carries out the
search for all exact matches of a silencer m with objects in A:

Procedure find-exact-matches
(1) Form a 21-mer m with reverse sequence to m.
(2) For Condition (3.3): perform a binary search amongst the

complement-subsets of A to find a complement-subset ϕ

with o′(ϕ) = ∼m′.
(3) For condition (3.4): if a subset ϕ was found in Step 2,

search for all object(s) {o} in ϕ for which ∼m′′∨o′′ =o′′.
Step 3 can be specified as a search for dominance among Boolean

arrays. Given two Boolean arrays p and q, the relation p≥q
(p dominates q) is true if p(i)=1 in every location i where q(i)=1.
Now consider Boolean arrays p,q, and r, where p≥q and q≥r.
In each location i with r(i)=1, q≥r implies that q(i)=1, and
hence p≥q implies also that p(i)=1; therefore p≥r. The dominance
relation is thus transitive, as illustrated in Figure 2; it is also evidently
reflexive and antisymmetric; hence with the dominance relation,
{p,q,r...} constitutes a partially ordered set.

Referring now to the Boolean arrays for silencers and objects (m′′
and o′′, respectively) as m and o, a match of m with an o∈ϕ requires
∼m ∨o=o, which is equivalent to o≥∼m. The search task in Step
3 is thus equivalent to seeking every o (o∈ ϕ) that dominates ∼m.
This can be done via a simple linear scan, visiting every element of
ϕ, and the implementation of find-exact-matches tested in the present
research uses such a scan. Thus find-exact-matches has complexity
O(log2|S(A)|+|ϕ|): in Arabidopsis thaliana |S(A)|=2096609 (see
Section 4), and usually |ϕ|<<100. The occasionally large size of ϕ

does, however, pose the question of whether a faster search method
can be devised for Step 3, where the task is a special case of a
database operation called skyline query.

4 IMPLEMENTATION AND PERFORMANCE
The algorithms described above are implemented in software called
oligomers matching objects (OMOs), which has been tested with the
transcript of Arabidopsis thaliana, obtained from the web site of the
Arabidopsis information resource (TAIR) (TAIR6_cdna_20051108
in FASTA format, from ftp://ftp.arabidopsis.org/home/tair/Genes/).
OMO is written in C++, and all the tests were carried out on a
Windows platform with an Intel Core™2 Duo CPU and 1.95 GB of
RAM.

As indicated in Section 3.2, a prerequisite for the matching
algorithm is to generate a map of complement-subsets. This is done
once for each genome in a pre-processing module that reads the
transcript, generates the map, and writes it in a binary form to a file
(size 561, 668 kb) for subsequent input to OMO. For Arabidopsis,
the pre-processing step requires around 168 s of CPU time, and
subsequent input of the binary file by OMO requires around 6 s.

The Arabidopsis transcript comprises 46 447 255 bases which
make up 45 756 240 distinct 21-mers within gene-sequences, and in
the preprocessing step the 21-mers are apportioned among 2 096 609
complement-subsets. Each subset ϕ comprises the common ϕ(o′),
together with an array of its component 21-mers. In this array, each
21-mer m has implicitly the common value m′ =ϕ(o′); the explicit
attributes of m (packed into two 32-bit words) are m′′, the number
of instances of m in its gene G(m), and an index to G(m). For the
main tests conducted here the consequent total memory requirement
is ∼428 000 kb, which presents no practical difficulty on a standard
16-bit Windows PC (the more compact internal representation makes
total memory smaller than the binary input file).

The OMO tests involved searching for matches between randomly
generated silencers and 21-mers of the genome. Searches were
conducted for the three match types defined in Section 2
(we emphasize that only the locational rules have biological
significance). Three main series of tests were carried out, each with
a different set of 100 000 silencers. The silencer sets are defined as
follows.

• SM-R: each silencer m is obtained as a pair (m′, m′′) of numbers
according to the encoding described in Section 3.1, both
numbers being randomly distributed between 0 and 221−1.

• SM-M: silencers are generated so as to match 21-mers of
the genome. They are obtained as the reverse-complements of
21-mers selected at random from all silencers in the genome.

• SM-T: silencers are generated so as to match 21-mers of the
largest complement-subset of the genome. The silencers are
obtained as the reverse-complements of 21-mers selected at
random from that subset.

In each case, a separate search was made for every silencer, with the
find-exact-matches procedure as the kernel for all variant matches
(see Section 3.2). Separate tests with smaller silencer-sets (with 100,
1000 and 10 000 silencers) confirmed that search time per silencer
was essentially independent of the number of silencers tested in a
given run (see Supplementary Material).
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Table 2. Test results for OMO, 100 000 silencers

Silencer Match Silencers Total CPU per
set type matched matches silencer (s)

SM-R exact 9031 18552 1.090E-06
SM-R one-off 61075 527933 2.063E-05
SM-R locational 99072 16953612 4.511E-04
SM-M exact 100000 233736 1.870E-06
SM-M one-off 100000 1233144 3.125E-05
SM-M locational 100000 21584039 8.975E-04
SM-T exact 100000 24468095 3.550E-04
SM-T one-off 100000 153533332 8.498E-03
SM-T locational 100000 704152342 1.543E-01

Table 2 summarizes the results. The third column shows the
number of silencers (out of the 100 000 tested in each case) for which
at least one match was found in the genome using the nominated
match type. For the SM-M and SM-T silencer-sets these figures
are 100 000 for all match-types because the silencers in these cases
were defined deliberately to find matches in the genome. The fourth
column shows the total number of sites matched in the genome.
For example, with SM-M there were 100 000 silencers and 233 736
sites exactly matched, indicating that on average there were ∼2.34
instances in the genome of the reverse-complement of each silencer.
The fifth column shows the average CPU time to find all matches
for a silencer, averaged over all 100 000 silencers in each test.
These times cover all search operations carried out for each silencer,
excluding input operations and the generation of the silencers.

The results for SM-R and SM-M give a precise view of the way in
which the partial matching conditions expand the number of matches
found, and hence the complexity of the search task (see Column 4).
A notable point here is the substantial difference between SM-R
and SM-M, with SM-M making relatively fewer partial matches
than SM-R (e.g. a ratio of exact to locational matches of 1 : 914 for
SM-R versus 1 : 92 for SM-M), even though the actual number of
matches for SM-M are consistently higher. A possible explanation
is that for many of its 21-mers the genome includes one or more
exact duplicates (more than if the genome were formed at random);
but with fewer variant forms than might be expected if the genome
were constructed at random.

The SM-T silencers were defined to match 21-mers in the largest
subset, with the aim of assessing the impact on performance of
within-subset searching (Step 3 of find-exact-matches). The results
for SM-T show that this impact is quite strong, with a 326-fold
increase in CPU time compared with SM-R for exact matches. This
is still much faster than linear search within the genome as a whole
(see below), and there is no reason to think that genomes with
predominantly large subsets exist in nature.

To establish a performance baseline for the above results, further
tests were carried out using a linear search procedure instead of
find-exact-matches. Given a silencer m, this procedure tests m for
an exact match with each 21-mer of the genome in turn, using the
same implementation of the matching test as that used elsewhere
(see Section 3.1). CPU time with this baseline procedure was
4.75 s/silencer, averaged over 100 SM-R silencers. This is 4 357 798
times greater than the corresponding result with find-exact-matches,
and confirms the efficiency of the latter procedure.

Table 3. GUUgle: average CPU times (seconds/silencer) for exact matching

Silencer 10 100 1000 10 000 100 000
set silencers silencers silencers silencers silencers

SM-R 6.716E-01 9.654E-02 1.447E-02 2.945E-03 7.256E-04
SM-M 7.358E-01 9.732E-02 1.495E-02 3.159E-03 7.112E-04
SM-Ra 2.593E-01 5.531E-02 1.034E-02 2.533E-03 6.844E-04
SM-Ma 2.406E-01 4.780E-02 9.998E-03 2.664E-03 6.617E-04

Additional tests were run to obtain comparable performance
figures with GUUGle (Gerlach and Giegerich, 2006). In these tests,
GUUGle (from http://bibiserv.techfak.uni-bielefeld.de/guugle/) was
applied to searches for the SM-R and SM-M silencers as described
above. Because GUUGle builds a suffix tree for its target sequences
(here the whole of the Arabidopsis transcript) incrementally, its
performance depends on the number of query-strings tested. For
this reason, the GUUGle tests were run with different numbers of
silencers; also, to exclude the time required for initial setup and
input, adjusted CPU figures (SM-Ra and SM-Ma) were obtained in
each case by deducting the search time for a single silencer from
total CPU time.

The results (see Table 3) show that OMO outperforms GUUGle
by factors of 628 : 1 and 354 : 1, respectively in exact matching
of the SM-R and SM-M 100 000 silencer-sets, and by even more
for smaller numbers of silencers. GUUGle on the other hand has
memory usage of around 250 000 kb, which is <60% of the memory
used by OMO.

Similar comparisons have not been possible with STAN (Nicolas
et al., 2005), which is not available for stand-alone testing. However,
the STAN Manual (Valin et al., 2007) includes performance data,
including comparisons with other pattern-oriented software called
PatMatch, PatScan and Genlang. For exact literal matches of a
24-mer in Arabidopsis, the search times with STAN and PatMatch
were 1.17 and 1.01 s, respectively, considerably faster than for
PatScan and Genlang. STAN was also tested with several more
complex patterns, none of which, however, allow direct comparison
with the results given above for locational matches. We conclude
that OMO has a clear performance advantage over these codes.

5 DISCUSSION
This article has presented techniques to enable rapid prediction of
the locations where a given silencer is likely to have impact on a
given genome. The techniques as implemented in the OMO software
have been shown to be faster than GUUGle by a factor of at least 350
and, therefore, will be valuable where performance is critical (e.g. in
optimization procedures). OMO is thus well-suited to applications—
notably optimization—requiring large numbers of searches. For
ad hoc queries, the overhead associated with initial input of
the binary file could be eliminated through a persistent-memory
implementation (e.g. providing OMO as a web service).

Other notable aspects of the research include the development
of a specialized coding scheme for direct testing of matches
(including G–U matches), the elucidation of reductions for testing of
mismatches, and the identification of a fundamental search task—a
Boolean variant of skyline search—which apparently has not been
addressed previously.
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The main disadvantage of the approach presented here is its
inflexibility compared with alternatives that allow arbitrary silencer
lengths (GUUGle and STAN) or declarative statements of matching
rules (STAN). In contrast with such alternatives, low-level changes
would be required to model alternative silencing processes (e.g.
alternative matching rules, or silencer oligomers of length other
than 21; see Fusaro et al., 2006, Ossowski et al., 2008). Even so,
the changes required in these cases would preserve the performance
advantages demonstrated in this article, and would not necessarily
involve any fundamental technical difficulty.
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APPENDIX A: VARIANT SEARCH REDUCTIONS
This Appendix shows how the canonical base-wise matching rules
(including G–U pairings) allow a significant reduction in the extent
of search required with variant (e.g. locational) matching rules. For
example, searching for the one-off matches of a given silencer would

Table A1. Exact and one-off matches of base G in silencer

Exact matches One-off matches

G with C or U A with U
C with G
U with G or A

Table A2. One-off reductions

Silencer base (matching object
bases)

One-offs of silencer base (matching
object bases)

A(U) C(G), G(U,C), U(G,A)
C(G) A(U), G(U,C), U(G,A)
G(C,U) A(U), C(G), U(G,A)
U(A,G) A(U), C(G), G(U,C)

require in principle that match-searches be carried out for each of
the three variant-bases at each of the silencer’s 21 locations, that is,
for a total of 63 one-off variants of the silencer as a whole. We show
here how this number can be reduced substantially. Consider first
the object-bases matched by base G, and by the one-offs (A, C, U)
of G (Table A1).

Both G and its one-off A match U, and one-offs C and U both
match G. Hence, for a base G in the silencer the one-off tests for A
and C can be omitted without compromising the opportunity to find
these matches. Table A2 shows the full set of such reductions.

Thus, the testing of one-off base-wise variants can be restricted
as follows.

• A or C in silencer: test only one-offs G and U (omit C).

• G in silencer: test only one-off U (omit A and C).

• U in silencer: test only one-off G (omit A and C).

APPENDIX B: SIZES OF COMPLEMENT-SUBSETS
Subset sizes in practice: Figure B1 shows the distribution of sizes of
complement-subsets in the Arabidopsis transcript. Three series are
shown, defined as follows.

• Subsets fully reduced: excluding duplicates and internally
dominated objects.

• Subsets partly reduced: excluding duplicates.

• Subsets raw: no exclusions.

The maximum subset sizes according to these definitions are 1406,
2889 and 8140, respectively. The frequency distribution is skewed
heavily to smaller sizes; for instance, for the fully reduced subsets
the most frequent size is 10 (129 553 instances), and the largest three
sizes are 662, 728 and 1406, with one subset each.

Upper bounds: The maximal complement-subset ϕ** may be
defined as the distinct possible values of a Boolean array of
length 21, and the effective maximal set ϕ* as the largest subset
of ϕ** that contains no objects dominated by others in ϕ*. Clearly
|ϕ**|=221 is an upper bound on subset size in general, while |ϕ*|
is the maximum number of dominant objects in a subset.
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Fig. B1. Complement-subsets in Arabidopsis.

What is the maximum possible size of |ϕ*|? To answer this
question we begin by defining the cardinality of an object (a Boolean
array of length 21) as the number of its elements that are set to 1.
Now consider the maximal set ϕk of distinct instances of an object
with cardinality k (k ≤21). Because the members of ϕk are distinct
and have equal cardinality, no mutual dominance can occur. The size
of ϕk is 21 things taken k at a time,

|ϕk |=
(

21
k

)
= 21!

k!(21−k
)!

The question now arises, does the maximal set ϕ* comprise objects
with a single cardinality (i.e. ∃k :ϕ* = ϕk), or is it a mixture of
cardinalities? If the latter is the case, consider the largest cardinality
kmax of any object in ϕ*. If |ϕ*| could be increased by removing
any object of cardinality kmax, |ϕ*| could be further increased by
removing other objects of the same cardinality, until all such objects
were removed. Hence, ϕ ⊆ϕ*. But any object with cardinality
less than kmax would be dominated by some object in ϕkmax ;
therefore, ϕ* is not a mixture, and in particular, ϕ* = ϕk for a
single cardinality k. The cardinality that maximizes |ϕk | is evidently
k∗=21/2=10 or 11, yielding |ϕk∗|=|ϕ*| = 352 716.

APPENDIX C: SEARCH IN
COMPLEMENT-SUBSETS
The search for non-dominated Boolean arrays in the find-exact-
matches procedure (Section 3.2) is a special case of the database
operation called skyline query. A skyline is a set of tuples in a given
database, of which each tuple is maximal with respect to at least
one of a given set of attributes (Papadias et al., 2005). The task
of retrieving such a set is also called the maximal vector problem
(Godfrey et al., 2006).

Despite these formal affinities, the present search task merits
specialized treatment on account of its distinctive features. In
particular, the criteria are all Boolean-valued, and the size of the set
ϕ to be searched is in most cases very small, making a linear scan
very attractive. Some instances of ϕ, however, comprise hundreds

and even thousands of objects (Appendix B). An interesting question
then is whether a faster-than-linear search is possible.

Some alternative procedures are outlined below. The task in
each case is to find any Boolean arrays o (o∈ϕ) that dominate
a given ∼m. The procedures involve pre-calculation of summary
quantities, and specialized orderings of the complement-subset ϕ.
In computational experiments with Arabidopsis, no consistent
performance improvement has been achieved over linear search.

Bit-count ordering: Let nbits(p) denote the number of non-zero
elements in a Boolean array p. It is evident that p≥q⇒ nbits(p)≥
nbits(q). One can make use of this fact by applying in advance a
descending bit-count ordering to ϕ, that is, by ordering the elements
of ϕ by the numbers of one-valued bits in them (e.g. 21-bit objects
then 20-bit objects and so on). Then a search for instances of
domination of ∼m by members of ϕ can cease when it reaches
an o∈ϕ with nbits(o)< nbits(∼m).

Dominance ordering: The dominant objects in ϕ may be defined as
those that are not dominated by other members of ϕ, while the dom-
set s of a dominant object os comprises os together with any other
objects which it dominates. A descending bit-count ordering (see
above) may be applied both to dominant objects and their dom-sets.
A procedure to find all matches of m in a set ϕ′ of dom-sets ordered
in this way is given below.

Procedure find-domset-matches
(1) Define initially V =∅.
(2) For each dom-set s∈ϕ′’:

If nbits(os)< nbits(∼m), stop.
If os ≥m, do the following.

Add os to V , then perform a linear search of the other
members of s, adding any of these that dominate
∼m to V . This search can terminate when an object is

reached with fewer bits than nbits(∼m).

Dominance reduction: Where the aim is merely to determine whether
a match exists, the above search strategy can be simplified by
removing in advance all non-dominant objects from ϕ’. This reduces
the effective size of ϕ and makes the search again simply linear,
without compromising the outcome. Note that if an ∼m is dominated
by a dominant object o, there is no guarantee that ∼m is dominated
by all members of o’s dom-set. Consequently a dominance-reduction
method (e.g. removing dominated objects but retaining the number
of objects per set) cannot reliably yield the number of matches made
by m.

Summary objects: A further device to reduce the scope of search
involves defining in advance a ‘summary object’ oϕ as the Boolean
OR of all the members of ϕ. Then a search for a match of m in ϕ may
commence with a test for oϕ ≥∼m: failure of this test indicates that
there can be no o∗≥∼m for any o∗∈ϕ. Unfortunately where ϕ is
large, nbits(oϕ)≈ 21, and for this reason the test by itself is unlikely
to improve performance. However, a composite application could be
more effective. For example, with dominance ordering the dom-sets
of ϕ may be partitioned in groups with a common number of bits in
each group, and a summary object oϕ(k) may be predefined for each
such group. Then when searching for a match of m, if oϕ(k) ≥∼m
the group can be ignored.
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