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ABSTRACT

Motivation: The bindings between transcription factors (TFs) and
transcription factor binding sites (TFBSs) are fundamental protein–
DNA interactions in transcriptional regulation. Extensive efforts have
been made to better understand the protein–DNA interactions.
Recent mining on exact TF–TFBS-associated sequence patterns
(rules) has shown great potentials and achieved very promising
results. However, exact rules cannot handle variations in real data,
resulting in limited informative rules. In this article, we generalize the
exact rules to approximate ones for both TFs and TFBSs, which are
essential for biological variations.
Results: A progressive approach is proposed to address the
approximation to alleviate the computational requirements. Firstly,
similar TFBSs are grouped from the available TF–TFBS data
(TRANSFAC database). Secondly, approximate and highly conserved
binding cores are discovered from TF sequences corresponding to
each TFBS group. A customized algorithm is developed for the
specific objective. We discover the approximate TF–TFBS rules by
associating the grouped TFBS consensuses and TF cores. The
rules discovered are evaluated by matching (verifying with) the
actual protein–DNA binding pairs from Protein Data Bank (PDB) 3D
structures. The approximate results exhibit many more verified rules
and up to 300% better verification ratios than the exact ones. The
customized algorithm achieves over 73% better verification ratios
than traditional methods. Approximate rules (64–79%) are shown
statistically significant. Detailed variation analysis and conservation
verification on NCBI records demonstrate that the approximate
rules reveal both the flexible and specific protein–DNA interactions
accurately. The approximate TF–TFBS rules discovered show
great generalized capability of exploring more informative binding
rules.
Availability: Supplementary Data are available on Bioinformatics
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1 INTRODUCTION
Protein–DNA interactions in transcriptional regulation are first
introduced, followed by the brief review on existing Bioinformatics
methods to study protein–DNA interactions. The layout of the article
is finally presented.

1.1 Protein–DNA interactions in transcriptional
regulation

Protein–DNA interactions play a central role in genetic activities
(Luscombe and Thornton, 2002; Luscombe et al., 2000). The
bindings of transcription factors (TFs) and transcription factor
binding sites (TFBSs) are fundamental protein–DNA interactions
in transcriptional regulation. Therefore, it is important to identify
TF–TFBS binding rules to understand protein–DNAinteractions and
further decipher gene regulation. In particular, specific amino acids
from the DNA binding domains of TFs can recognize and bind to
similar short DNA binding sites (i.e. TFBSs, usually 5–20 bp) to
regulate gene transcription. Based on functional similarities, the TF
binding amino acids and TFBS have respective conserved patterns
called motifs across different genes and/or species.

It is both expensive and time consuming to identify accurate
TF–TFBS bindings experimentally either using the traditional DNA
footprinting (Galas and Schmitz, 1987), gel electrophoresis (Garner
and Revzin, 1981) or recent chromatin immunoprecipitation (ChIP)
technology (MacIsaac and Fraenkel, 2006; Smith et al., 2005).
TRANSFAC (Matys et al., 2006) is one of the largest and most
representative databases for such regulatory elements including TFs,
TFBSs, nucleotide distribution matrices of the TFBSs (TFBS motifs)
and regulated genes. The data are annotated and curated from peer-
reviewed and experimentally proved publications. Other annotation
databases of TF families and binding domains are also available
[e.g. PROSITE (Hulo et al., 2008), Pfam (Bateman et al., 2004)].

It is even more costly and laborious to extract high-resolution
3D protein–DNA interaction (TF–TFBS binding) structures with
X-ray crystallography or nuclear magnetic resonance (NMR)
spectroscopic analysis, which serve as valuable verification sources
for putative binding discoveries. The Protein Data Bank (PDB)
(Berman et al., 2000) is the most representative repository with high
resolution at atomic levels. However, the available 3D structures are
far from complete. As a result, there is strong motivation to have
automatic methods, particularly, computational approaches based
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on other available data, to provide testable candidates of novel TF
domains and/or TFBS motifs with high confidence to guide and
accelerate the wet-lab experiments.

1.2 Existing bioinformatics methods
The first attempt of Bioinformatics methods to decipher TF–TFBS
bindings was TF/TFBS motif discovery. Additionally, researchers
have been trying hard for the protein–DNA one-to-one binding
codes. Data mining methods have also been proposed, and recent
work on mining exact TF–TFBS-associated sequence patterns shows
promising results. They are briefly reviewed as follows:

Motif discovery: amino acids from TF domains and TFBSs
sequences are conserved according to functional similarities. By
exploiting conservation in the sequences, computational methods
called motif discovery has achieved certain success in discovering
TF or TFBS motifs. Motifs are usually represented as the consensus
strings (Li et al., 2002) or position weight matrices (PWMs) of
the residue distributions (Stormo, 1988). de novo motif discovery
(MacIsaac and Fraenkel, 2006) identifies the conserved patterns
without knowing their motifs beforehand, based on certain motif
models and scoring functions (Bailey and Elkan, 1994; Jensen et al.,
2004; Stormo, 1988) from a set of protein sequences/DNA promoter
sequences with similar regulatory functions. A significant limitation
of motif discovery is the lack of linkage between the binding
counterparts and thus cannot directly reveal TF–TFBS relationships.

One-to-one binding codes: numerous studies have been carried
out to analyze existing protein–DNA interaction structures
comprehensively (Jones et al., 1999; Krishna et al., 2003; Luscombe
and Thornton, 2002; Luscombe et al., 2000, 2001). Various
properties have been discovered concerning, e.g. bonding and force
types, TF conservation and mutation (Luscombe and Thornton,
2002) and bending of the DNA (Jones et al., 1999). Some are already
applicable to predict binding amino acids on the TF side (Jones
et al., 2003). Alternatively, researchers have sought hard for general
binding ‘codes’ between proteins and DNA, in particular the one-to-
one mapping between the amino acids from TFs and the nucleotides
from TFBSs. Despite many proposed one to-one binding propensity
mappings (Luscombe and Thornton, 2002; Mandel-Gutfreund and
Margalit, 1998; Mandel-Gutfreund et al., 1995), it has come to a
consensus that there are no simple binding ‘codes’ between single
amino acids and nucleotides (Sarai and Kono, 2005).

Data mining: supervised learning approaches have also been
proposed to mine protein–DNA interactions. Derived or transformed
information is usually employed such as base compositions,
structures, thermodynamic properties (Ahmad et al., 2004, 2008)
as well as expressions (Pham et al., 2005). However, due to
the stringent data requirement, many training based data mining
methods concentrate only on specific families or particular datasets,
and predicting only TF binding residues (Ahmad et al., 2004, 2008),
where the generality is limited. Furthermore, these methods
usually produces predictors non-trivial to interpret (Ahmad et al.,
2004, 2008), and thus are less applicable for future general
predictions.

On the other hand, sequences serve as the most handy and
abundant primary data, and show promising results to reveal
protein–DNA interaction relationships (Sarai and Kono, 2005).
A recent association rule mining approach (Leung et al., 2010)
exploits the exact TF-TFBS-associated sequence patterns from

TRANSFAC, and discovers informative rules verified on both
literature and PDB structures. The study, however, is limited only
on exact TF-TFBS-associated sequence patterns, while variations
such as mutations and noises are common in real biological data.
Moreover, the simple counts (supports), which can happen merely
by chance, do not model overrepresentation biologically. As a result,
the approach only generates a handful of exact rules, while there are
still great potentials for many more flexible and verifiable rules to
be discovered.

1.3 Paper layout
In this article, we generalize the exact TF–TFBS-associated
sequence patterns to approximate ones on both sides. Many more
informative rules are discovered for better understanding protein–
DNA binding mechanisms. The article layout is as follows: the
proposed methods are detailed Section 2; experimental results and
verifications are reported in Section 3; and finally we have the
Discussion and Conclusion in Section 4.

2 MATERIALS AND METHODS
In this section, we first present the overall framework for discovering
approximate TF–TFBS rules, followed by the data preparation and detailed
methodology.

2.1 Framework overview
To generalize exact TF–TFBS-associated sequence patterns (or rules for
short) to approximate ones, direct modeling (scoring) TF–TFBS binding
patterns as a whole is tempting but computationally challenging. To alleviate
the difficulty, a progressive approach is proposed instead, as shown in
Figure 1. Firstly, similar (approximate) TFBSs are grouped into a consensus
C from the available TF–TFBS data (TRANSFAC database), and thus the
binding TF sequences corresponding to group C form a TF dataset (with
redundancy removed). Secondly, approximate and highly conserved motifs
(cores) T are discovered from each TF dataset. The approximate TF–TFBS
rules T -C are discovered by associating the TFBS consensuses C and the
corresponding TF core motifs T . The detailed methodology is presented as
follows.

2.2 Data preparation and TFBS grouping
To obtain the large-scale TF–TFBS binding sequence data, we employ the
updated version of TRANSFAC Professional 2009.4 [an older public version
(Matys et al., 2006) is also available], which contains 13 682 TF entries
(7664 with protein sequences) and 1225 matrices of the TFBS nucleotide
distributions (TFBS motif matrices). Each TF is associated with the set of
TFBSs it binds to, and matrices are the aligned and refined profiles of the
similar TFBSs bound by the same TFs, with the motif consensus represented
in IUPAC codes, which can be considered as the approximate TFBS motifs.

To simplify the TFBS grouping, we take advantage of the handy
information of TFBS matrices (PWMs), in particular the TFBS motif
consensuses, from TRANSFAC as part of the rules on the TFBS side. Note
that the TFBS motif information is derived from TFBS sequence data using
de novo motif discovery in TRANSFAC, so only TFBS sequence information
is involved, and it is also possible to group raw TFBSs directly (more time
consuming).

For each TFBS matrix, we use the IUPAC consensus as the TFBS
motif, and cut all leading and ending ‘N’s (poorly conserved and non-
informative). Similar motif consensuses are grouped with three different
hamming distance ratio threshold TY ’s: 0.0, 0.1 and 0.3, reflecting different
levels of approximation criteria. In particular, for each motif consensus C of
the 1225 matrices from TRANSFAC, we align it (and its reverse complement)
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Fig. 1. The overall framework of approximate TF–TFBS rule discovery: C
is the TFBS consensus group (IUPAC in TRANSFAC); T is the TF core with
instance set {ti,j}.

Table 1. The TF sequence datasets for different TFBS TY

TFBS TY 0.0 0.1 0.3
TF datasets 75 (475) 99 (490) 506 (815)

Numbers in parentheses: before redundancy removal.

with every other consensus C′ for the best ungapped (substitution errors
only) local pairwise alignment based on the hamming distance d. If d and the
overlapping width w′ between C and C′ satisfy d/w′ ≤TY , C′ is grouped into
C under threshold TY . Repeated consensuses are not processed again. For
each TFBS consensus group, denoted by C, all the associated non-duplicate
TF sequences are retrieved and then subject to CDHIT (with global sequence
identify threshold -c 0.7) (Li and Godzik, 2006) to remove redundancy. Only
non-redundant TF datasets with ≥5 sequences are kept. A summary of the
TF datasets is shown in Table 1.

2.3 Approximate TF core motif discovery
Unlike the TFBS consensus groups, we have to find the potentially interacting
motifs from the TF datasets (the middle part of Fig. 1). The core parts of
TFs that closely interact (form bonds) with TFBSs are generally very short
and do not vary largely due to their functional importance, so it is desirable
to discover the short and conserved interacting amino acid subsequences
from TFs. However, existing TF (protein) motif discovery methods [e.g. in
MEME (Bailey and Elkan, 1994)] and annotation databases (Bateman et al.,
2004) mostly work on the domain level with low resolution, i.e. they aim at
weakly conserved and long (≥30) motifs (Neduva and Russell, 2006). The
few exceptions of short motif discovery methods, however, either eliminate
domain-related subsequences (Neduva and Russell, 2006) that we need in

our method or require non-trivial training only to discover underrepresented
motifs (Doğruel et al., 2008), which are not our targets. Furthermore,
the general purpose methods neither explicit model conservation [e.g.
TEIRESIAS (Rigoutsos and Floratos, 1998)] nor cater for binding favorable
properties (Doğruel et al., 2008; Neduva and Russell, 2006). Thus, we have
to design a customized algorithm for the task, and useful features such as
the hydrophilic properties favoring binding can also be incorporated.

The simple customized algorithm best fit our objective is described as
follows. The inputs are the TF data with n sequences S={Si}, i=1,...,n
corresponding to a TFBS group C, the specified motif width W and the
maximal error E. The outputs are the top K (=10 in our experiments) TF
motifs Tk (k=1,...,K) and their corresponding matches {ti,j}k maximizing
certain motif scoring function f . i is the sequence index of Si, and j=0,1 is
the match index, indicating at most one match per sequence (j=0 means there
is no match in Si). Since the binding cores should be highly conserved, E is
small in the expected target motifs. As a result, all W -substrings (W -mers)
extracted by a sliding window on S are considered feasible to cover most of
the probable motifs, without enumerating all 20W possible W -mers. For each
candidate motif T as a W -mer retrieved by the sliding window, all W -mers
within hamming distance (substitution errors) E from T are retrieved as the
candidate match set {tci,j}. i is the sequence index, and j=1,...,qi, is the
match index where qi is the total number of matches in Si. Exceptionally,
qi=0 means no candidate match for Si. To favor the residues that are likely
to be on the surface for binding, a candidate motif T should have at least one
hydrophilic amino acid with a scale <0 (namely R, K, D, Q, N, E, H, S and
T) from the normalized hydrophobic index (Eisenberg, 1984).

There can be several approximate matches to the same motif T from {tci,j},
but only the best match (one actual TF interacting core for one given TFBS
core) should be chosen for each sequence. This is important but seldom
considered by current pattern-based algorithms. Given the candidate set
{tci,j}, we employ the Bayesian scoring function (Jensen and Liu, 2004)
used for modeling conserved motifs to choose the most probable set of
matches {ti,j}, j=0,1 from {tci,j}.Acustomized iterative refinement approach
is proposed. Firstly, all the first candidate matches, if any, are selected as the
initial instance set {t′i,j}←{tci,1} to build the initial PWM � of the amino
acid distributions, where �a,b represents the frequency of amino acid b∈�

at column a∈[1,W ]. The background frequency of amino acid b, �0,b, can
be calculated from input S. Then the Bayesian scoring function (Jensen and
Liu, 2004) to be maximized is as follows:

f =|{t′i,j}|
(

w∑
a=1

∑
b∈�

�a,b log
�a,b

�0,b
+ log

p

1−p
−1

)
(1)

where p=|{t′i,j}|/|S| is the abundance ratio defined as the number of the
matches, |{t′i,j}|, over the dataset size |S|. The score reflects log posterior
probability of having � and {t′i,j} with a non-informative prior. f can capture
the overrepresentation and conservation concept of motifs with probability
better than the simple supports (i.e. counts) (Leung et al., 2010), which could
be large by chance only.

The algorithm iteratively (maximal 20 iterations) tries the other candidates
tci,j′ one by one at each Si, and accepts the change if the new � improves f . If
there is no change after trying all the matches from {tci,j}, the algorithm stops
and outputs the top K best T associated with {ti,j}. Utilizing the instance set
with more stringent error constraints (E) has the advantage of being more
concise for suppressing false positives. The instance set representation is
also convenient for evaluation as shown later, because the ground-truth data
are also arranged in an instance-based manner.

The algorithm converges very fast in experiments because there are only
a few near-optimal matches to be chosen from each Si with a small E
set. To speed up, for each TF dataset, only the motifs with matches for
≥n/2 sequences are eligible to be processed to reduce computational time.
Repeating motifs are not doubly processed. The approximate TF–TFBS rules
T -C are finally formed by associating the TFBS consensus C and TF core
motif T (instance set {ti,j}).

473

 at M
asaryk U

niversity on F
ebruary 21, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[09:54 2/2/2011 Bioinformatics-btq682.tex] Page: 474 471–478

T.-M.Chan et al.

3 RESULTS AND ANALYSIS
In this section, the discovered rules from experiments are reported,
followed by detailed variation analysis and independent verification.

3.1 Experimental settings
With the 3 TY threshold settings of TFBS consensus grouping,
different settings of W=5,6 and E=0,1 were used to run the
TF motif discovery to generate different approximate TF–TFBS
associated sequences patterns (referred simply as rules later on) from
the extracted TRANSFAC data.

To evaluate the discovered rules based only on TF–TFBS
sequences, the 3D protein–DNA complex structures from PDB were
employed as the verification evidences. In particular, we downloaded
2457 PDB entries labeled with prot-nuc (protein–nucleotides) with
redundancy removal at 90% sequence identity [same as the previous
study (Leung et al., 2010)]. We then removed entries without DNA
chains (509 RNA entries), resulting in 1948 entries.

For each downloaded PDB entry, the distances between each
amino acid on each protein chain and each nucleotide on each
DNA chain were computed. If the respective residues (amino acid
and nucleotide) have atoms that are close enough to be considered
binding [≤3.5 angstrom following (Ahmad et al., 2004, 2008; Leung
et al., 2010)], the sequence pair P-D composed of the protein
W ′-mer P and DNA W ′-mer D surrounding the particular close
residues in the center was output, where W ′ is chosen as 2∗W−1.
Thus, if a W ′-mer contains a W -mer from the discovered rules,
the W -mer is guaranteed to contain the close (binding) residue
pair. Thus W ′ =9,11 for W=5,6 settings, respectively. These
TF–TFBS W ′-mer binding pairs (P-D pairs) were collected and
compiled for the verifications (see Fig. 2). The summary is shown
in Supplementary Table S1.

For each rule T -C specified by W (width only for TF, because C
is retrieved from TRANSFAC) and error E with the TF instance
set (optimal matches) {ti,j}, there are two levels of PDB data
verification: TF, verified on the TF side by protein (P) evidences, and
TF–TFBS, verified on both sides by protein–DNA (P-D) evidences.
To consistently compare with the previous study (Leung et al.,

Fig. 2. An illustrative example of generating P-D pairs from PDB and
verifying the approximate TF–TFBS rules for W=5, E=1 (W ′ =9). ins
stands for TF instance(s).

2010), only rules with ≥7 instances are evaluated. The verification
procedure is illustrated in Figure 2.

TF side: since the instance set {ti,j} of the core motif T are
obtained, one can directly check each TF instance ti,j for its presence
in the protein substring P in PDB data. ti,j is verified on P if the
W -mer ti,j is present in certain W ′ =2∗W−1-mer(s) of P from
the PDB P-D pairs, e.g. ti,j=NRAAA present in P=FLERNRAAA.
The TF verification ratio RTF for a rule is defined as the verified
TF instance number over the total instance number |{ti,j}|. Thus,
if E=0, RTF is either 0 or 1 because all instances are exact
ones (the same). TF–TFBS sides: a TFBS motif consensus C from
TRANSFAC is verified if there exist an W -mer in C, or its reverse
complement, with at most E error from a present W -mer of D
in the PDB P-D pairs. Note that since IUPAC code is employed
in C, an ambiguity nucleotide can match any of its inclusive
nucleotides (e.g. S matches C/G). For example with W=5 and
E=1, C=TGACGTYA is verified with D=TCGATGACG because
TGACG matches D’s last W -mer.

Thus, an approximate (W , E) TF–TFBS rule instance ti,j−C is
verified if both the TF instance ti,j and the TFBS motif C can
be verified on P-D PDB pairs. The TF–TFBS verification ratio
RTF−TFBS for a rule T -C is defined as the verified ti,j−C number
over the total rule instance number. Thus, RTF−TFBS≤RTF . If
RTF=0 (not verified on TF side), RTF−TFBS=0 (impossible to be
further verified).

3.2 Approximate rule results
Table 2 shows the verification ratios, RTF on the TF side and
RTF−TFBS on both sides, on the corresponding PDB binding data,
with respect to all TFBS consensus grouping TY , width W and
error E settings. All detailed results of the rules are available in
the Supplementary Material.

To compare with the previous study with exact TF–TFBS rules
(Leung et al., 2010), the results for W=5,6 (all rules with TF
width W and TFBS width ≥W are merged as one W setting for
consistency) are collected and evaluated with the same verification
procedures described above. The most exact setting from the
approximate rules is E=0 for TY=0.0 (approximate information
implicitly included in the IUPAC TFBS motifs).

The approximate rules have uniformly better average verified
ratios (AVG R∗), e.g. better RTF by 29% (W=5) and 300% (W=6),
respectively, even when exact TF motifs are expected (E=0).
Similar improvements on AVG RTF−TFBS are observed, with 46%
(W=5) and 226% (W=6), respectively. It is expected because the
exact rules are less favored with the limited TFBS widths discovered.
The improved performance indicates the advantage of grouping
approximate TFBS consensuses and discovering hydrophilic and
probable TF motifs, over the exact counts (supports) (Leung et al.,
2010). Furthermore, with the approximate extensions, many more
informative rules (rules with R∗>0) than exact ones are found, while
maintaining competitive informative rule ratios (R∗>0 ratio). The
previous exact rules (Leung et al., 2010) become less appealing
when W increases because there are fewer exact rules reaching the
support threshold. Note that AVG R∗ is equal to R∗>0 ratio when
E=0 because all instances ti,j are the same and they are either ‘all
verified’ (R∗=1) or ‘none verified’ (R∗=0) for a rule T -C.

The approximate rules also superset the exact ones in general.
By summarizing all E=0 rules across different TY settings, the
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Table 2. The verified rules on PDB binding data (P-D pairs) with different TY , W and E settings, compared with the corresponding W=5,6 exact rules in
the previous study (Leung et al., 2010)

W=5, E=0 W=5, E=0 W=5, E=1

TY Exact rules (Leung et al., 2010) 0.0 0.1 0.3 0.0 0.1 0.3

R∗ TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS

AVG R∗ 0.57 0.44 0.74 0.64 0.78 0.70 0.82 0.73 0.57 0.56 0.63 0.62 0.69 0.68
R∗>0 99 76 127 110 165 147 636 567 235 231 291 287 2101 2072

Rule no. 173 173 172 172 211 211 774 774 346 346 396 396 2559 2559
R∗>0 Ratio 0.57 0.44 0.74 0.64 0.78 0.70 0.82 0.73 0.68 0.67 0.73 0.72 0.82 0.81

W=6, E=0 W=6, E=0 W=6, E=1

TY Exact rules (Leung et al., 2010) 0.0 0.1 0.3 0.0 0.1 0.3

R∗ TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS

AVG R∗ 0.18 0.18 0.71 0.58 0.76 0.65 0.81 0.67 0.58 0.54 0.63 0.60 0.70 0.68
R∗>0 6 6 108 88 143 121 448 370 181 169 234 222 1665 1618

Rule no. 34 34 153 153 187 187 555 555 271 271 319 319 1920 1920
R∗>0 Ratio 0.18 0.18 0.71 0.58 0.76 0.65 0.81 0.67 0.67 0.62 0.73 0.70 0.87 0.84

R∗ indicates RTF or RTF−TFBS .

approximate rules for W=5,E=0 cover 79% of the W=5 exact
rules on TF sides and 79% on both sides. W=5,E=1 rules further
cover 85% TF and 82% TF–TFBS exact rules. The small portions
of the non-overlapping rules are probably due to the different data
collection methods used [exact: TF oriented and all TFBSs used
(Leung et al., 2010); ours: TFBS consensus groups oriented and
some original TFBSs ignored]. Approximate rules for W=6,E=0
also cover 88% TF and 85% TF–TFBS exact rules, respectively.
Examples verified by the exact rules (Leung et al., 2010) are also
covered by the approximate rules. For example, the exact rule
GGTCA-CEGCK, representing the P-box within Bp-nhr-2 binding
domain (Moore and Devaney, 1999), is contained in 19 approximate
rules (by matching the motifs) from all settings.

3.3 Comparisons with MEME on the TF motif
discovery part

One may want to know whether traditional motif discovery methods
can be incorporated in the TF motif discovery part of the whole
TF–TFBS rule discovery. MEME, as a representative and widely
used method, employs expectation maximization to discover motifs
in the PWM representation, with minimal chance of having random
motifs with better information content (IC) (Bailey and Elkan, 1994).
Hence, MEME is likely to produce degenerate motifs (error E can
be large). To check the suitability, we ran MEME on the same
TF datasets and evaluated the final TF–TFBS rules in the same
manner. MEME was set with fixed widths (W=5,6) and ZOOPS
[zero or one (TF) instance per sequence] for consistency. AVG RTF ,
AVG RTF−TFBS and R∗>0 Ratio were measured and compared
with our approach. There is no error E parameter for MEME,
so the same set of results for a specific W were measured twice
with E=0 and E=1, of which the same RTF results are expected
because the TF performance measurement is instance oriented
(matching {ti,j}). On the other hand, RTF−TFBS will increase from
E=0 to more relaxed E=1. The comparison results are shown
in Table 3. Our approach is 73−262% better in terms of AVG
R∗ than MEME for all different settings. MEME did find more

rules in general because it tends to discover degenerate motifs.
However, the verification ratios (R∗>0 Ratios) on all settings of
our approach are 33−79% better than MEME. Similar conclusions
can be drawn from the comparisons with NMICA (Doğruel et al.,
2008), a recent method for short and degenerate protein motifs
(see Supplementary Materials). The significantly better verification
ratios of our method, designed specifically for highly conserved
and short TF core motifs with hydrophilic constraints, indicate
that it can better achieve the goal of discovering TF–TFBS rules
than traditional motif discovery methods for general and degenerate
motifs. Note that the experiments do not serve the purpose for
selecting any better general-purpose motif discovery method, but
to show our customized method is more suitable for this particular
problem.

3.4 Statistical significance
To test the statistical significance (W=5 results for illustration) on
RTF and RTF−TFBS , an empirical method is employed to simulate
if the rules are randomly generated from the datasets. For each TY
and E setting, each dataset corresponding to a TFBS consensus C is
sampled equal times to output 10 TF motifs (denoted by T ′), with m
instances t′i,j generated with at most E from T ′, where m is randomly
sampled to be valid for the above evaluation (i.e. ≥7 and ≥n/2,
i.e. at least half of the sequence number). The sampling time for
each C dataset is set such that there are N≥10000 datasets (e.g. N=
134∗75=10050 for the 75 datasets with TY=0.0 and E=0) with
totally 10∗N rules generated. The empirical P-value of a rule is thus
the proportion of random rules that has equal or better performance
of R∗ than it. The results for statistically significant rules (with
P<0.05) for W=5 are summarized in Table 4. Note that for E=0,
each random rule is either R∗=0 or R∗=1, and the best achievable
P-values on TF side [i.e. p(RTF≥1)] are 0.0625 (TY=0.0), 0.0668
(TY=0.1) and 0.0602 (TY=0.3). In such cases, the number of rules
with the best achievable P-values are shown. It can be seen that
the majority of the rules (0.64−0.79) are statistically significant
for the TF–TFBS verification ratios RTF−TFBS , indicating that the
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Table 3. MEME results on different TY , W and E settings and the improved ratios of our approach over MEME (Ours better by referring to Table 2)

MEME results W=5, E=0 W=5, E=1

TY 0.0 0.1 0.3 0.0 0.1 0.3

R∗ TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS

AVG R∗ 0.33 0.26 0.36 0.28 0.37 0.28 0.33 0.32 0.36 0.34 0.37 0.36
Ours better by (%) 124 144 120 146 120 160 73 74 76 79 85 91

R∗>0 143 123 179 151 1306 1071 143 142 179 175 1306 1262
Rule no. 298 298 342 342 2118 2118 298 298 342 342 2118 2118

R∗>0 Ratio 0.48 0.41 0.52 0.44 0.62 0.51 0.48 0.48 0.52 0.51 0.62 0.60
Ours better by (%) 54 55 49 58 33 45 42 40 40 42 33 36

MEME results W=6, E=0 W=6, E=1

TY 0.0 0.1 0.3 0.0 0.1 0.3

R∗ TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS

AVG R∗ 0.29 0.22 0.31 0.23 0.29 0.18 0.29 0.27 0.31 0.29 0.29 0.26
Ours better by (%) 142 163 145 181 178 262 97 96 102 104 142 157

R∗>0 127 96 163 121 1194 839 127 120 163 154 1194 1127
Rule no. 289 289 334 334 2170 2170 289 289 334 334 2170 2170

R∗>0 Ratio 0.44 0.33 0.49 0.36 0.55 0.39 0.44 0.42 0.49 0.46 0.55 0.52
Ours better by (%) 61 73 57 79 47 72 52 50 50 51 58 62

R∗ indicates RTF or RTF−TFBS .

Table 4. The statistically significant rules for W=5

W=5, E=0 W=5, E=1

TY 0.0 0.1 0.3 0.0 0.1 0.3

R∗ TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS TF TF–TFBS

P <0.05 0 (127∗) 110 0 (165∗) 147 0 (636∗) 567 223 226 278 272 1974 2023
Rule no. 172 172 211 211 774 774 346 346 396 396 2559 2559

Significant ratio 0 (0.74∗) 0.64 0 (0.78∗) 0.70 0 (0.82∗) 0.73 0.64 0.65 0.70 0.69 0.77 0.79

∗indicates the number of rules with the best achievable P-values when they are >0.05 (all <0.07).

competitive performances achieved by the approximate rules are not
trivial.

3.5 Detailed analysis on variations
In this subsection, we investigate how the approximate rules
generalize the exact ones using the verified PDB entries for
illustration.

PDB examples and homology modeling: with the setting W=5
and E=1, we show how approximate rules generalize and retrieve
informative verifiable evidences on both TF and TFBS sides. From
the 231 verified (RTF−TFBS >0) TF–TFBS rules for TY=0.0,
there are 133 verified rules with ≥5 PDB entries (maximum
number of verified entries: 23). An illustrative rule with five
verified PDB entries is chosen for illustration. The rule is M00041:
NRIAA-TGACGTYA (ID 1160), with maximal E=1, the different
TF instances (i.e. {ti,j}) discovered by the customized algorithm
are NKIAA, NRAAA, NREAA and NRIAA. Except NKIAA,
other instances have been verified with PDB entries, namely
1DH3, 1FOS, 1JNM, 1T2K and 2H7H. The results are shown

using ProteinWorkshop in Supplementary Figure S1. By allowing
maximal 1 substitution error, we discover that the TF binding motif
NR*AA summarized from our results is flexible with the middle
amino acid, varying with E, A and I. Such discoveries supported by
the approximate rules give us more clues into the TF–TFBS binding
mechanisms.

In order to investigate the case of NKIAA, a model was built based
on the structure of 1JNM using homology modeling. As shown in
Figure 3, the change of arginine (R) to lysine (K) does not introduce
the steric effect and the basic property of the amino acid is retained
(both are positive charge). NKIAA is also shown to be within TF
records of NCBI (Sayers et al., 2010) in the next subsection. Thus,
we believe that NKIAA should be a correct prediction.

We further analyze the rule picked up from setting W=5, E=
1 and TY=0.1. The rule M00217: ERKRR-CACGTG has three
different TF instances (i.e. {ti,j}) ERKRR, ERQRR and ERRRR,
and five verified PDB entries: 1AN2, 1AN4, 1HLO (not shown
for space limit), 1NKP and 1NLW. The results are shown using
ProteinWorkshop in Figure 4. This case further demonstrates the
flexibility in specific positions for TF–TFBS binding. ER*RR has the
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Fig. 3. Homology modeling of NKIAA-TGACG that does not have PDB
records, based on the verified NRIAA-TGACG pair. The model (left) was
built based on and compared with the structure of 1JNM (right). The proteins
are shown in ribbon diagram with the highlighted TF amino acids in ball and
stick format. The TFBS sequences in the DNA are also highlighted in ball and
stick format. The figures are generated using Discovery Studio Visualizer,
Accelrys.

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 4. PDB verifications for rule M00217: ERKRR(ERKRR; ERQRR;
ERRRR)-CACGTG for W=5, E=1, TY=0.1 using ProteinWorkshop. The
TF–TFBS pairs are shown in ribbon diagram and labeled. The interacting TF
amino acids and TFBS nucleotides are highlighted in ball and stick format.

variations of K, R and Q for the middle amino acid, and these variants
can appear in the same TF–TFBS binding, for example, 1NKP
(ERKRR and ERQRR) in Figure 4. The discovery prompts further
investigation into the flexibility and specificity of protein–DNA
interactions.

In-depth variation analysis: detailed analysis was also performed
on the properties of residue variations reflected by the approximate
rules. As a proof of concept, the 134 rules with RTF−TFBS≥0.9
from setting W=5,E=1,TY=0.1 were investigated. Excluding
the 39 rules with only exact TF instances (i.e. no variations)
according to the PDB evidences, we checked the varying amino
acids of the remaining 95 approximate rules (i.e. {ti,j} with E=1).
Interestingly, 50 rules (52.36%) contain varying amino acids that
do not affect the binding (with distances to nucleotides >3.5 Å),
and thus the approximate rules correctly reflect the flexibilities of
such residues. For example, the varying residue (I or V) in the
concatenated TF motif V[I/V]RVWFCN is flexible because it is not
directly interacting with the nucleotides. On the other hand, 45 rules
(47.37%) contain some TF instances with varying amino acids ≤
3.5 Å to nucleotides, e.g. N[K/R]IAA and ER[K/R/Q]RR mentioned
above, and F[Q/R][I/V]PW[K/M]H[A/F/G]-RAAANTGAAA. The
last residue (A or F or G) of the latter example is varying but still
interacting with the nucleotides (≤3.5). Interestingly, the interacting
variations in 32 of the 45 rules (71.11%) are consistent with respect

to hydropathy [the varying residues are either all-hydrophilic or
all-hydrophobic according to the normalized hydrophobic index
(Eisenberg, 1984)], implying the biological clues of the variations.
The remaining 13 rules contain variations between hydrophilic and
hydrophobic amino acids, and the 11 ambiguous C/Q variation
rules can be discarded because the C variants do not affect binding
(>3.5 Å), while the Q variants do, in the PDB records. For the
remaining two rules, the residue variations come with variations in
the respective nucleotides of the TFBS they bind, for example, in
the rule SG[F/K/Y]HY-TGACCTTTGNCCY (reverse complement
RGGNCAAAGGTCA), when Y → K, the TFBS *CAAGGT →
*AAAGGT; when F→ K, *TAGGT→ *AAGGT, demonstrating
the coordination needed to cater for property changes in the
binding amino acids. This preliminary discovery prompts us to
deeply investigate the flexibility and specificity of protein–DNA
interactions in the future work, with the help of approximate
TF–TFBS rules.

3.6 Conservation verification on NCBI protein records
Besides the PDB entries, we further verified the approximate rules
on NCBI (Sayers et al., 2010) for conservation independently. The
previous 134 rules with RTF−TFBS≥0.9 (W=5,E=1,TY=0.1)
were compiled (grouped) according to their 39 different TFBS
consensus C groups, and the first 10 groups were analyzed for
illustration (because of the time-consuming manual inspection). For
each C, the TF names FA and organisms OS of the related TFs were
retrieved, and TF instances ({ti,j}) found in the approximate rules
were recorded. We then queried proteins in NCBI with FA, and check
whether any instance in {ti,j} occurs in protein records of organisms
NOT included in OS.

All the 10 groups are conserved within protein records in
NCBI from organisms not recorded in the TRANSFAC data (see
Supplementary Material for details). All of the TF instances are
within the conserved domains (especially binding domains), except
one case where the domain information is missing in NCBI,
and overlap with the annotated DNA binding sites. For example,
NREAA, NRAAA in the 1st, 7th and 10th groups are conserved
among proteins (TFs) CREB1, ATF-1 in various organisms such as
Danio rerio, Oncorhynchus mykiss and Saccharomyces cerevisiae,
which are beyond the TRANSFAC data containing mainly
higher mammals. None of these organisms are included in
the corresponding TRANSFAC data used to discover the rules.
Furthermore, the conserved TF instances are all within consistent
conserved domains and overlapping with binding sites according
to the NCBI annotations. For example, the conserved ERQRR and
ERRRR from the 6th group are all within helix–loop–helix (HLH)
domains in NCBI although they appear in various proteins such
as USF, N-Myc and arnt. The confirmation of conservation of the
discovered TF instances in NCBI records strongly indicates that
the approximate TF motifs are very likely to be real conserved
binding cores across different organisms (especially when they are
within consistent conserved domains and overlapping with DNA
binding sites), thus demonstrating the accuracy and generality of
the approximate rules for revealing real TF–TFBS interactions.

4 DISCUSSION AND CONCLUSION
Data mining on sequence patterns from large-scale databases
shows great potentials for discovering TF–TFBS rules for further
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understanding protein–DNA interactions. In this article, we have
for the first time generalized the exact TF–TFBS rules (Leung
et al., 2010) to approximate ones to discover more informative
and intricate rules. Reliable datasets are ready for use through
grouping the non-redundant TF sequences corresponding to similar
TFBS consensuses C, which has greatly accelerated the study. A
simple customized algorithm has been developed to discover the
short (width W=5,6) and highly conserved (error E=0,1) TF core
motifs. The algorithm better suits our objective and significantly
outperforms MEME by over 73%. Comprehensive measures, e.g.
both TF and TF–TFBS verification ratios (R∗), verified rule ratios
(R∗>0 Ratios), as well as statistical significances have been used
to evaluate the discovered approximate TF–TFBS rules.

The discovered approximate TF–TFBS rules have demonstrated
competitive performance with respect to verifications ratios (R∗) on
both the TF and the TF–TFBS sides. The approximate rules exhibit a
strong edge over the previous exact ones on both average verification
ratios and number of informative rules, where the majority are shown
to be statistically significant. With detailed analysis, the approximate
rules are confirmed by the PDB binding structures visually and
interatomic distances computed, as well as homology modeling for
the rule without PDB records. The examples have demonstrated
the flexibility of specific positions with variations of TF–TFBS
binding for both proteins and DNAs, reinforcing the need to extend
exact rules to approximate ones to better discover TF–TFBS binding
patterns. The approximate TF instances corresponding to the rules
discovered are conserved in binding domains and even binding sites
according to the independent verification on NCBI records from
organisms not included in the TRANSFAC data used, and hence
strongly support the biological significance of the discovered rules.

Compared with the previous study on exact rules, the proposed
discovery of approximate TF–TFBS rules has demonstrated
significantly better generalized capability of exploring more
informative binding rules, and potential applications to predict
protein–DNA interactions given either side for better decipher
transcriptional regulation. As advanced computational techniques,
facilities and databases grow rapidly, there will be numerous
promising ways to further improve approximate TF–TFBS
rule discovery greatly. One promising direction is expressive
probabilistic representations, such as Hidden Markov Models
(Bateman et al., 2004), which are able to capture subtle information
and dependencies for long TF–TFBS rules.
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