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ABSTRACT

Motivation: Protein–DNA interaction has significant importance in
many biological processes. However, the underlying principle of
the molecular recognition process is still largely unknown. As more
high-resolution 3D structures of protein–DNA complex are becoming
available, the surface characteristics of the complex become an
important research topic.
Result: In our work, we apply an alpha shape model to
represent the surface structure of the protein–DNA complex
and developed an interface-atom curvature-dependent conditional
probability discriminatory function for the prediction of protein–
DNA interaction. The interface-atom curvature-dependent formalism
captures atomic interaction details better than the atomic distance-
based method. The proposed method provides good performance
in discriminating the native structures from the docking decoy sets,
and outperforms the distance-dependent formalism in terms of the
z-score. Computer experiment results show that the curvature-
dependent formalism with the optimal parameters can achieve
a native z-score of −8.17 in discriminating the native structure
from the highest surface-complementarity scored decoy set and
a native z-score of −7.38 in discriminating the native structure
from the lowest RMSD decoy set. The interface-atom curvature-
dependent formalism can also be used to predict apo version of
DNA-binding proteins. These results suggest that the interface-atom
curvature-dependent formalism has a good prediction capability for
protein–DNA interactions.
Availability: The code and data sets are available for download on
http://www.hy8.com/bioinformatics.htm
Contact: kenandzhou@hotmail.com
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1 INTRODUCTION
Protein–DNA interaction plays an important role in many biological
processes, such as DNA replication, transcription and nucleosome
remodeling (Cartharius et al., 2005; Johnson and McKnight, 1989;
Kamei et al., 1996; Sancar et al., 2004; Stormo, 2000). In
the beginning, scientists focused on the nucleic acid sequence
information (Fickett, 1982; Schneider et al., 1986) and tried to
explain protein–DNA interaction by genetic codes. However, later
research on the geometric analysis of the protein–DNA interface
(Pabo and Nekludova, 2000) showed that there is no simple code for
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protein–DNA recognition. In recent years, they paid more attention
to the pairwise interatomic distance information provided by the
3D structure of the protein–DNA complex. Samudrala and Moult
proposed an all-atom distance-dependent discriminatory function
for the prediction of nucleic acid binding proteins (Samudrala and
Moult, 1998). They applied the conditional probability theory to the
analysis of the protein structures and got good results compared with
the free energy theory. Later, Moont et al. (1999) applied an interface
pairwise residue level potential to the screening of predicted docked
complex. Recently, Robertson and Varani improved the method
based on an interface-atom distance-dependent formalism and
showed better prediction power than previous methods (Robertson
and Varani, 2007). Gao and Skolnick developed a knowledge-
based method, which can perform apo version of DNA-binding
protein prediction (Gao and Skolnick, 2008). There are several
other methods that have been devised to predict protein-related
interactions: Liu et al. (2008) developed a structure-base method
for the transcription factor binding site prediction, Ahmad proposed
the usage of moment information in the prediction of DNA-binding
proteins (Ahmad and Sarai, 2004). Ahmad et al. (2008) applied the
clustering method in the analysis of protein–DNA structural data.

However, the underlying principle of protein–DNA interactions
is still largely unknown. Previously, some scientists focused on
the electrostatics features of the amino acid (Ahmad and Sarai,
2004) and some focused on the interatomic distance (Robertson
and Varani, 2007; Samudrala and Moult, 1998). Although these
attempts to predict protein–DNA interaction provided acceptable
results, few paid enough attention to the 3D interface surface
characteristics of the protein–DNA complex which are also direct
factors influencing the binding process (Jones et al., 1999; Siggers
et al., 2005). In protein–DNA interaction, the binding surface of
the protein should provide certain conditions to adapt to particular
DNA molecular surfaces. Such conditions can be the atom type,
surface curvature, accessible surface area, net charge, etc. As more
high-resolution 3D structures of biological molecules are becoming
available, the surface characteristics of the molecules have become
an important research topic (Bernauer et al., 2007; Nicola and
Vakser, 2007; Ofran and Rost, 2003; Sael et al., 2008; Zhou and
Yan, 2010). A useful tool for object surface analysis is the 3D
alpha shape model. Alpha shape has been used for a long time
in molecular volume computation, cavities detection and shape
representation. Liang et al. (1998a, b) first proposed to use alpha
shape modeling to compute the molecular area, volume and detect
the inaccessible cavities in proteins. Li et al. (2003) used the edges
in alpha shape modeling to represent the protein structure and atom
contacts. Poupon used Voronoi tessellations to compute the protein
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volume and detect the pockets, cavities and voids on the protein
surface (Poupon, 2004). Recently, alpha shape has been introduced
into the study of molecular surface. Albou et al. (2009) applied
alpha shape modeling to characterize the surface of the protein and
defined the surface residue, and surface patches with some local
features. However, most of the work has been done on protein
surface analysis and little attention has been paid to the interface
surface characteristics of the protein–DNA complex.

In our research, we propose to apply 3D alpha shape modeling
to study the interface surface characteristics of the protein–DNA
complex and develop a surface characteristic-based discriminatory
function for the prediction of protein–DNA interaction.

2 METHODS

2.1 Experimental data selection
The correct protein–DNA complex data set contains 199 different types of
DNA-binding proteins which expands the data created by Gao and Skolnick
(2008). In order to compare the performance of the method proposed
in this article and the distance-dependent method, 45 native complexes
are selected as per Robertson and Varani (2007). The experimental data
are generated using the Fourier Transform rigid-body docking package
(FTDock) provided by Aloy et al. (1998). The protein and DNA structures
are separated, the larger molecule is held fixed and the smaller molecule is
allowed to move independently. FTDock is performed on 45 native structures
with default scoring and search parameters and 10 000 top-scored decoys
from each native structure are obtained to form the entire training set.
After that, the 2000 highest surface-complementarity (SC, which can be
determined using the FTDock program) (Gabb et al., 1997) scored decoy
structures are retained for every complex. At the same time, the 2000 lowest
RMSD (CαRMSD to the native complex) decoys are also retained for every
complex. Furthermore, another test set that contains 86 protein–RNA, 106
protein–ligand and 103 protein–protein structures is used to evaluate the
specificity of our method. The protein–RNA complexes are found from the
Bioinfo Bank (http://gibk26.bse.kyutech.ac.jp /jouhou/jouhoubank.html).
The protein–protein complexes are the same as those used in (Murakami and
Mizuguchi, 2010). A search on the PDB produces many entries of protein–
ligand structures. We randomly choose 106 structures to make the number
of samples comparable to those of the protein–RNA and protein–protein
structures. For the purpose of testing the performance of the proposed method
on the apo protein structures, another experimental data set is obtained which
contains 104 DNA-binding proteins and 401 non-DNA-binding proteins.

2.2 Alpha shape modeling
We use the 3D alpha shape to represent the surface of the protein–DNA
complex and extract features to characterize the interface of the complex
from the alpha shape model.

Alpha shape modeling is very useful in reconstructing the surface of
an object. It has found many applications in image processing and data
visualization. It has also been used to study the molecular structures
such as the detection of pockets in known structures, computation of the
molecular volume and description of the protein surface (Albou et al., 2009;
Edelsbrunner et al., 1998; Pontius et al., 1996; Poupon, 2004).

The 3D alpha shape can be formed based on the Delaunay triangulation
(Delaunay, 1934), which is a unique partition of the 3D space in non-
overlapping tetrahedrons. The edges of the Delaunay triangulation of a
protein–DNA complex are shown in Figure 1A. Obviously, it cannot
efficiently represent the surface of the complex. However, this structure
contains all the edges we need to form the surface structure of the protein–
DNA complex. Consequently, the alpha shape is developed by trimming
the edges (Fig. 1B) of the Delaunay triangulation which is a subset of the
tetrahedrons in the Delaunay triangulation complex. It is a generalization of

Fig. 1. (A) The edges of the Delaunay triangulation of a protein–DNA
complex. (B) The edges of the alpha shape obtained from the Delaunay
triangulation.

Fig. 2. Alpha shape model obtained with different alpha values. (A) The
molecular surface cannot be obtained completely if the alpha value is too
small. (B) Surface obtained perfectly with a proper alpha value. (C) The
surface will lose some details if the alpha value is too large.

the convex hall of the point set (Edelsbrunner and Mucke, 1994) (the atoms
in a molecule).

Based on the Delaunay triangulation, the alpha shape can be computed
using the following procedure: First, define the alpha complex of the set of
points {S} which is a sub-complex of the Delaunay triangulation. For a given
value of α, the alpha complex includes all the simplexes in the Delaunay
triangulation which have an empty circumsphere with a squared radius equal
to, or smaller than, α. Here ‘empty’ means that the open sphere does not
include any points of {S}. The alpha shape is then simply the domain covered
by the simplexes of the alpha complex. Notice that, the alpha value here
actually controls the preciseness of the molecular surface obtained (Fig. 2).
Smaller alpha values give us a more detailed representation of the molecular
surface, but the molecular surface will become fragmentary if the alpha value
is too small (Fig. 2A). However, if the alpha value is too large, the details
of the molecular surface may be lost (Fig. 2C). In this work, we rely on the
CGAL (CGAL) library to compute the alpha shape. Different alpha values are
used to search for the optimal parameters. Alpha value selection is discussed
in the ‘Results and Discussion’ section.

2.3 Features
In order to extract the features from the alpha shape model of the protein–
DNA complex, we have to define the interface atoms. Because the vertices
of the alpha shape model correspond to the surface atoms of the original
structure, we can define the interface atoms of the protein–DNA structure
using the following steps: first, we calculate the alpha shape of the protein–
DNA complex (Fig. 3A) and obtain the complex surface atoms set {Ai}.
Then we calculate the alpha shape of the protein (Fig. 3B) independently
and obtain the protein surface atoms set {Bi}. After that, the interface atoms
set can be obtained by observing the atoms which are in {Bi} but not in {Ai}.
The interface surface is shown in Figure 3B in red.

Three features including atom type, residue type and surface curvature are
extracted from the interface atoms of the alpha shape model. All 20 amino
acid residue types are taken into consideration in our work. According to the
significance of the atom types in the protein–DNA structure, 36 special atom
types as shown in Table 1 are considered (Samudrala and Moult, 1998).
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Fig. 3. Protein–DNA complex interface obtained from the alpha shape
model. (A) The alpha shape model of the protein–DNA complex with the
secondary structure inside. (B) The alpha shape model of the protein shown
with the secondary structure of the DNA chain. The interface surface of the
complex is shown in red.

Table 1. List of atom types used in the interface-atom curvature-dependent
discriminatory function

C Cα Cβ Cδ Cδ1 Cδ2

Cε Cε1 Cε2 Cε3 Cγ Cγ1

Cγ2 CH2 Cζ Cζ1 Cζ2 N
Nδ1 Nδ2 Nε Nε1 Nε2 NH1

NH2 Nζ O Oδ1 Oδ2 Oε1

Oε2 Oγ Oγ1 OH Sδ Sγ

The interface surface curvature is represented by the solid angle of the
interface atoms in the alpha shape model. The solid angle (Van Oosterom
and Strackee, 1983) is defined as follows: let OABC be the vertices of
a tetrahedron with an origin at O subtended by the triangular face ABC.
Let �ab be the dihedral angle between the planes that contain the tetrahedral
faces OAC and OBC and we define �bc and �ac similarly. The solid angle
at O subtended by the triangular surface ABC is given by Equation (1). The
solid angle of an interface atom is transformed to the range of −1 (cleft) to
1 (knob) using cos

(
�/4

)
.

�=�ab +�bc +�ac −π (1)

2.4 The conditional probability formulation
All possible protein–DNA structures can be divided into two sets: {C} for
the correct structures (native structures) and {I} for the incorrect structures
(decoy structures). Next, we consider a set of properties from the protein–
DNA structure in which the correct structure and the incorrect structure
are significantly different. Such properties can be molecular flexibility,
electrostatics strength, interatomic distance, etc. In our study, we consider
the interface surface curvature of the protein–DNA complex and use a set
of features

{(
Sai, ri, ai

)}
to characterize the protein–DNA structure. Here,

Sai stands for the solid angle of the interface atom i, ri stands for the residue
type and ai stands for the atom type.

We aim to calculate the probability that the structure is in the correct
set when given that it has a set of features

{(
Sai, ri, ai

)}
which can be

expressed as:
P

(
C

∣∣{(Sai, ri, ai
)} )

(2)

However, it is difficult to evaluate Equation (2) from the experimental data
directly. Therefore, we assume that all the solid angles are independent of one
another and the probability of the correctness of a structure can be expressed
by the joint probability of the correctness of every interface atom curvature:

P
(
C

∣∣{(Sai, ri, ai
)} )=

∏

i

P
(
C

∣∣(Sai, ri, ai
) )

(3)

Applying Bayesian theorem to Equation (2), we get:

P
(
C

∣∣(Sai, ri, ai
) )·P((

Sai, ri, ai
))=P

(
C

)·P((
Sai, ri, ai

)|C )
(4)

Then we have:

P
(
C

∣∣{(Sai, ri, ai
)} )=P

(
C

)·
∏

i

P
((

Sai, ri, ai
)|C )

P
((

Sai, ri, ai
)) (5)

In this equation, P
(
C

)
represents the priori probability of observing a correct

protein–DNA structure which is constant. However, it is difficult to evaluate
its value that it will not be considered in this article (note that the omission
results in a normalized likelihood classification). P

((
Sai, ri, ai

)|C )
stands

for the probability of the correct structures that have a set of features(
Sai, ri, ai

)
which can be calculated using a set of known native structures.

We can make observations of the special atom characteristic in a particular
solid angle value bin:

P
((

Sai, ri, ai
)|C )= Nobs

(
Sai, ri, ai

)
∑
Sai

Nobs
(
Sai, ri, ai

) (6)

where Nobs
(
Sai, ri, ai

)
represents the number of interface atoms with atom

type ai, and residue type ri in the specific solid angle bin Sai in the native
structure set. For example, if the number of interface Glycine Cα(GCα) with
solid angle range from 0.45 to 0.55 is found to be 20 in the experimental
data, and the total number of interface GCαwith any solid angle is 100, the
frequency of GCαin the solid angle value bin 0.5 is 20/100.

P
((

Sai, ri, ai
))

stands for the probability of any structure having a set of
features

(
Sai, ri, ai

)
which can be estimated from the entire training data

set including native structures and decoy structures:

P
((

Sai, ri, ai
))=

∑

ri

∑

ai

Nobs
(
Sai, ri, ai

)

Nt
(7)

where Nobs
(
Sai, ri, ai

)
represents the number of interface atoms with atom

type ai, and residue type ri in the a specific solid angle bin Sai in the entire
training data. Nt stands for the total number of interface atoms observed in all
atom types and all residue types in all solid angle value bins. The calculation
procedure is similar to Equation (6).

Considering the limited number of correct structures, low count correction
is performed using Sippl’s method (Sippl, 1990). Equation (6) is modified
accordingly:

Pc
((

Sai, ri, ai
)|C )= P

((
Sai, ri, ai

))+σNobs
(
Sai, ri, ai

)
P

((
Sai, ri, ai

)|C )

1+σNobs
(
Sai, ri, ai

)

(8)
where Pc

((
Sai, ri, ai

)|C )
represents the low count corrected

P
((

Sai, ri, ai
)|C )

and the value of σ ensures that the terms have
equal weights when Nobs

(
Sai, ri, ai

)=1/σ [σ is set to 1/50 as per Sippl
(1990)]. Then we use the negative log to scale the quantities into a small
range and obtain the scoring function:

S =−
∑

i

ln
Pc

((
Sai, ri, ai

)|C )

P
((

Sai, ri, ai
)) (9)

2.5 Apo structure prediction method
We further develop the method for the prediction of the apo version of DNA-
binding proteins. A template library is set up which contains 199 different
types of protein–DNA complexes as described in Section 2.1. First, we use
structural alignment tool TM-align (Zhang and Skolnick, 2005) to compare
the target and the structures in the library. The target structure is scanned
against the 199 template structures for similar protein structure, and the
largest TM-scored template structure is selected. Second, a new structure
is created by replacing the protein sequence of the template structure with
the aligned target structure. Third, the new structure is scored using the
curvature-dependent method. Then we can obtain the prediction result by
examining the score.
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Fig. 4. (A) Relation between the mean native z-score and the number of bins with different alpha values. (B) The gradient shows that the performance of
the local scoring function does not improve much with the number of bins larger than 200. (C) Distribution of the native z-score variance with different
numbers of bins and different alpha values. (D) Performance of the local scoring function using 200 bins and different alpha values. The lower, middle and
upper horizontal lines for each boxplot represent the 25th, 50th and 75th percentile native z-score, respectively. Whiskers extend to a distance of 1.5 times
the interquartile range. The mean native z-score for each set are represented as points.

3 RESULTS AND DISCUSSION
The experiments are divided into two types. The first type is
carried out to evaluate the performance of the interface-atom
curvature-dependent conditional probability discriminatory function
for discriminating native structures from decoy structures. It is
determined by computing the z-score of the native structure relative
to all scored decoys (native z-score). The second type is used to
test the performance of the proposed method to discriminate the apo
version of DNA-binding proteins and non-DNA-binding proteins.

3.1 Optimal parameter selection
We use the 45 selected native structure and 90 000 lowest
RMSD decoys as the training set and the 90 000 highest surface-
complementarity scored decoys as the scoring set in an experiment
for the purpose of searching for the optimal parameters.

One of the parameters affecting the discriminatory result is the
alpha value. As mentioned in Section 2.2, the preciseness of the
molecular surface captured by the alpha shape model is controlled
by the alpha value. Alpha shape with smaller alpha values provides

better details of the molecular surface, but the molecular surface
will be fragmented if the alpha value is too small. In order to obtain
optimal alpha value, we have conducted experiments for a wide
range of alpha values and observed that the optimal value ranges
from 10 to 20 within the native structure set. Accordingly, we set five
different alpha values of 10, 12, 14, 16, 18 and then select the best
result. The other parameter influencing the final result is the number
of bins needed to separate solid angle values. This value actually
controls the resolution of the conditional probability function. With
a very large number of bins, most of the structures may be considered
to be completely different from each other. In this case, it is
meaningless to use the conditional probability formalism. In other
words, the number of bins affects the generality and the sensitivity
of the discriminatory function. Therefore, different numbers: 20, 40,
60, 80, 100, 200, 400, 800 and 1000 are used to search for the best
value.

The result is shown in Figure 4A in terms of mean native z-score
with different pairs of alpha values and number of bins. The gradient
of the five curves (Fig. 4B) shows that the mean native z-score
decreases dramatically with the number of bins at fewer than 200 and
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Fig. 5. (A) Performance comparison of three different scores. SC represents the experiment of discriminating the native structure from the highest surface-
complementarity scored decoys and RMSD represents the experiment of discriminating the native structure from the lowest RMSD decoys. (B) Performance
comparison between the curvature-dependent function and the distance-dependent function in a decoy discriminating test. Curvature represents the result
using curvature-dependent function in the experiment. Distance represents the result using distance dependent function in the experiment. In the boxplot, the
outliners are marked as crosses.

the decrement is not obvious when the number of bins is more than
200. Notice that, the larger the number of bins is, the less generality
we can achieve. Considering the balance between the generality and
the performance of the discriminatory function, 200 is chosen as
the optimal number of bins in the following experiments. In order
to obtain the optimal alpha value, we calculate the variance of the
45 native z-scores with different number of bins. The variances of
native z-score with alpha value 14, 16 and 18 are observably smaller
than those of alpha value 10 and 12 as shown in Figure 4C. Checking
the result in Figure 4A, the mean native z-score with alpha value
10, 12 and 14 are smaller than those with alpha value 16 and 18. We
choose 14 as the optimal alpha value since it produces the overall
small z-score and small variance as shown in Figure 4A and C. The
performance achieved by using 200 bins and different alpha values
is shown in Figure 4D.

3.2 Prediction of protein–DNA complex
In order to evaluate the performance of the curvature-dependent
discriminatory function, we conduct an experiment to discriminate
the 45 native structures from the 90 000 highest surface-
complementarity scored decoys and 90 000 lowest RMSD decoys,
respectively. The optimal parameter setting with an alpha value
equal to 14 and the number of bins equal to 200 is used in this
experiment. We compute three scores in the following experiment.
In order to compare with the performance of the distance-
dependent method, the correct structure training set contains only
45 native structures to compute the first two scores: (i) leave-one-
out cross-validation is applied here which results in an ‘equality’
score that omits one native structures from the training set and
use the other 44 complexes as training set only, and (ii) self-
consistent test is used to obtain an ‘inequality’ score which
includes all 45 complexes as the training set. We consider all
199 correct structures as the correct structure training set in
the third score which is called the ‘whole’ score. The 2000
highest surface-complementarity scored decoys and the 2000

lowest RMSD decoys for each native structure are then scored,
respectively.

The performance of the discriminatory function is evaluated using
the native z-score. The resulting inequality mean native z-score
for discriminating the native structures from the highest surface-
complementarity scored decoys is −8.17, and −7.38 for the lowest
RMSD decoys. The equality mean native z-score for discriminating
the native structures from the highest surface-complementarity
scored decoys is −3.05, and −3.18 for the lowest RMSD decoys.
The whole mean native z-score for the two scoring set is −6.18
and −6.55, respectively. Figure 5A shows the comparison of three
different scoring results. We can see that the whole score is not as
good as the inequality score. The reason is that the enlargement of
the correct training set would reduce the probability of the interface
atom from the 45 native structures to appear in the correct atom
set. The inequality score shows a better result than the equality
score. It is obvious that the performance of the curvature-dependent
function is better with the native structure in the training. The
reasons are that we use conditional probability in the function and
that we can get a more accurate P

((
Sai, ri, ai

)|C )
with the native

structure information. Although the equality z-score is not as good
as the inequality z-score, it is acceptable and it still indicates how
good the performance of the curvature dependent function is in the
discrimination test. Figure 5B shows the comparison between the
performance of the curvature-dependent function and the distance-
dependent function developed by Robertson and Varani (2007) (best
mean native z-score: −6.8).We can see that the curvature-dependent
function has a better performance in discriminating the native
structures from the highest surface-complementarity scored decoys
than its performance in discriminating the native structures from the
lowest RMSD decoys. This comparison of performance between two
different scoring sets shows that the curvature-dependent function
works well in discriminating both the protein–DNA complexes
which have resemblant surface condition and complexes which have
similar space structure. The comparison between the two different
formalisms shows that the curvature-dependent function has better
performance than the distance-dependent function in terms of mean
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Fig. 6. (A) The best performance of the curvature-dependent function in the decoy discriminating test. The local scores for the docking decoys of ‘1g9z’ are
plotted relative to their RMSD from the native structure. The native structure is represented as a cross. (B) Comparison among the native structure ‘1g9z’ (in
white) and the highly similar decoy structures (in different colors). (C) The worst performance in the test. Scores for the decoys of ‘1skn’ are plotted relative
to their RMSD from the native structure. (D) Comparison among the native structure ‘1skn’ (in white) and the highly scored decoy structures (in different
colors).

native z-score. The comparison result demonstrates that protein–
DNA interface surface curvature also plays an important role in
the protein–DNA interaction. The results in this article reaffirm the
fact that the surface condition will influence the binding site of the
nucleic acid binding protein and proper surface condition should be
provided for the protein–DNA interaction to take place.

3.3 Example of representative discrimination results
It is not sufficient to show the discriminatory performance using
z-score alone. Therefore, we plot the local score relative to the
native RMSD in a diagram. In order to provide a clear picture
of the correlation between the local score and the native RMSD,
we show the best and the worst performance of discriminating the
native structures from the decoy sets (Fig. 6). The best performance
shows the relation between the local score and the native RMSD
in discriminating the homing endonuclease I-CreI (PDB id: 1g9z)
from the decoy set with native z-score of −14.36. Figure 6A shows
that those decoys with larger RMSD would have a larger local
score and only few decoys with very low RMSD would have a

relative low local score which makes it easy to discriminate the
correct structure from the decoy structures. We notice that there
are three decoys with very small RMSD having a close local score
with the native structure. These similar structures are shown with the
native structure in Figure 6B. These decoys have a highly relative 3D
structure compared to the native structure. The worst performance
occurs in discriminating the DNA-binding domain of Skn-1 (PDB
id: 1skn) from the decoy set with native z-score of −3.63. Figure 6C
shows that some decoys with large RMSD have large local score
comparable to the native structure. The three highest local scored
structures are shown with the native structure in Figure 6D. We
notice that ‘1skn’ is a smaller molecule compared to other native
structures in our data set. This is the reason for the poor performance
of the algorithm in this case. Because it is a small molecule, the
interface area between the protein and DNA is relatively small and
not much information can be extracted from it. However, from
Figure 6D, we can see that the binding sites of the protein to the
DNA in these structures are almost at the same position. This fact
shows that even in the worst performance, the curvature-dependent
formalism still has precise prediction for the protein binding sites.
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Fig. 7. The ROC curve for the apo version of DNA-binding protein
prediction.

Although the worst example does not show a good correlation
between the local score and the RMSD as the best example, most
of the decoys with high RMSD still have large local scores and the
percentage of the decoys being recognized as incorrect structures is
99.6%. It means we can still discriminate a majority of the incorrect
structures even in the worst case, which provides the robustness of
the curvature-dependent formalism.

3.4 Prediction of apo DNA-binding proteins
We have demonstrated the ability of the curvature-dependent
function to discriminate the native structures from the low RMSD
and high surface-complementarity decoy structures. In the following
experiment, we aim to test the performance of our method for
the prediction of apo version of DNA-binding proteins. In this
experiment, we consider 104 apo version of DNA-binding proteins
and 401 non-DNA-binding proteins. As mentioned in Section 2.1,
a library containing 199 typical protein-DNA interaction complexes
serve as a template library for the input target. For a given target,
any template with sequence identity >35% is excluded from the
template library. A search through the library is applied using
TM-align, and the largest TM-scored structure is selected as the
complex template for the target. We make a new complex by
replacing the protein chains in the native structure with the target
protein chains. Then the new structures are scored by the curvature-
dependent formalism. Different thresholds are set to obtain the
receiver operating characteristic (ROC) curve shown in Figure 7.
We observe that the thresholds in the range from −1.7 to −2.3
produce the best result. The resulting sensitivity ranges from 48.08%
to 44.23% and specificity ranges from 73.82% to 84.29%, which is
comparable to the resulting sensitivity 47% from the DBD-Hunter
develop by Gao and Skolnick (2008).

3.5 Discrimination of non-DNA-binding proteins
In order to evaluate the specificity of our method, we apply the
algorithm to the discrimination of non-DNA-binding proteins from
DNA-binding ones. The test data set contains 86 protein–RNA
complexes, 106 protein–ligand complexes and 103 protein–protein

complexes, as described in Section 2.1. We divide the native protein–
DNAset into two parts: the first 100 structures are used in the training
data set, and the remaining 99 structures are used as the control
set to determine the threshold value. From the result, we observe
that our method produces the best result when the threshold is set
between −2.8 to −3.3. The resulting specificity ranges from 86.44%
to 91.19% and sensitivity ranges from 47.47% to 42.42%. When the
threshold is set to −3.3, 12 RNA-binding sites, 2 ligand-binding
sites and 12 protein-binding sites are recognized as DNA-binding
sites, which results in an accuracy of 86.04%, 98.11% and 88.35%,
respectively. We can see that the worst result comes from the RNA-
binding sites, and the reason is that protein–DNA complexes and
protein–RNA complexes have similar 3D interface characteristics.
This shows a limitation of our method, so more robust features in
addition to the solid angle need to be investigated to improve the
prediction performance. Nevertheless, the result is still acceptable
from this test with an accuracy around 86%, which demonstrates the
capacity of our method to discriminate non-DNA-binding proteins
from DNA-binding ones.

4 CONCLUSION
In this study, we have constructed an interface-atom curvature-
dependent discriminatory function for the prediction of protein–
DNA interaction. A 3D alpha shape model is introduced to represent
the surface of the protein–DNA complex. In this model, solid angle,
atom type and residue type are extracted to characterize the interface
surface of the protein–DNA complex. We use the conditional
probability to form the discriminatory function. The performance
of function is tested by discriminating the native structures from a
set of docking decoy structures and the near native decoy structures.
The interface-atom curvature-dependent formulation shows better
performance than the previous pairwise potential method in terms
of native z-scores in the same decoy discrimination test. We reaffirm
the importance of the geometric complementarity in determining
the structure of a complex and show that interface surface curvature
plays an important role in protein–DNA interaction. We show that
our method is also applicable to the prediction of apo version of
DNA-binding proteins.

Our work can be extended in several ways. The alpha shape model
should also be useful for the analysis of other types of molecular
interactions, such as protein–RNA, protein–ligand and protein–
protein complexes, and for the study of multiple proteins, multiple
binding sites or a specific family of proteins. These problems would
require modeling interface surfaces of different characteristics such
as different sizes and the compatibility and cooperativity between
these surfaces, thus new surface features in addition to the solid angle
may be needed. Recently, it has been shown that interface cluster
patterns found based on multiple sequence alignment (Ahmad et al.,
2008) and graph models (Sathyapriya et al., 2008) play an important
role in molecular interactions. However, currently these cluster
patterns can only incorporate limited 3D information and steric
compatibility. The alpha shape model discussed in this article is true
3D in nature, thus it can be used to extract 3D interface patterns.
This would be an interesting future research direction.
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