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ABSTRACT

Motivation: The relative ease and low cost of current generation
sequencing technologies has led to a dramatic increase in the
number of sequenced genomes for species across the tree of
life. This increasing volume of data requires tools that can quickly
compare multiple whole-genome sequences, millions of base pairs in
length, to aid in the study of populations, pan-genomes, and genome
evolution.
Results: We present a new multiple alignment tool for whole
genomes named Mugsy. Mugsy is computationally efficient and
can align 31 Streptococcus pneumoniae genomes in less than
2 hours producing alignments that compare favorably to other
tools. Mugsy is also the fastest program evaluated for the multiple
alignment of assembled human chromosome sequences from four
individuals. Mugsy does not require a reference sequence, can
align mixtures of assembled draft and completed genome data,
and is robust in identifying a rich complement of genetic variation
including duplications, rearrangements, and large-scale gain and loss
of sequence.
Availability: Mugsy is free, open-source software available from
http://mugsy.sf.net.
Contact: angiuoli@cs.umd.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
There are numerous sequenced genomes from organisms spanning
across the tree of life. This number of genomes is expected to
continue to grow dramatically in coming years due to advances
in sequencing technologies and decreasing costs. For particular
populations of interest, many individual genomes will be sequenced
to study genetic diversity. The Cancer Genome Atlas, 1000 Genomes
Project and the Personal Genome Project will generate genome
sequences from at least several thousand people. For bacterial
genomes, there are already over one thousand complete bacterial
genomes in public databases. Often, a pan-genome concept is
needed to describe a species or population (Medini et al., 2005),
requiring multiple sequenced genomes from the same species. There
are already nine bacterial species with ten or more sequenced
genomes in a recent version of RefSeq. Hundreds of individual
sequenced genomes are expected for some medically relevant

∗To whom correspondence should be addressed.

species and model organisms, such as Escherichia coli. Many of
these genomes will be in the form of “draft” genomes, where the
sequencing reads are assembled into numerous contigs that together
represent a fraction of the actual genome, but are incomplete and
contain physical sequencing gaps. In order to make use of this
explosive growth in the number of sequenced genomes, the scientific
community requires tools that can quickly compare large numbers
of long and highly similar sequences from whole genomes.

Whole-genome alignment has become instrumental for studying
genome evolution and genetic diversity (Batzoglou, 2005; Dewey
and Pachter, 2006). There are a number of whole-genome alignment
tools that can align multiple whole genomes (Blanchette et al.,
2004; Darling et al., 2004; Dubchak et al., 2009; Hohl et al., 2002;
Paten et al., 2008). Whole-genome alignment tools are distinguished
from collinear multiple sequence alignment tools, such as tools of
(Bradley et al., 2009; Edgar, 2004; Thompson et al., 1994), in
that they can align very long sequences, millions of base pairs in
length, detecting the presence of rearrangements, duplications, and
large-scale sequence gain and loss. The resulting alignments can
be utilized to build phylogenies, determine orthology, find recently
duplicated regions, and identify species-specific DNA. For divergent
sequences, alignment accuracy is difficult to assess and popular
methods can disagree, such was demonstrated by the relatively low
level of agreement between outputs for the ENCODE regions (Chen
and Tompa, 2010; Margulies et al., 2007). Given the difficulties in
assessing accuracy, recent development has included methods that
are statistically motivated and show improved specificity ( Bradley
et al., 2009; Paten et al., 2008).

At shorter evolutionary distances with large fractions of identical
sequences, there is less ambiguity in alignment outcomes. Yet,
even within a bacterial species, aligning multiple genomes is not
a trivial task, especially if the sequences contain rearrangements,
duplications and exhibit sequence gain and loss. Also, despite
relatively short chromosome lengths for bacteria, typically a few
million base pairs, the computational complexity of multiple
sequence alignment makes it a formidable challenge. Calculation
of multiple alignments with a simple sum of pairs scoring scheme
is known to be an NP-hard problem (Elias, 2006), which makes
calculation of an exact solution infeasible for large inputs. Multiple
genome alignment tools rely on heuristics to achieve reasonable run
times.

There are numerous methods to compare a single pair of whole-
genome sequences (Bray et al., 2003; Schwartz et al., 2003). The
Nucmer and MUMmer package is a fast whole-genome alignment
method that utilizes a suffix tree to seed an alignment with maximal
unique matches (MUMs) (Kurtz et al., 2004). The suffix tree
implementation of MUMmer is especially efficient and can be both
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built and searched in time and space that is linear in proportion to
the input sequence length.

Graph-based methods have been widely employed for pairwise
and multiple alignment of long sequences (Raphael et al., 2004;
Zhang and Waterman, 2005). The segment-based progressive
alignment approach implemented in SeqAn::T-Coffee (Rausch et al.,
2008) utilizes an alignment graph scored for consistency and a
progressive alignment scheme to calculate multiple alignments. In
brief, an alignment graph is composed of vertices corresponding
to non-overlapping genomic regions with edges indicating matches
between regions. The alignment graph can be built efficiently
for multiple sequences from a set of pairwise alignments and is
scored for consistency. Consistency scoring has been demonstrated
to perform well in resolving problems in progressive alignment
(Notredame et al., 2000; Paten et al., 2009). A multiple alignment
can then be derived from the graph using an efficient heaviest
common subsequence algorithm (Jacobson and Vo, 1992). A
noteworthy property of the alignment graph is that each genomic
segment that is aligned without gaps in all pairwise alignments is
represented as a single vertex in the graph. This property offers an
advantage for comparisons of genomes with significant sequence
identity because long gap-free regions are stored as a single vertex
in the alignment graph. Since the number of vertices and edges
in the alignment graph is a function of the genetic diversity of
the sequences and not the sequence lengths, this method allows
for a compact representation and fast alignment of very long and
highly similar sequences. A limitation of the SeqAn::T-Coffee tool
is that it is restricted to aligning collinear sequences that are free of
rearrangements.

Computational complexity is only one challenge for the
comparison of numerous whole genomes. Alignment tools must
handle a rich complement of genetic variation, including mutations,
rearrangements, gain and loss events and duplications. For the
purposes of this study, we are especially interested in tools that do
not require a reference genome and can readily accept mixtures of
completed and assembled draft genome data. The requirement for
a single reference genome is not always practical given sampling
and intra-species diversity (Deloger et al., 2009). Among current
tools, Enredo-Pecan (Paten et al., 2008) and MLAGAN (Dubchak
et al., 2009) are the only ones that both report duplications and
do not require a reference genome. The Threaded Blockset aligner
(TBA) (Blanchette et al., 2004) also does not require a reference
genome for calculating the alignment, but it produces many short
local alignments that require ordering against a reference genome.
Progressive Mauve (Darling et al., 2004, 2010) utilizes MUMs and
does not require a reference; however, Mauve does not currently
report duplications. M-GCAT is a whole-genome alignment tool
that also utilizes MUMs and has been shown to be computationally
efficient for the alignment of closely related genomes (Treangen and
Messeguer, 2006) but is biased towards a reference genome.

In this article, we present a new whole-genome alignment tool,
named Mugsy, which can rapidly align DNA from multiple whole
genomes on a single computer. We demonstrate the performance
of Mugsy on up to 57 bacterial genomes from the same species
and the alignment of chromosomes from multiple human genomes.
Mugsy can align draft genome sequences and does not require a
reference genome for calculating the alignment or interpretation of
output. Mugsy integrates the fast whole-genome pairwise aligner,
Nucmer, for identifying homology, including rearrangements and

duplications, with the segment-based multiple alignment method
provided by the SeqAn C++ library. Mugsy also implements a novel
algorithm for identifying locally collinear blocks (LCBs) from an
alignment graph. The LCBs represent aligned regions from two or
more genomes that are collinear and free of rearrangements but may
also contain segments that lack homology and introduce gaps in the
alignment. Mugsy is run as a single command line invocation that
accepts a set of multi-FASTA files, one per genome and outputs
a multiple alignment in MAF format. The Mugsy aligner is open
source software and available for download at http://mugsy.sf.net.

2 METHODS
The Mugsy alignment tool is comprised of four primary steps (Fig. 1):

(1) an all-against-all pairwise alignment using Nucmer, refined with delta-
filter (Kurtz et al., 2004);

(2) construction of an alignment graph and refinement (Rausch et al.,
2008) using SeqAn (Doring et al., 2008);

(3) identification of LCBs in the graph using code we developed; and

(4) calculation of a multiple alignment for each LCB using
SeqAn::TCoffee (Rausch et al., 2008).

Mugsy includes a Perl wrapper script that runs all the steps. The primary
input consists of one file per genome, which may contain more than one
sequence for draft genomes (i.e. a multi-FASTA file). The SeqAn library
provided functions to build an alignment graph from pairwise alignments.
We made three extensions to the alignment graph approach that enabled us
to use it for whole-genome alignments with rearrangements and genome
flux. First, we utilized the pairwise alignments from Nucmer to define the
segments allowing for gaps and mismatches. Second, we modified the data
structure of the alignment graph to store the orientation between matching
segments so that we could detect inversions. Lastly, we implement a novel
method for calculating locally collinear subgraphs from the input alignment
graph. These subgraphs represent LCBs and can correspond to inversions
and regions that have been gained or lost in a subset of genomes.

Fig. 1. The process flow and primary steps of Mugsy. The key steps are
listed in boxes and data types that are input and output at each step are
shown adjacent to the arrows. Software used to implement parts of each
step is listed on the left. The execution time of each step from an alignment
of 4 human chromosomes is provided on the right. The component timings
include parsing input and writing outputs. Tests were run on a single CPU
of an Intel Xeon 5570 processor with 16 GB of RAM.
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Fig. 2. Generation of multi-genome anchors from connected components in
the alignment graph. Three sequences are shown (S1, S2, S3) with matching
segments from the alignment graph (top). Connected components define
three multi-genome anchors (bottom). Adjacent anchors along a sequence
are connected by edges and labeled with the sequence identifier. To handle
inconsistencies in the alignment graph, connected components are built in
a greedy fashion traversing the most consistent edges first and restricting
anchors to one alignment segment per genome (data not shown). Multiple
segments from the same genome are allowed only if they are within a
configurable distance along the sequence.

2.1 Pairwise alignment and identification of
duplications

The input genomes are searched using Nucmer in an all-against-all manner
using a minimum match length of 15 nucleotides and a cluster length of
60 (-l 15, -c 60). Each pairwise search is subsequently processed with the
‘delta-filter’ utility to identify matches likely to be orthologous. Delta-filter,
a program included with Nucmer, limits pairwise matches to those contained
in the highest scoring chain of matches calculated using a modified longest
increasing subsequence (LIS) (Gusfield, 1997). Each match is given a score
corresponding to the match length multiplied by the square of the pairwise
sequence identity. Pairwise matches that are present in the LIS chain for
both the reference and query sequences (delta-filter -1) are saved for use in
the multiple alignment and can include inversions. This filtering is critical
for excluding homology to repetitive sequences. The output of delta-filter is
converted to MAF format for subsequent processing.

We modified the source code of delta-filter to report duplicated segments
that are present in the LIS chain of either the reference or the query genome,
but not both (delta-filter –b). The duplicated segments identified for each
pairwise alignment are saved as an output file in MAF format. The chaining
algorithm in delta-filter is similar to Supermap which has been used to
identify orthologous segments in the presence of duplications (Dubchak
et al., 2009).

Following Nucmer and delta-filter, the remaining pairwise alignments
are passed to the mugsyWGA program for multiple alignment. mugsyWGA
first builds an alignment graph using the refinement approach described in
SeqAn::T-Coffee (Rausch et al., 2008), with the addition that the orientation
of the alignment between segments is also saved. The alignment graph stores
all the pairwise homology information calculated by Nucmer. Each vertex
represents an ungapped genomic segment (Fig. 2, top). Edges represent
pairwise homology statements from Nucmer that pass the orthology filtering
criteria from delta-filter as described above. The refinement procedure
produces a minimal subdivision of segments from all pairwise comparisons
ensuring the segments are non-overlapping. We modified the alignment
graph to store the relative orientation of the matches as reported by
Nucmer for each edge. The alignment graph is then processed to identify
LCBs.

Fig. 3. Identification of LCBs in the anchor graph. A set of multi-genome
anchors labeled A–G are shown. Anchors adjacent along one or more
sequences are connected by an edge. (a) Simple paths with exactly one
incoming and outgoing edge correspond to collinear regions and branches
correspond to syntenic breakpoints (dotted edges) resulting in three collinear
regions colored blue, orange, green. (b) Merging of adjacent regions. A short
component (D, E) with a genomic extent less than a configurable parameter
L is removed from the graph. The remaining anchors form a single collinear
region colored blue. (c) Cutting of paths that violate LCBs constraints with
max-flow, min-cut. Anchors B and E are adjacent but non-syntenic separated
by a genomic extent greater than the configurable parameter G in at least one
sequence. The graph forms a single connected component that is an invalid
LCB. To resolve this, the anchor graph is interpreted as a flow network.
Edges are labeled with an edge capacity indicating the number of sequences
for which the incident anchors are collinear. Source and sink vertices (grey)
are added to the graph incident to vertices that violate the distance criteria.
Maximum flow, minimum cut identifies the cut (dotted edge B, C) to produce
two collinear regions colored blue and green. Max-flow, min-cut ensures the
graph is cut to produce collinear regions that fulfill the distance constraint G
regardless of cycles or branches in the graph.

2.2 Determination of LCBs
A critical step in whole-genome alignment is the determination of genomic
regions that are homologous, collinear, free of rearrangements and suitable
for multiple alignment. Following the terminology of Mauve (Darling et al.,
2004), we refer to these segments as LCBs. Chaining procedures are widely
utilized to define genomic intervals that are consistently ordered and oriented
in multiple genomes and are often labeled as syntenic (Bourque et al.,
2004; Dewey, 2007; Dubchak et al., 2009; Kent et al., 2003; Paten et al.,
2008; Pevzner and Tesler, 2003). In Mugsy, we implement a new graph-
based chaining procedure that looks for LCBs in the alignment graph
and has similarities with previous methods for defining syntenic regions.
The procedure uses heuristics to define collinear regions that are free of
rearrangements and large gaps, correspond to LCBs, and are suitable for
multiple alignment. The procedure first builds a graph, termed the anchor
graph (Fig. 2, bottom), that enables easy identification of collinear regions
by traversing simple paths comprised of anchors with exactly two incident
edges (Fig. 3a).

Micro-rearrangements and repetitive elements limit the length of these
regions by introducing breakpoints in the graph. Our method attempts to
extend these regions by a series of merges and filtering of short LCBs
(Fig. 3b). Our construction of the anchor graph joins anchors if any two
genomes comprising the anchor are syntenic. This does not ensure all paths in
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the graph correspond to LCBs because of genome gain, loss, duplications and
rearrangements. To resolve this, a cutting procedure is used to ensure LCBs
do not traverse large-scale rearrangements and indels. The cutting procedure
interprets the anchor graph as a flow network and a maximum flow, minimum
cut algorithm is used to trim edges from the graph to define LCBs (Fig. 3c).
This procedure breaks the anchor graph at locations of reduced synteny and
limits the length of an insertion or deletion described within an LCB.

The procedure takes two input parameters, a maximum genomic distance
between adjacent anchors, G, and a minimum block length, L. The method
will not identify rearrangements, including inversions, shorter than L. G
and L are set in Mugsy using—distance and—minlength with defaults
1000 and 30 nucleotides, respectively. The default settings were determined
empirically by varying options and comparing output to other tools on limited
test data (Supplementary Figs S2–4). Increasing the value of G can help avoid
fragmentation of LCBs in comparisons of divergent genomes but only had
slight effect on datasets in this article (Supplementary Fig. S2). In alignments
of 11 Streptococcus pneumoniae genomes, the aligned core varied by 1904
nucleotides out of ∼1.59 M core nucleotides aligned for values of G between
1000–10 000. In the same experiment, the total aligned nucleotides varied
by 141 898 out of ∼63.3 M nucleotides. The value of L can have a greater
impact on results with larger values excluding short regions of homology
that cannot be chained into LCBs leading to reduced sensitivity.

2.3 Identification of multi-genome anchors
The first step in determining LCBs consists of producing a set of multi-
genome anchors from the alignment graph. To simplify identification of
synteny, we are interested in defining anchors with a single location per
genomic sequence. The anchors will be subsequently chained together to
define syntenic regions. The pairwise alignments used to define segments in
the anchor graph have already been filtered for orthology (using delta-filter as
described in Section 2.1) but inconsistencies between pairwise alignments
arising from repeats and duplications can produce paths in the alignment
graph with multiple segments from the same genome. As a result, connected
components in the alignment graph may contain multiple segments from
a single genome. Some of these copies may be close to each other on
the genome while others are not. We identify duplications during pairwise
alignment, and so we are interested in generating multi-genome anchors that
contain only a single segment per genome.

These anchors are calculated using a greedy depth-first search of the
alignment graph ordered by consistency score, traversing the highest
consistency edges first (Fig. 2). In cases where there are inconsistencies in the
anchor graph, we track the genomic extent of each connected component and
only allow multiple segments from the same genome if they are separated by
less than a configurable genomic distance, −anchorwin. The default value
for −anchorwin is 100 nucleotides. Other copies explored during the search
define new anchors or are excluded as singletons if no incident edges remain.
By setting this parameter, we are able to reduce the size of the anchor
graph for further processing. In the comparison of 31 S.pneumoniae, the
number of multi-genome anchors was 264 133 using −anchorwin = 0 and
239 259 using −anchorwin = 100. With –anchorwin = 0, each inconsistency
in the alignment graph introduces a new anchor and potential breakpoint in
the anchor graph. Subsequent processing of the anchor graph attempts to
merge anchors that are syntenic, including anchor fragments produced by
inconsistencies in the alignment graph.

The relative orientations of segments that comprise an anchor are also
saved during the greedy anchor traversal. For each LCB, the edge with the
highest consistency score determines the relative match orientation for its
incident genomic segments. Remaining edges are considered in descending
order of consistency score, assigning a relative orientation based on the
Nucmer alignment orientation. The resulting anchors consist of oriented
genomic segments in two or more genomes that can contain mismatches,
but no gaps, as provided by the alignment graph.

Anchors derived from this method can be very short since the refinement
procedure used to build the alignment graph will produce segments as short

as a single base per sequence, such as in the case of a single base indel.
In the comparisons of closely related genomes, segments are often much
longer and the alignment graph will often have significantly fewer vertices
than the total number of base pairs in the genome. The alignment graph
for ∼963 Mb from four human sequences of chromosome 1 consisted of
1 024 728 vertices with an average length of 868 bp and 1 450 084 edges.
The connected components in this graph resulted in 185 537 multi-genome
anchors. By comparison, the alignment graph for the 31-way comparison
of S.pneumoniae strains, comprising 65.7 Mb in total, contained 2 717 087
vertices with an average length of 23 bp and 264 133 multi-genome anchors.

2.4 Identification of syntenic anchors
The multi-genome anchors are used to define vertices in a new directed graph,
termed the anchor graph that is used to identify boundaries of LCBs. Edges
in the anchor graph connect adjacent anchors along a genomic sequence.
To determine edges, the vertices are first ordered along each of the member
sequences. Anchors that are immediately adjacent on at least one sequence
and separated by a genomic extent less than the configurable distance G are
linked by an edge. The edges are labeled with the names of the sequences for
which the anchors are adjacent. Simple paths through this graph, comprised
of vertices with exactly two incident edges, represent runs of anchors that are
consistently ordered and syntenic in two or more genomes. Branches in the
graph produced by vertices with more than two edges represent breakpoints
in synteny. The beginning and end of an assembled contig or changes in
relative orientation between anchors also represent breakpoints. An initial
set of LCBs is calculated by finding simple paths in the anchor graph that
do not cross any breakpoints using a depth-first search (Fig. 3a). Some of
these breakpoints will arise from micro-rearrangements, repetitive elements,
or from our greedy construction of multi-genome anchors. The remaining
steps of the algorithm attempt to extend the LCBs into longer regions that
span these breakpoints by removing branches from the graph.

We merge LCBs that are connected by at least one edge in the anchor
graph and do not traverse an inversion, indicated by a change in relative
orientation between sequences in an anchor and do not introduce gaps greater
than G in the projection along any member sequence (Fig. 3b). Next, anchors
comprising short LCBs that span less than the minimum block length, L, are
removed from the graph. A new set of LCBs is calculated after adding new
edges between adjacent anchors separated by less than the genomic distance,
G, on two or more genomes. This resulting graph can include branches
between anchors that are adjacent on some genomes but not others due
lineage specific rearrangements or indels. Repetitive elements can also give
rise to branches and cycles in the graph that link anchors that are not syntenic.

An additional step is used to break edges in the anchor graph so that we
ensure valid LCBs. This step models the anchor graph as a flow network and
uses a maximum flow, minimum cut algorithm (Ford and Fulkerson, 1956) to
find bottlenecks in the graph that are used to partition connected components
that violate criteria for LCBs. Flow networks have been previously used
in other areas of alignment, including the consistency problem in multiple
alignment (Corel et al., 2010). To build the flow network, the LCBs are
ordered on each member sequence and checked for gaps greater than distance
G or paths that join multiple contigs from the same genome. Sets of vertices
that violate these criteria are deemed non-syntenic and added to opposing
source and sink vertices in the flow network (Fig. 3c). We define the edge
capacity of the network as the number of sequences for which any two
incident anchors are adjacent and syntenic. We compute maximum flow,
minimum cut using an implementation of the Ford-Fulkerson algorithm
(Edmonds and Karp, 1972) to identify a minimum set of cut edges that
partitions the graph ensuring the non-syntenic source and sink vertices are
disconnected. This in turn ensures the LCBs consist of anchors that fulfill the
maximum gap criteria and contain a single contig per genome in the case of
draft genomes. The use of the max-flow, min-cut provides a valid partition
even if multiple cuts are required to ensure a valid LCB due to branching in
the anchor graph. This max-flow, min-cut procedure using conserved synteny
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as the edge capacity has the property that it will attempt to split the LCB at
bottlenecks represented by edges with reduced synteny.

The max-flow, min-cut, calculation accounted for ∼12.5 min of 116 total
minutes for the LCB identification in 57 E.coli. For these genomes, the anchor
graph was composed of 675 780 multi-genome vertices and 1 258 603 edges.

Finally, the extent of the LCBs is determined from the coordinates of
the minimum and maximum anchor coordinates on each member sequence.
The subset of vertices in the alignment graph that overlap the extent and
connected edges are passed to SeqAn::T-Coffee to align each LCB. The LCB
identification procedure can produce overlapping LCB boundaries with the
extent of the overlap determined by the distance parameter G. To place each
anchor in exactly one LCB, the LCBs are sorted by length in descending
order and anchors are removed from the anchor graph as they are aligned
into LCBs.

The resulting multiple alignments are saved in MAF format for each
LCB. The construction of the alignment graph and progressive alignment
algorithm using SeqAn::TCoffee is implemented in C++ using the SeqAn
library (Doring et al., 2008). The LCB identification procedure is written in
C++ using the Boost library (http://boost.org).

2.5 Evaluation of whole-genome alignment tools
To compare Mugsy to other multiple whole-genome alignment tools, we
downloaded Mauve, TBA, FSA, MLAGAN and Pecan from their project
web sites. The MLAGAN/SLAGAN and Pecan/Enredo tools do not provide
scripts that automate all of the steps required to generate whole-genome
alignments from a set of input FASTA files. Also, previous analyses of
mammalian genomes using these tools in (Dubchak et al., 2009; Paten et al.,
2008) utilized a compute grid to execute the pairwise alignment step. This
makes generation of whole-genome alignments from a set of genomic FASTA
files cumbersome. To compare these tools with Mugsy on a single computer,
we limited our evaluation to only the collinear alignment components,
MLAGAN and Pecan, and used Mugsy to define a common set of LCBs
for evaluation. The extents of the LCBs were first calculated by Mugsy and
saved as multi-FASTA files that were passed as input to MLAGAN or Pecan.
MLAGAN and Pecan were run with default parameters. We did not attempt
to execute the SLAGAN that defines collinear regions for MLAGAN.

Mugsy LCBs were also used to define the genomic extent of the regions
passed to the multiple alignment program FSA. FSA was run using the
recommended fast alignment options –fast, -noindel2, -refinement. Mugsy
includes an option to invoke the FSA aligner on each LCB as a part of a
post-processing step.

Mauve alignments were generated directly from the genomic FASTA files
using progressiveMauve 64-bit binary version 2.3.1 with default command
line options (Darling et al., 2010). The Mauve output format was converted
to MAF format to compare with the outputs of Mugsy.

TBA was run with default options using MAF formatted pairwise
alignments from Nucmer instead of BLASTZ. The Nucmer alignments were
processed with delta-filter and identical to those used as inputs for Mugsy.
By using the same pairwise alignments, we were able to focus our evaluation
on the multiple alignment portion of Mugsy compared to TBA. The runtime
values generated are the shortest successful runtime of three tests for all tools
evaluated.

For comparing outputs between Mugsy, Mauve, TBA, comparisons
were restricted to completed genomes to simplify projecting pairwise
alignments onto a reference coordinate system. Output files were converted
to MAF format if necessary. The utility ‘compare’ downloaded from
http://www.bx.psu.edu/miller_lab was used to calculate precision, recall, and
percentage agreement between alignment outputs.

In a separate analysis, we compared the extent of LCBs calculated by
Mugsy with the segmentation produced by Enredo (Paten et al., 2008).
Enredo reports LCBs from a set of externally generated anchors that occur in
two or more input genomes. We first calculated multi-genome anchors from
the alignment graph of 11 completed S.pneumoniae genomes as described in
Section 2. The set of multi-genome anchors was used as input to both Enredo

and Mugsy. Enredo was run with options –min-score = 0, –min-length = 0
and –max-gap = 3000. Additional runs were performed varying –min-length
between 0 and 100 and varying –max-gap-length between 1000 and 50 000
(Supplementary Figs S5 and S6).

2.6 Data sets
The S.pneumoniae, E.coli and N.meningitidis genomes were downloaded
from the NCBI Entrez website (Wheeler et al., 2008). The accessions
and species names are provided in Supplementary Table S1. The
human genome sequences were downloaded from the individual project
web sites: the NCBI reference GRCh37 available from UCSC as
hg19 from http://genome.ucsc.edu, the Venter genome (JCV) from
http://huref.jcvi.org (Levy et al., 2007), the Kim Sungjin (SJK) genome
from http://koreagenome.kobic.re.kr/en/ (Ahn et al., 2009) and the YanHuang
project (YH) from http://yh.genomics.org.cn (Wang et al., 2008). The
SJK genome utilized the NCBI reference to build consensus sequences
as described in (Ahn et al., 2009). The de novo assembly of Li et al.
(2010) was not available as a consensus scaffold that spans chromosome
1. Instead, we utilized a consensus sequence for YH from Beijing Genomics
Institute that was based on the UCSC build hg18 (NCBI v36) and is
available as a single scaffold spanning chromosome 1 on the project web
site (http://yh.genomics.org.cn). We choose to align these sequences to
demonstrate the performance of Mugsy on the multiple alignment of very
long sequences.

SNVs were obtained from the personal variant tracks of UCSC browser
(Rosenbloom et al., 2009) and included these sources: JCV (Levy et al.,
2007), YH (Wang et al., 2008), SJK (Ahn et al., 2009) and dbSNP 130
(Sherry et al., 2001). The personal variant tracks provided the variant data
in a common format with coordinates on a single version of the reference
genome, hg19, which was used for multiple alignment with Mugsy. This
allowed for comparison of the published variants for each individual even
though some of the published studies were generated on consensus sequences
prior to hg19.

3 RESULTS

3.1 Alignment of multiple bacterial genomes
We computed whole-genome alignments using Mugsy and
compared runtimes to other popular whole-genome alignment tools.
The input genomes consisted of a mixture of completed and draft
sequences with most genomes represented in multiple contigs
(Table 1). Mugsy had the second fastest runtime, requiring <2 h for
the alignment of 31 Streptococcus pneumoniae genomes and ∼19 h
for the alignment of 57 E.coli genomes (Table 2). Nucmer+TBA had
the fastest total runtime on this same dataset. Mugsy and TBA were
the only two tools evaluated that completed the alignment of 57
E.coli in <2 days of processing on a single CPU. The step in Mugsy
that identifies LCBs contributed ∼15 of 56 min for the S.pneumoniae

Table 1. Summary of genomes compared using whole-genome alignment

Organism Number of Number of Total
genomes sequences bases (Mb)

N.meningitidis 5 5 10.9
S.pneumoniae 31 1906 65.7
E.coli 57 4213 299.1
Human Chr I 4 4 963.2

For genomes in draft form, the total number of assembled contigs or scaffolds is provided
in column 3.
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Table 2. Processing time to calculate whole-genome multiple alignments
using three methods

5 31 57 4 Human
N.meningitidis S.pneumoniae E.coli Chr 1

Pairwise search (min) 3 44 435 1138
+Mugsy (min) 3 56 720 37
+TBA (min) <1 36 381 71
Mauve v2.3.1 (min) 5 377 DNF (1) DNF (2)

The runtime in minutes for the pairwise search includes aligning all pairs of genome
sequences with Nucmer, post-processing with delta-filter and converting output formats
to MAF as described in Methods. The time provided for Mugsy and TBA is the runtime
for generating the multiple alignment from the pairwise search results. The time for
Mauve is the total runtime. Nucmer was run with parameters MUM length −l 10,
cluster length −c 60 and all other default options. Mugsy was run with parameters
−distance = 1000 and −minlength = 30. Mauve and TBA were run with default options.
Tests were run on a single CPU of an Intel Xeon 5570 processor with 16 GB of RAM.
DNF(1): did not finish after 2 days of processing. DNF(2): generated an allocation error.

multiple alignments and ∼116 of 720 min for the E.coli multiple
alignment.

We ran additional comparisons of runtimes with MLAGAN
(Dubchak et al., 2009) and Pecan (Paten et al., 2008) whole-
genome multiple alignment tools and the collinear alignment tool
FSA (Bradley et al., 2009). For this comparison, a single set of LCBs
was first calculated by Mugsy to define genomic extents for multiple
alignment by MLAGAN, Pecan and FSA. Of these three tools, only
FSA completed the alignment of all LCBs in the 57 E.coli genomes
in <2 days of processing on a single CPU. FSA is a fast method
for aligning long sequences (Bradley et al., 2009) but it is restricted
to aligning collinear segments that are free of rearrangements. The
runtime of FSA was slightly faster (896 min) than the combined
runtime of Nucmer and Mugsy (1155 min).

The alignment positions calculated by Mugsy show agreement
with those reported by Mauve and TBA. We evaluated the agreement
using a projection of pairwise alignments using one of the reported
outputs as a hypothetical true alignment in a comparison of 11
complete genomes in the S.pneumoniae dataset. Mugsy alignments
scored a precision and recall of 0.99, 0.99 and 0.97, 0.99 using TBA
and Mauve, respectively as truth in this comparison (Supplementary
Table S2).

Mugsy aligned slightly more nucleotides than Mauve in almost
double the number of LCBs for the full S.pneumoniae dataset
(Table 3). Mugsy also identified a slightly longer core alignment.
The aligned core is comprised of alignment columns that contain
all input genomes and no gaps. The combination of Nucmer+TBA
aligned more total nucleotides but a shorter and more fragmented
core (Table 3, core N50).

The length and number of aligned regions was the primary
difference in output between Mugsy, Mauve, and TBA in our
evaluations. Mauve produced LCBs with the longest average length
(Table 3, Supplementary Fig. S1) but did not complete the alignment
of the largest data sets used in this evaluation in the allotted time.
In the comparison of 11 completed S.pneumoniae genomes, Mugsy
LCBs either shared boundaries or partially overlapped all of the
Mauve LCBs (Supplementary Fig. S7).

Mugsy reported longer alignments than TBA on average (Table 3,
Supplementary Fig. S1). Mugsy LCBs contained all but one of the

Table 3. Summary of the whole-genome multiple alignment of 31 strains of
S.pneumoniae using three different methods

Number of Length Core LCB Nucleotides
LCBs core (bp) N50 (bp) aligned

Mugsy 2394 1 590 820 2044 63 294 709
Mauve v2.31 1366 1 568 715 2759 62 714 295
Nucmer+TBA 27 075 1 475 575 705 64 698 581

Each method reports a series of alignments that correspond to LCBs. The length of the
aligned core is the total number of alignment columns that contain all input genomes
and no gap characters. Half of the aligned core is contained in LCBs spanning genomic
regions longer than the core LCB N50 length. The total number of aligned nucleotides
is obtained by counting bases aligned to at least one other genome in the multiple
alignment.

shorter TBA blocks in a comparison of 11 completed S.pneumoniae
genomes. 76% of all TBA blocks (2128 of 2791) were fully
contained within longer Mugsy LCBs (Supplementary Fig. S7).
By comparison, 25% of Mugsy LCBs (20 of 77) shared identical
boundaries or were spanned by longer blocks in TBA. Slightly fewer
TBA blocks were contained in Mauve than Mugsy, 2078 versus
2128.

The differences in LCB composition and boundaries are also
indicated by the lengths of the contained gaps (indicating an
insertion or deletion event) reported by each tool. The longest
gap lengths present in a LCB for Mugsy, Mauve and TBA were
31 130 bp, 34 910 bp and 177 bp, respectively in the comparison of
31 S.pneumoniae genomes.

To further evaluate our method, we compared the LCB
identification step in Mugsy with Enredo, another graph-based
method that has been demonstrated on comparisons of mammalian
genomes (Paten et al., 2008). Mugsy calculated a longer aligned
core and incorporated more anchors into LCBs than Enredo using
a set of anchors from 11 completed S.pneumoniae genomes. Mugsy
calculated a total of 425 LCBs comprising 22 913 396 aligned
nucleotides (98.6% of input) compared to 30 710 LCBs from Enredo
comprising 22 451 622 aligned nucleotides (95.4%) (Supplementary
Fig. S5). The Mugsy core LCBs consisted of 1 741 704 nucleotides
versus 1 229 583 nucleotides with Enredo (Supplementary Fig. S6).
The Mugsy LCBs were also longer than Enredo on average, with
79% (24 401 of 30 710) of Enredo LCBs sharing identical boundaries
or fully contained within longer Mugsy LCBs (Supplementary
Fig. S7). By comparison, 20% (88 of 425) of Mugsy LCBs shared
boundaries or were fully contained in longer LCBs reported by
Enredo. Increasing the distance parameter in Enredo did not improve
results (Supplementary Fig. S5). The relatively short and fragmented
regions reported by Enredo may be due to the composition of the
multi-genome anchors used in our comparison. As described in
Section 2, the multi-genome anchors vary in length and can be
subdivided during the segment refinement procedure to as short as
a single base. Enredo has been previously reported to work well on
longer anchors (>50 bp in (Paten et al., 2008))

Mugsy includes a step for building longer syntenic regions, LCBs,
from shorter multi-genome anchors. The longer aligned regions
simplify some downstream analysis, such as the identification of
orthologous genes and mapping of annotations, thereby minimizing
the need for a reference genome. Longer alignments also aid the
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inspection of genomic regions that have been gained or lost and span
multiple genes without requiring a reference genome. Increasing the
value of the –distance parameters in Mugsy produces longer LCBs,
although with slight loss of sensitivity (Supplementary Fig. S3). Our
greedy method for building multi-genome anchors can introduce
branches in the anchor graph in cases where there are inconsistencies
in combining pairwise alignment. Our LCB identification algorithm
aims to reduce this fragmentation but remains an area that can
be improved. Contig boundaries will also cause fragmentation
in Mugsy LCBs. As a result, introducing draft genomes will
automatically increase the number of LCBs.

3.2 Alignment of multiple human genomes
To evaluate the performance of Mugsy on larger sequences, we
aligned multiple individual chromosomes from human genomes.
We identified four human genomes for which consensus sequences
are available for each chromosome: the NCBI reference human
genome build GRCh37 (hg19 at the UCSC genome browser)
(IHGSC 2001), a western European individual (JCV) (Levy et al.,
2007), a Korean individual (SJK) (Ahn et al., 2009), and a Han
Chinese individual (YH). Mugsy was able to align all four copies
of chromosome 1 in <1 day using a single CPU (Table 2).
Mugsy computed the multiple alignments in <1 h (37 min) after
completing the pairwise searches with Nucmer. The contribution of
the LCB identification step in Mugsy was ∼7 min. By comparison,
TBA ran in 71 min using the same pairwise alignments as input.
Realignment of all the LCBs from Mugsy with the FSA aligner ran
in 358 min. Three other whole-genome alignment tools evaluated
(MLAGAN, Pecan and Mauve) failed to complete an alignment
of the four human chromosomes in <2 days of processing time.
The length of the chromosomes (>219 Mb each) and amount
of repetitive DNA in the human genome makes whole-genome
alignment especially challenging. The genomes were not masked
for repetitive elements.

Mugsy calculated 526 LCBs on chromosome 1 with the longest
LCB spanning 5.97 Mb on all four individuals. The LCBs covered
224 975 484 of 225 280 621 (99.86%) nucleotides in the NCBI
reference sequence, hg19. The alignment viewer GMAJ was used to
generate pairwise percent identity plots projected from the Mugsy

multiple alignment (Fig. 4). The plots show variation in JCV, SJK
and YH versus the reference sequence, hg19. The sequences for YH
and SJK both utilized the NCBI reference in building the consensus
sequences, and therefore this comparison may underrepresent the
variation in these genomes. The percent identity plots indicate this
possible artifact, showing relatively low variation in the comparison
of YH and SJK versus hg19.

The whole-genome multiple alignments produced by Mugsy
were parsed to extract variants, including mutations, insertions and
deletions. SNVs were extracted from ungapped alignment columns
with more than one allele and compared to published variations in the
personal variant tracks of the UCSC genome browser. Many of the
SNVs calculated by Mugsy are also reported at the UCSC browser
or dbSNP (Table 4). Mugsy calculates variation on assembled
consensus sequence and does not consider the composition or quality
of the underlying sequencing reads that contributed to the assembly.
We restricted the comparison to variants annotated as homozygous
for the individual using the UCSC browser. Additional variation

Table 4. Number of SNVs detected by Mugsy in the multiple alignment of
human chromosome 1 from four individuals, all aligned to human reference
assembly hg19

Individual Mugsy SNVs at Recall from Precision from
genomes SNVs UCSC UCSC UCSC or dbSNP

JCV 216 201 108 767 104 684 (90) 194 616 (90)
SJK 135 070 113 708 112 032 (98) 128 473 (95)
YH 114 871 104 590 103 106 (98) 113 641 (99)

Mugsy alignments were performed on consensus sequences of human chromosome
1 as provided by each source. SNVs were obtained from alignment columns where
the consensus nucleotide in JCV, SJK or YH differed from the nucleotide in hg19.
An additional filter was applied to screen out alignment columns that contained gaps
within five positions on either side. Published SNVs for JCV, SJK or YH were obtained
from UCSC personal variant tracks, restricted to homozygous variants where annotated.
Recall (Column 4) is the number of Mugsy variants that match UCSC divided by the
total number of UCSC variants. Precision measures the number of Mugsy variants that
match either UCSC or dbSNP variants divided by the total number of variants reported
by Mugsy. Values within parenthesis are in percent.

Fig. 4. Percent identity plots from the Mugsy multiple alignment of human chromosome 1 sequences of four individuals. The alignments span 99.9% of the
nucleotides on chromosome 1 of the NCBI reference hg19, excluding the centromere, which is shown as a gap in the middle of the figure. The plots were
obtained from the alignment viewer, GMAJ, using hg19 as reference for the display (top coordinates). A percent identity plot is displayed in subsequent rows
for each of the three other genomes SJK, YH, JCV. The percent identity in each row ranges from 50 to 100 from the bottom to top of each row.
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identified by Mugsy may be due to differences in detection methods
or assembly artifacts in the consensus.

4 DISCUSSION
We introduce Mugsy, a new multiple whole-genome alignment tool
that does not require a reference genome and can align mixtures of
complete and draft genomes. Using current generation sequencing
technologies, a majority of newly sequenced genomes are expected
to be draft genomes represented by multiple contigs after assembly.
Mugsy can identify sequence conservation and variation in any
subset of these inputs.

The primary advantage of Mugsy over similar tools is speed.
Mugsy is able to align 57 E.coli genomes (299 Mb) in <1 day on a
single CPU and 31 S.pneumoniae genomes in <2 h. Mugsy was also
the fastest tool evaluated for the alignment of four assembled human
chromosomes, completing the LCB identification and multiple
alignment in <1 h provided a library of pairwise alignments. Mugsy
and TBA were the only tools evaluated that completed alignments
of four human chromosomes and 57 E.coli genomes in <2 days
of processing time on a single CPU. On smaller datasets of closely
related genomes, we found agreement between alignments generated
by Mugsy, Mauve and TBA. The primary difference was the number
and boundaries of the aligned regions.

Our work relies heavily on two open source software packages,
the suffix tree-based pairwise aligner Nucmer (Kurtz et al., 2004)
and the segment-based alignment approach of SeqAn::TCoffee
(Rausch et al., 2008). We utilized Nucmer to quickly build
a library of pairwise homology across all input genomes. Our
work extends methods in SeqAn::TCoffee to accommodate whole-
genome multiple alignment with rearrangements and duplications.

Mugsy implements a new procedure that identifies LCBs. The
graph utilized for the LCB identification and segment-based multiple
alignment is compact for highly conserved sequences allowing for
efficient computation. This makes Mugsy especially well suited
to classification of species pan-genomes and other intra-species
comparisons where there is a high degree of sequence conservation.
Alignment of many large, highly conserved sequences, such as
human chromosomes, is likely to become increasingly popular
as improvements in sequencing and assembly technologies allow
for de-novo assembly of human genomes, including assembly of
haplotypes.

Mugsy relies on a number of parameters including minimum
MUM length in Nucmer and the LCB chaining parameters. Careful
choice of parameters is likely to be important for alignments
at longer evolutionary distances. Automatically determining
parameters or providing user guidance on parameter choice is an
area that needs improvement.

Also, for more divergent genomes, the performance advantages
of the segment-based alignment approach decrease as the length
of the conserved segments shorten and the size of the alignment
graph grows. The alignment of 57 E.coli strains required slightly
>12 GB of RAM to build and process the alignment graph. The
larger memory requirement of Mugsy on more divergent genomes
is a limitation of the tool and an area that we may be able to improve
at the expense of longer runtimes.

As biologists continue to explore the rich genetic diversity of the
biosphere, thousands of genomes may soon be available for some
species and the ability to read genetic information is outpacing the

speed at which we can analyze the data for meaningful relationships.
Mugsy attempts to address this performance gap but additional
algorithm development is needed. The alignment of hundreds or
more even relatively small bacterial genomes remains a formidable
challenge and may limit the use of the growing amounts of
whole-genome data by biologists. As desktop computers are now
commonly available with multiple CPUs, parallel processing using
multiple CPUs is a readily available technique to improve runtimes.
The pairwise alignment phase of Mugsy and multiple alignment of
each LCB are easily parallelized and well suited to run on multi-
CPU cores or compute clusters. We plan to extend Mugsy to support
parallel processing to enable alignment of even larger datasets.

Whole-genome alignment incorporates sequence identity and
synteny and is well suited to aiding annotation of orthologous genes
and pan-genomes. We also plan to add support for deriving these
features from the output of whole-genome alignments as future
work.
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