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ABSTRACT

Motivation: Some recent comparative studies have revealed that
regulatory regions can retain function over large evolutionary
distances, even though the DNA sequences are divergent and
difficult to align. It is also known that such enhancers can drive very
similar expression patterns. This poses a challenge for the in silico
detection of biologically related sequences, as they can only be
discovered using alignment-free methods.
Results: Here, we present a new computational framework called
Regulatory Region Scoring (RRS) model for the detection of
functional conservation of regulatory sequences using predicted
occupancy levels of transcription factors of interest. We demonstrate
that our model can detect the functional and/or evolutionary links
between some non-alignable enhancers with a strong statistical
significance. We also identify groups of enhancers that are likely
to be similarly regulated. Our model is motivated by previous work
on prediction of expression patterns and it can capture similarity by
strong binding sites, weak binding sites and even the statistically
significant absence of sites. Our results support the hypothesis
that weak binding sites contribute to the functional similarity of
sequences.

Our model fills a gap between two families of models: detailed,
data-intensive models for the prediction of precise spatio-temporal
expression patterns on the one side, and crude, generally applicable
models on the other side. Our model borrows some of the strengths
of each group and addresses their drawbacks.
Availability: The RRS source code is freely available upon
publication of this manuscript: http://www2.warwick.ac.uk/fac/sci/
systemsbiology/staff/ott/tools_and_software/rrs
Contact: s.ott@warwick.ac.uk; hashem.koohy@warwick.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Cis-regulatory modules (CRMs) can drive precise spatio-temporal
gene expression patterns. Some recent studies show that CRMs may
function similarly in different species despite substantial sequence
divergence (Hare et al., 2008; Ludwig et al., 2005). This implies that,
first, alignment-based sequence comparison tools are not applicable
for further decoding the conserved function of such CRMs and
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second, some CRMs must share common patterns that drive almost
identical regulatory outputs but possibly with different arrangements
of binding sites. When different, but functionally related enhancer
loci in the same species are considered, then alignment-based tools
are not normally suitable for regulatory sequence comparisons as
these sequences are not orthologous.

Here, we present an alignment-free regulatory sequence
comparison model called Regulatory Region Scoring (RRS) model,
which is based on the potential distribution of transcription factors
(TFs). Our goals are:

(1) To be able to detect functionally similar enhancer regions even
if the enhancer regions do not align.

(2) To find groups of similar enhancers and determine relevant
sequence features shared among enhancers within a group.

1.1 Previous work
There has been a great deal of attention over alignment-free methods
to further reveal the mechanism of transcription control (see Vinga
and Almeida, 2003). Among these methods, two families are of
particular interest.

Models in the first family are aimed at predicting spatio-temporal
gene expression patterns from the regulatory sequences. A model
in this family was recently developed by Segal et al. (2008), and
then attracted the attention of other researchers (see Gertz et al.,
2009; Loo and Marynen, 2009; Segal and Widom, 2009; Zinzen
et al., 2009). For previous related work, see Djordjevic et al.
(2003); Foat et al. (2006); Roider et al. (2007); Tanay (2006); Vinga
and Almeida (2003). The model by Segal et al. (2008) is based
on a thermodynamic equilibrium assumption. The probability of
polymerase occupancy is computed from the intrinsic equilibrium
affinities and concentrations of the TFs. The gene expression level
is considered to be proportional to the polymerase occupancy.
This model takes into account some important aspects of TF–DNA
interaction including competition of TFs for TF binding sites, self-
cooperativity of TFs, and the effects of weak binding sites. Although
this model advances our understanding of how genomic sequences
are translated into transcriptional outputs, the complexity and data
dependency of the model do not allow for a wide application of this
model as a sequence comparison tool. One must deal with a complex
model-fitting procedure and provide a combination of data that is
rarely found at present: spatial expression patterns of a number of
related enhancers, knowledge of what the key regulators are, their
binding motifs and their spatial concentration.
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The second family of alignment-free methods is based on the
rationale that functionally similar sequences must share some
common words. Within these methods each sequence is associated
with a vector of k-mer counts. A distance function for these vectors
is then defined (Aerts et al., 2003; Blaisdell, 1986; Kantorovitz
et al., 2007; Leung and Eisen, 2009; van Helden, 2004). From this
family, D2z (Kantorovitz et al., 2007) is of particular interest for
us because: (i) it was one of the first alignment-free methods for
detection and analysis of regulatory sequences; (ii) it is a normalized
version of ‘D2’Lippert et al. (2002), a natural method of comparison
of k-mers in two sequences. The background normalization of this
model makes it possible to account for sequences from different
background distributions. However, some limitations of this method
are:

(1) Not all functional motifs in a pair of sequences are in the
form of 6-mers. So, by considering only 6-mers as patterns
underlying functional similarity of a pair of sequences, some
motifs that contribute to the gene expression pattern may be
overlooked.

(2) Not all 6-mers are biologically meaningful words, hence using
all 6-mers may mean introducing some noise to the model
and furthermore, we may want to compare two sequences
just based on a subset of meaningful words.

(3) Within the D2z framework, degeneracy of TF binding motifs
is not accounted for. So, different 6-mers are treated separately
even if they only differ in one base.

(4) The framework does not allow for a sequence and its reverse
complement to be combined for the purposes of assessing
possible TF binding.

There is a gap between these two families of models. The former
is based on a mechanistic understanding of the regulation of gene
expression by predicting expression patterns using TF occupancy
and interaction and is too dependent on a specific combination of
datasets to be generally applicable. The latter family of models
is defined very generally and is widely applicable, but some
natural principles underlying transcriptional control, such as TF
competition, motif degeneracy and effects of weak binding sites, are
completely ignored. Consequently, the results are less conclusive.
The RRS aims to enhance the conclusiveness of the results and
lessen the data dependency of the model by borrowing the key ideas
of each family of models so as to get more accurate results on a
wider range of data.

1.2 Outline of model and results
The first part of our model uses a modification of the thermodynamic
model by Segal et al. (2008) to compute the expected number
of proteins binding to each of a set of motifs in a sequence.
This computation captures some of the strengths of Segal’s model,
including the competition of TFs and contributions of weak binding
sites. Each sequence is summarized by these expectations. The
second part of our model compares the expectations of different
sequences to compute a similarity score. Our model can be used
to detect functionally relevant similarity in unalignable sequences
(such as certain promoters and enhancers) and it provides insights
into shared regulatory codes. Our main results are:

(1) We have developed the model underlying the RRS. The
model comprehensively evaluates the possible configurations
of proteins occupying given DNA sequences and provides
similarity scores based on shared combinations of motifs.

(2) We show that the RRS can detect functional and evolutionary
links between enhancers, which do not have significant
alignments.

(3) We find that weak binding sites can make a strong contribution
to sequence similarity.

(4) Our model treats statistically significant presence and
absence of motifs symmetrically. Similarity of sequences can,
therefore, be based on a combination of both for a set of
motifs. We show examples of motifs making contributions to
sequence similarity through their absence.

(5) We use the RRS to create a network of similarities among
a set of 131 known fly enhancers. The network connects
34 enhancers with 43 significant pairwise similarity scores.
At least four groups of enhancers show strong statistical
evidence to function similarly via a shared regulatory code.
One of these groups is strongly supported by the existing
experimental data.

2 METHODS
The RRS takes as input a pair of sequences and a set of TF motifs. We call
one of the sequences the template sequence and the other the test sequence.
The task is to judge whether the test sequence has the potential to drive
similar expression patterns as the template sequence, assuming expression is
driven by the given set of motifs. We do not use any cutoff for probabilities
of binding of these motifs to the sequences and so allow weak binding events
and even absence of motifs to contribute to sequence similarity. The output
from RRS is a statistical similarity score and a list of motifs that contribute
to that similarity score. The model is built of two main components: one
component associates each sequence with a mathematical vector reflecting
which proteins with what multiplicity and what specificity have the potential
to be bound to the sequence. We call the elements of these vectors motif
occupancy values or, in short, o-values. These vectors give an indication
of the potential enhancer function of the given sequences. The second
component estimates a probability distribution of motif o-value vectors for
sequences that function similar to the template sequence. We then compute
a Bayes factor to evaluate if the test sequence is more similar to the template
sequence or more similar to random background sequences (supplementary
Fig. S1 shows a simplified schematic illustration of the RRS concept).

2.1 Occupancy values of proteins binding a sequence
(motif o-values)

We assume a template sequence T , a test sequence S, and a set of TF motifs
M={M1,...,Mn}. We use the term configuration to denote a particular
arrangement of protein molecules along the DNA sequence, which is defined
by the subsequences at which each molecule is bound to the sequence. Valid
configurations are those in which binding subsequences do not overlap.
A configuration c with N molecules bound to a sequence is defined as
c={(Mi,Pi)|1≤ i≤N, Mi ∈M }, where Mi is the i-th molecule bound
at a subsequence starting at position Pi. Note that N is the number of
molecules bound in the configuration while n is the number of TF motifs.
The length of the binding subsequence is the size of motif Mi. Further,
we denote the subsequence starting at position Pi, where molecule Mi has
bound, by Bi. Therefore p(Bi|Mi) means the probability of subsequence
Bi using the the corresponding PSSM model and p(Bi|M̄i) means the
probability of subsequence Bi given the background model (uniform 0−order
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Markov model in our case). We then associate a statistical weight with this
configuration:

W (c)=
N∏

i=1

p(Bi|Mi)

p(Bi|M̄i)
=

N∏

i=1

p(Mi|Bi)

p(M̄i|Bi)
× p(M̄i)

p(Mi)
(1)

in which p(Bi |Mi)
p(Bi |M̄i)

is the contribution of molecule i bound to the sequence

at position Pi. This variable is in turn a function of binding affinity i.e.,
p(Mi |Bi)
p(M̄i |Bi)

and concentration parameter i.e., p(M̄i)
p(Mi)

. This definition enables weak

binding events to be included in the model. Assume that in a configuration c
we have a molecule that has been weakly bound to the sequence many times.
If, for the sake of simplicity we assume an equal binding affinity a (a>1)
in K positions, then the contribution of this factor to the W (c) is equal to
aK . Depending on K , this might be a strong contribution. The probability of
each configuration c is then defined as p(c)= W (c)∑

c∈C W (c) where C is the set

of all valid configurations. We use the same dynamic programing technique
as in Segal et al. (2008) to compute this probability.

There can be more than one expressed protein species that can bind
to a given motif. In the absence of information on either the number of
protein species capable of binding a motif or the nuclear concentrations of
these proteins we assume the total nuclear concentration of such proteins

to be equal for each motif and set p(M̄i)
p(Mi)

to a constant value. Where such
information is available it can be integrated into the RRS by setting the
concentration parameters accordingly. When the concentration parameter is
set to a constant value, it determines the average density of proteins bound
to DNA within our model. We chose 15 as the setting for the concentration
parameter and confirmed that results presented in this work are robust as
long as the concentration parameter is set such that the protein density is
realistic. Note that the scaling of this parameter depends on the scaling of
the binding affinity and, therefore, the absolute value does not have a direct
interpretation.

Intuitively, this probability distribution over all possible configurations
should reflect a number of aspects of enhancer function in a natural way.
Overlapping binding sites will compete with each other, high-affinity binding
sites will attract a binding molecule more often, and weak binding sites
can exert an effect if they are present in numbers. Proteins are more likely
to interact with the polymerase if they occupy the enhancer more often.
Therefore, a key quantity relevant to the function of an enhancer is the
expected number of copies of a given protein that bind to motifs in the
enhancer (T ):

eT
Mi

= log
∑

c∈C

p(c)IMi (c) (2)

in which IMi (c) is the number of occurrences of motif Mi in configuration c.
This definition is of particular interest because it captures both the specificity
and multiplicity of a binding event of a protein to the sequence in the p(c)
and IMi (c) terms, respectively. A dynamic programming approach is used to
compute each occupancy value. Finally, the sequence T is associated with the
vector of occupancy values, i.e. ET =<eT

M1
,··· ,eT

Mn
> and similarly sequence

S is associated with ES =<eS
M1

,··· ,eS
Mn

>. Our results show that these
occupancy values are length dependent. We divide them by the length of the
sequences to normalize them. Therefore, each of these vectors summarizes
the combined specificity and multiplicity that each protein is likely to bind
to each of the sequences.

2.2 Similarity scores
Our aim in this section is to define a similarity function over the space
of vectors of occupancy values to extract the similarity of a given pair of
o-values. Having observed o-values from the template sequence, ET , we want
to test if the vector of o-values from the test sequence, ES , has been drawn
from the same distribution or from a random background distribution. The
logarithm of motif o-values in randomly picked sequences from the genome
of the species of interest approximates a normal distribution. Therefore, the
probability of a motif o-vector such as ES =<eS

M1
,··· ,eS

Mn
> can be obtained

A B C

D E F

S

f (
S

)
D

en
si

ty

S S

Fig. 1. Illustration of the RRS similarity score for an individual motif.
There are three possibilities. (A, D) The motif is neither significantly present
nor absent in the template sequence. The distribution of motif o-values in
sequences with the same function as the template sequence (solid line) is
estimated to be equal to the random background (dashed line). In this case,
irrespective of the motif o-value in the test sequence, the function f (eS

Mi
)

[see Equation (4)] is constant (D). (B, E) The motif o-value in the template
is higher than in random sequences (B), in this case f (eS

Mi
) is an increasing

function (E). (C, F) The motif o-value is lower than in random sequences,
indicating significant absence. In this case, f (eS

Mi
) is decreasing (F).

from a multivariate normal distribution. For the sake of simplicity, we shall
consider an independent multivariate normal distribution. This means that
the probability of the o-vector ES under the random model is p(ES |R)=∏n

i=1 p(eS
Mi

|µ=µRi ,σ =σRi ), where, µRi and σRi are the mean and SD of

o-values for motif i in randomly picked sequences. The probability that ES

has been drawn from the same distribution as the template is p(ES |T )=∏n
i=1 p(eS

Mi
|µ=eT

Mi
,σ =σRi ). We define the RRS score as

RRS(S|T )= p(ES |T )

p(ES |R)
(3)

The first point to note about this definition is that it is asymmetric but one may
define it as an average to make it symmetric, i.e. RRS(S,T )= (RRS(S|T )+
RRS(T |S))/2. However, it is sensible to work with the asymmetric version, in
particular when comparing two sequences from different species. The second
point that makes this definition more realistic and useful is the contribution
of the individual motifs, which are the factors making the RRS-score:

f (eS
Mi

) := p(eS
Mi

|µ=eT
Mi

,σ =σRi )

p(eS
Mi

|µ=µRi ,σ =σRi )
(4)

for any motif Mi, where 1≤ i≤n. For any test sequence S, one can consider
the Equation (4) as a function of variable eS

Mi
with three extra parameters:

eT
Mi

, µRi and σRi . The following cases illustrate this definition and its usage
in the rest of this article:

(1) If eT
Mi

≈µRi (see Fig. 1A), then f (eS
Mi

) can be considered as a constant
function with value ≈1 (Fig. 1D). This means that if the expected
number of occurrences of this motif in the template sequence is
very close to the average of its expected number of occurrences
in the random sequences, then the overall RRS score for the test
sequence will be largely independent of number of occurrences of
this motif in the test sequence. In biological terms, if the test sequence
shares a regulatory code with the template sequence, but also contains
additional binding sites, then these additional sites do not reduce the
sequence similarity.

(2) If eT
Mi

>µRi , then f (eS
Mi

) is an increasing function. More accurately,

if we assume that eT
Mi

>A>µRi , where A is the intersection point of

the two distribution curves (Fig. 1), then f (eS
Mi

)≤1 if eS
Mi

≤A else it is
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greater than one. This case occurs when the motif is strongly present
in the template sequence. Accordingly, the greater the motif o-value
in the test sequence, the greater the contribution of the motif (Fig. 1B
and E). Note that a strongly negative RRS score in this case implies
poor presence of the motif in the test sequence.

(3) Similarly, if eT
Mi

<µRi , then f (eS
Mi

) is a decreasing function. In other

words, f (eS
Mi

)>1, if eS
Mi

<A (where eT
Mi

<A<µRi is the intersection
point of two curves) then the motif will be assigned a contribution
greater than one, otherwise f (eS

Mi
) has a value less than one,

contributing negatively to sequence similarity (Fig. 1C and F).

3 DISCUSSION AND RESULTS
Our goal in this section is to evaluate if the RRS can distinguish
functionally/evolutionarily related sequence pairs (positive sets)
from the sequence pairs randomly picked from the genome (negative
sets). For this, we apply it to the same fly datasets as used in
Kantorovitz et al. (2007). We first demonstrate that the distribution
of alignment significance levels, or e-values in short, of positive
sets is not significantly different from the distribution of alignment
e-values of negative sets. Using RRS, however, there are about 40
pairs of sequences (edges in Graph 3) whose scores are significantly
greater than the scores obtained using random pairs. The statistical
significance of some of these scores are highlighted. We show that
according to the RRS results, a subset of these 40 enhancers are
regulated by the regulator Bicoid (BCD) (subgraph highlighted by
rectangles in Fig. 3). This finding is of particular significance as it
has been experimentally confirmed by Ochoa-Espinosa et al. (2005).
Finally, we do some analysis, first, to show the contribution of
strongly absent motifs to the similarity of a pair of sequences, and
second to highlight the substantial contribution of weak binding sites
in our model scheme.

3.1 Datasets
This study uses the same fly datasets as are used in Kantorovitz
et al. (2007), which are four positive and four negative sets. The
positive sets consist of 82 FLY_BLASTODERM, 23 FLY_PNS, 9
FLY_TRACHEAL and 17 FLY_EYE enhancers. The negative sets
consist of 82 BLASTODERM, 23 PNS, 9 TRACHEAL and 17
EYES counterparts all of which were randomly picked from non-
coding parts of the genome (each sequence has the same length
as its corresponding real enhancer). RRS scores of each pair in a
positive set as well as negative set is obtained. It is then assessed
if pairs in a positive set score higher than pairs in the counterpart
negative set. This is done by sorting all scores and then looking at

top K = k(k−1)
2 pairs, where k is the number of enhancers in that set.

For the set of TF motifs, we used 67 insect-specific PSSMs available
in the TRANSFAC database (Matys et al., 2003). The full list of the
motif-IDs is included in the Supplementary Material.

3.2 Statistical links between sequences
We first used a local sequence alignment tool from the NCBI
(http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi; ‘Blast 2
Sequences’) as well as an implementation of the Smith–Waterman
algorithm (the water tool from the EBI; http://www.ebi.ac.uk/Tools/
emboss/align/index.html) to show that these sequences are not
alignable. The best hit found over all of these sets for BLAST had
an e-value of 1e-08 corresponding to a stretch of 23 bp from a pair

Fig. 2. (A) Illustrating the the statistical significance of the RRS score
of eve_stripe1 vs oc_otd-186. The dashed vertical line shows the log of
RRS score from this pair, which is 9.64. The black histogram shows the
distribution of log of RRS scores of eve_stripe1 versus 1000 randomly
picked sequences from D.melanogaster longest chromosome. (B) Depiction
of the contribution of individual motifs in the RRS scheme. Shown here, is
the distribution of the individual motif scores in comparison of eve_stripe1
versus oc_otd-186. Three strongly positively contributed factors that are
obtaining scores above 1, in descending order, are: BCD, KR and FTZ. The
factor that is negatively contributing to this scheme, i.e. obtaining a score
less than −1 is SRY_β.

in the negative BLASTODERM set (Supplementary Table S1).
Supplementary Figure S2 shows the results for both algorithms in
BLASTODERM positive and negative sets. Therefore, by looking
at only the alignment scores, one cannot say if a particular pair is
likely to be from the positive set or negative set.

The functional conservation of these sequences presents a very
different picture. To examine this, we looked at the RRS scores of
all pairs of sequences in any of both positive and negative sets.
For instance, in BLASTODERM enhancers, 43 out of 50 top scores
belong to pairs from the positive set. The best (log of) RRS score
was 9.64 corresponding to the comparison of eve_stripe1 (length
801 bp) with oc_otd-186 (length 187 bp). To check the statistical
significance of the RRS score, we compared eve_stripe1 with 1000
sequences randomly picked from the longest chromosome of the
Drosophila melanogaster genome, with length ranging from 100 bp
up to 3000 bp. Interestingly, when comparing eve_stripe1 with these
random sequences, no pairs gave an RRS score with log greater than
0. The result of this analysis is illustrated in Figure 2A, in which
the vertical dashed line is a reference line to show the position of
the RRS score from eve_stripe1 versus oc_otd-186 and the black
histogram is the distribution of the RRS scores of eve_stripe1 versus
1000 randomly picked sequences.

We went on to consider what motifs contribute to the functional
conservation that is seen. If the log of the score for a specific motif is
greater than 1 (see section 2.2), this indicates a significant similarity
between the presence of the motif in the template and test sequence
either by multiplicity or by specificity. An RRS score around zero
is expected for a random DNA sequence and scores of less than −1
indicates a significant dissimilarity between the presence of the motif
in the two sequences. RRS scores of all 67 insect motifs individually
computed. Figure 2B depicts the distribution of these scores. As we
can see, there are three factors that are assigned scores greater than
one. These factors are (in descending order): BCD, Krüppel (KR)
and fushi tarazu (FTZ). This means that according to our model
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these three factors are main functional similarity-makers of this pair
of enhancers. In comparison to the background sequences, all of
these three factors are strongly presented in both of these sequences
(see Section 3.4). This finding is of particular significance as it is
supported by Ochoa-Espinosa et al. (2005), where they show both
computationally and experimentally that the regulation of the eve1
plus 10 other CRMs are strongly dependent to the regulator BCD.
This suggests that the BCD is a regulator for oc_otd-186, too. We
will come back to this point in more detail in Section 3.3.

3.3 Identification of enhancers with similar function
To make a more global analysis of these enhancers rather than
analysing each individual set of enhancers, we put all 131 enhancers
into one set (referred to as G_Positive set). Similarly, all 131
randomly picked counterpart sequences were placed into another
set called G_Negative set. The RRS scores were computed and a
directed graph was generated, in which each node is an enhancer
from the G_Positive set and each edge represents a high RRS
score for two corresponding nodes. The threshold for inclusion of
edges was set above the maximum score within the G_Negative
set (equal to three). Therefore, only enhancer pairs that are scored
above any pair from the G_Negative set are shown. The resulting
graph (see Fig. 3) shows the RRS prediction of the functional and/or
evolutionary relationship of the enhancers associated to the top 43
scores from the G_Positive set. From this graph, we can see that only
34 enhancers (nodes) are associated to these 43 scores (edges). This
means that some of these enhancers are in a close relationship with

Fig. 3. This graph represents the functional relationship of some
of the top-scored enhancers from the G_Positive set. Each node
represents an enhancer and Enhancer1 →Enhancer2 means that the
log(RRS(Enhancer1,Enhancer2))≥3. The threshold 3 is to filter out other
scores that are less than a score from the G_Negative set. Enhancers with
star signs are abbreviated names. For full names of these enhancers see
Supplementary Table S3.

others in a sense that they paired up more often than just by random
chance. For instance, HLHg∗ is paired up with six other enhancers
(P<1e-04, P-value of binomial test for one node out of 131 to be
part of six or more edges). The presence of a large number of high-
scoring edges and the dense connectivity of the graph confirm that
the RRS uncovers statistically significant structure in this dataset.

We might want to think of the subgraph highlighted by rectangular
nodes as a core subgraph because: first, all of the four nodes are
from BLASTODERM enhancers; second, it contains a pair that
gets the highest score in BLASTODERM enhancers; and third,
it satisfies a transitivity property. Focusing more deeply on this
subgraph reveals that, according to our analysis, the factor BCD is
the most strongly contributing factor in the functional similarity of
any pair in this subgraph. This significant finding is experimentally
supported by Ochoa-Espinosa et al. (2005), where the regulation of
the eve_stripe1, eve_stripe2 and hstripe0 and eight more CRMs are
reported to be strongly dependent to the activator BCD. They also
showed that many of the BCD-dependent CRM contain a cluster of
the gap protein Krüppel, which is again in a high agreement with
ours (see Table 1) in that in all of these five comparisons KR is either
the second or third strongly contributed factor. We must recall that
according to our model, a motif can obtain a high score either by its
strong presence (because of multiplicity or specificity) or by strong
absence in both sequences. It is also important to note that the five
enhancers in this subgraph are regulated by a set of common factors
(as colour-coded in Table 1), and this might be the reason that RRS
can almost distinguish it as a subgraph. Supplementary Table S2
provides similar results for the subgraph with octagon-shaped nodes
distinguished by the RRS and a set of common motifs that we predict
to regulate that subgraph.

Overall, these findings reveal that our model indeed captures some
of the core principles governing functional conservation of modules,
and hence performs much better than random expectation.

3.4 Contributions of motif absence and weak binding
sites

We are interested to see whether the strong absence of a motif in a
pair of sequences can underly the statistically significant similarities
we observed. We looked for motifs that are associated with a
relatively high RRS score but whose associated o-values are lower
than the o-values of the motif in random sequences. In Section 2.1
and Figure 1, we considered two situations where a motif is assigned
a high RRS score because the motif is strongly present or it is
strongly missing in both sequences. The strong presence may be
more intuitive and it is illustrated in Figure 4A1 and A2, where
we can see both RRS scores for any of the 67 used motifs in
comparison of the eve_stripe1 versus oc_otd-186 (Fig. 4A1) and

Table 1. Top five factors that are strongly contributing to the functional similarities of each pair in the subgraph highlighted by rectangles in Figure 3

Pair of enhancers Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

eve_stripe1 versus oc_otd-186 I$BCD_01 I$KR_01 I$FTZ_01 I$HSF_03 I$HSF_04
eve_stripe2 versus oc_otd-186 I$BCD_01 I$KR_01 I$FTZ_01 I$HSF_03 I$MAD_Q6
hstripe0 versus oc_otd-186 I$BCD_01 I$KR_01 I$MAD_Q6 I$HAIRY_01 I$HSF_04
hstripe0 versus eve_stripe1 I$BCD_01 I$STAT_01 I$KR_01 I$GCM_01 I$EVE_Q6
eve_stripe2 versus eve_stripe1 I$BCD_01 I$FTZ_01 I$KR_01 I$GCM_01 I$TTK69_01
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Fig. 4. (A1) shows the log of RRS scores for each of the 67 insect motifs that were used for the comparison of eve_stripe1 versus oc_otd-186. Motifs 24,
8 and 7 (in descending order) are the three top contributors to this comparison. (A2) illustrates the o-values of these motifs from eve_stripe1 (red) and from
oc_otd-186 in blue. The y-axis is the number of SDs that an o-value deviates from the mean. The yellow base line shows the background o-values. The vertical
lines highlight the positions of the top three motifs by RRS score. The main feature of (A1) and (A2) is that motifs with high RRS scores (A1) have o-values
considerably higher than background level (A2), indicating strong presence of the motifs. (B1) and (B2) show an example where strong absence of motifs
contributes to the statistical link between the sequences. (B1) shows the individual contributions of each of the motifs in the comparison of Ubxabx17EYE
with tllD32. In (B2), the o-values of the motifs from Ubxabx17EYE are shown in red and those from tllD32 in blue. The three motifs that contribute strongly
to the RRS scores (motifs 17, 2 and 3 in descending order) all have o-values less than background. This is referred to as a strongly absent motif.

also the normalized vector of o-values for eve_stripe1 in red and
oc_otd-186 in blue (Fig. 4A2). The golden base line is to show the
o-values from the background (random sequences). Motifs 24, 8 and
7 associated with the top three RRS scores (in order) in eve_stripe1
versus oc_otd-186 comparison. The reader can see from A2 that for
all of these three motifs, the motif o-values are considerably higher
than background. This is called strong presence of motifs in both
sequences. But the interesting part is shown in Figure 4B1 and B2,
where first we can see again in Figure 4B1 the contribution of the
individual motifs to the RRS scores of Ubxabx17EYE versus tllD32
and in B2 the o-values from Ubxabx17EYE in red, tllD32 in blue
and motifs that are obtaining the top three RRS scores. We see that
all three motifs are associated with o-values lower than background
(strong absence) but these contribute to the RRS score and, therefore,
to the recognition of functional conservation.

The contribution of weak binding sites to the RRS scores can
be seen in Figure 2B and C. The log of RRS score for eve_stripe1
versus oc_otd-186 is 9.64. This is the sum of scores of each motif.
The four motifs making the strongest contribution only contribute
about half of this score (Fig. 2C), while any RRS score above 0 is still
significantly different from noise as none of the random sequences
evaluated in Figure 2B had a score above 0. Therefore, the similarity
of these two enhancers cannot be solely attributed to strong binding
sites. This is consistent with previous findings in Segal et al. (2008).

4 CONCLUSION
We have presented an alignment-free method for detection of
functional conservation of the regulatory sequences based only on

occupancy level of some TFs of interest. It has been designed such
that it is less data-dependent with a wider range of applications and
more conclusive results. We have demonstrated that this model can
be used for comparison of regulatory sequences, where sequences
are functionally related but are not orthologous. The RRS can also be
used for comparison of regulatory sequences from different species,
where they have undergone a substantial evolutionary divergence.
For statistical validation of the RRS scores, the sequences that
obtained top scores were compared with 1000 randomly picked
sequences and showed that it is not possible to get such a high
RRS scores just by chance. We have shown that the RRS can
significantly detect the functional and/or evolutionary similarities
of the regulatory sequences. In particular, RRS can categorize some
enhancers that are regulated by a set of common factors, a result that
was in high agreement with experimentally validated reports. Based
on predictions of our model, we have proposed the hypothesis that
strong absence of a motif in pair of sequences might be a feature for
functional conservation. Finally, we would like to close this article
by listing some finer points and shortcomings of our model, where
further development may lead to a more accurate model.

• In the current version of the RRS, we use a set of known
TF motifs, focusing the sequence analysis on validated motifs.
However, there may be yet unknown binding motifs relevant
to the function of the sequences analysed. We could introduce
some complementary sequence patterns into the analysis to test
for a possible contribution to sequence similarity.

• There are further sources of prior knowledge that could be fed
into the analysis in principle. For example, we are assuming
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equal concentrations of all regulators even though these will
vary in different cell types. Some motifs belong to particular
pathways that may be of particular interest in some cases. It
would be possible to define a weight for such subsets of motifs.

• Within the current version, the synergy between pair of motifs
is ignored, but there are some reports that regulation of some fly
enhancers requires synergy between pairs of motifs (Simpson-
Brose et al., 1994).

• Rather than using a single template sequence, it would be
possible to use multiple template sequences with similar
expression pattern. This should help to define a more accurate
distribution of motif o-value vectors.
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