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ABSTRACT

Motivation: Second-generation sequencing technology makes it
feasible for many researches to obtain enough sequence reads
to attempt the de novo assembly of higher eukaryotes (including
mammals). De novo assembly not only provides a tool for
understanding wide scale biological variation, but within human
biomedicine, it offers a direct way of observing both large-scale
structural variation and fine-scale sequence variation. Unfortunately,
improvements in the computational feasibility for de novo assembly
have not matched the improvements in the gathering of sequence
data. This is for two reasons: the inherent computational complexity
of the problem and the in-practice memory requirements of tools.
Results: In this article, we use entropy compressed or succinct
data structures to create a practical representation of the de Bruijn
assembly graph, which requires at least a factor of 10 less storage
than the kinds of structures used by deployed methods. Moreover,
because our representation is entropy compressed, in the presence
of sequencing errors it has better scaling behaviour asymptotically
than conventional approaches. We present results of a proof-of-
concept assembly of a human genome performed on a modest
commodity server.

Availability: Binaries of programs for constructing and
traversing the de Bruijn assembly graph are available from
http://www.genomics.csse.unimelb.edu.au/succinctAssembly.
Contact: tom.conway@nicta.com.au

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

A central problem in sequence bioinformatics is that of assembling
genomes from a collection of overlapping short fragments
thereof. These fragments are usually the result of sequencing—
the determination by an instrument of a sampling of subsequences
present in a sample of DNA. The number, length and accuracy
of these sequences varies significantly between the specific
technologies, as does the degree of deviation from uniform sampling,
and all these are constantly changing as new technologies are
developed and refined (Fox ef al., 2009). Nonetheless, it is typically
the case that we have anywhere from hundreds of thousands of
sequences several hundred bases in length to hundreds of millions
of sequences a few tens of bases in length with error rates between
0.1% and 10%, depending on the technology.

*To whom correspondence should be addressed.

The two main techniques used for reconstructing the underlying
sequence from the short fragments are based on overlap-layout
consensus models and de Bruijn graph models. The former was
principally used with older sequencing technologies that tend to
yield fewer longer reads, and the latter has become increasingly
popular with second-generation sequencing technologies, which
yield many more shorter sequence fragments. Irrespective of the
technique, it has been shown [e.g. by Medvedev et al. (2007)] that
the problem of sequence assembly is computationally hard, and as
the correct solution is not rigorously defined, all practical assembly
techniques are necessarily heuristic in nature. It is not our purpose
here to discuss the various assembly techniques—we restrict our
attention to certain aspects of de Bruijn graph assembly—we refer
the reader to Miller er al. (2010) for a fairly comprehensive review
of assemblers and assembly techniques.

Space consumption is a pressing practical problem for assembly
with de Bruijn graph-based algorithms and we present a
representation for the de Bruijn assembly graph that is extremely
compact. The representations we present use entropy compressed or
succinct data structures. These are representations, typically of sets
or sequences of integers that use an amount of space bounded closely
by the theoretical minimum suggested by the zero-order entropy
of the set or sequence. These representations combine their space
efficiency with efficient access. In some cases, query operations can
be performed in constant time, and in most cases they are at worst
logarithmic.

Succinct data structures are a basic building block; Jacobson
(1989) shows more complex discrete data structures such as trees
and graphs that can be built using them. Some of the tasks for which
they have used include Web graphs (Claude and Navarro, 2007),
XPath indexing (Arroyuelo et al., 2010), partial sums (Hon et al.,
2003) and short read alignment (Kimura et al., 2009).

2 BACKGROUND

Let ¥ be an alphabet, and |X| be the number of symbols in
that alphabet. In the case of genome assembly, the alphabet X
is {A,C,G, T}. The length of a string s of symbols drawn from X is
written |s|. The notation s[i,j) is used for the substring of s starting
at position i (counting from 0) to, but not including j.

The directed de Bruijn graph of degree k is defined as

Gy = (Vi Ey)
Ve = [s:seEk]

Ex = {(ng.ns):np.ng € Ving[1,k)=n,[0,k— 1)}
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That is, the nodes of the de Bruijn graph Vi correspond to all
the k length strings over X and an edge exists between each pair of
nodes for which the last k—1 symbols of the first are the same as
the first k— 1 of the second.

The k length string labelling a node is usually referred to as
a k-gram in the computer science literature and a k-mer in the
bioinformatics literature. The labels of the edges, as noted in Good
(1946), are k+ 1mers. For clarity, we use p=k+ 1, and refer to
edges as p-mers.

We note that among the special properties of the de Bruijn graph
is the fact that a given node can have at most | X| successor nodes:
formed by taking the last k£ bases of the node and extending them
with each of the symbols in the alphabet. That is, we can define the
successors of a node n:

succx(n) = {n[1,k)-b:be X} (1)

pred,(n) = {b-n[0,k—1):be X} 2)

To use the de Bruijn graph for assembly, we can build a subset
of the graph by finding the nodes and edges that are supported by
the information in the sequence reads. The edges are also annotated
with a count of the number of times that a p-mer is observed in the
sequence data. The counts are used for two purposes. The first is
to distinguish edges that arise from sequencing errors (which will
have very low counts) from those that arise from the underlying
genome (which will have higher counts). The second is to estimate
the number of copies of that edge in the underlying genome.

Given a set of reads S, we can define a de Bruijn assembly graph,
defining the nodes Vg in terms of the edges Eg rather than the other
way round, as we did above. To define the nodes, we create two
(overlapping) sets: the set of nodes F's from which an edge proceeds,
and the set of nodes Ts to which an edge proceeds.

Esg = {silj.j+p):0=<j<lsi| —k;Vs; €S} 3)
Fg ={e[l,p+1):e€Es}

Ts = {e[0, p):e€Eg}

Vg = FgUTy 4)
Gs = (Vs,Es) )

From the DNA alphabet and Equation (1), a given node in the
assembly graph can have at most four successor nodes, and by
Equation (2), a given node can also have at most four predecessor
nodes.

2.1 Reverse complements

An important distinction between ideal strings and the DNA
sequences that are used in genome assembly is that the latter can
be read in two directions: forwards and in the reverse direction
with the individual DNA letters exchanged with their Watson—Crick
complements (A<>T and C<>G). In most sequencing scenarios,
fragments of DNA are randomly sequenced in either direction,
something that must be taken into account during assembly. First,
sequence reads are processed twice—once reading them forwards,
and then reading them in the reverse complement direction. Then, in
most cases, nodes corresponding to reverse complement sequences

are merged, and the edges are made bi-directed to match up the
sequences correctly [see, for example Medvedev et al. (2007)]. For
our current discussion, we will not combine them, but will store them
separately. This makes the graph symmetric; a forward traversal
corresponds to a backwards traversal on the reverse complement
path, and vice versa.

Figure 1 shows a de Bruijn assembly graph for a short string.

2.2 From de Bruijn assembly graphs to genomes

The de Bruijn graph is both Eulerian and Hamiltonian, a property
that Idury and Waterman (1995) showed was useful for genome
assembly. In principle, at least, the assembled sequence corresponds
to an Eulerian tour of the de Bruijn assembly graph. The details of
how this may be done in practice are beyond the scope of our current
discussion, but the approaches include those described in Jackson
et al. (2009); Pevzner et al. (2001); Simpson et al. (2009); Zerbino
and Birney (2008). Our current discussion is focussed on how we
might represent the de Bruijn assembly graph in a practical program
for performing large genome assembly.

A simple approach to representing the de Bruijn assembly graph
is to represent the nodes as ordinary records (i.e. using a struct
in C or C++), and the edges as pointers between them. If we assume
a node contains the k length substring (or k-mer) represented as a
64 bit integer (assuming k <32), 32 bit edge counts and pointers to
four possible successor nodes, and there are no memory allocator
overheads, then the graph will require 56 bytes per node. In the
Drosophila melanogaster genome, with k=25, there are about
245 million nodes (including reverse complements), so we would
expect the graph to take nearly 13 GB. For the human genome
with k=25, there are about 4.8 billion nodes (again, including
reverse complements), so the graph would require over 250 GB.
These data structures are large, but more is needed, because there
is no way in what is described to locate a given node, so for
instance a simple hash table (generously assuming a load factor
of 1) might require an extra 16 bytes (hash value + pointer) per
node or over 70GB for the human genome. These figures are
extremely conservative, since they ignore the effect of sequencing
erTors.

We can get an estimate of the proportion of edges in the graph
that are due to errors with a simple analysis. Most sequencing errors
give rise to unique k-mers, and hence many edges that occur only
once. Ignoring insertion and deletion errors, for a given k (or p), a
single error can cause up to p spurious edges, which, if we assume
a random distribution of errors, are overwhelmingly likely to be
unique. Thus, the number of spurious edges is proportional to the
volume of sequence data, whereas the number of true edges is
proportional to the genome size, and will converge on that number
as the volume of sequence data increases. For example, consider the
case of an organism with a 1 Mbp genome, which we sequence with
sequence reads of 100bp in length. If we assume that on average
a read contains 1 error, then with p=26, we will typically have 74
true edges and 26 spurious edges. Assuming the reads are uniformly
distributed, once the number of reads exceeds about 14 000, almost
all the 1 million true edges will be present, and there will be
about 364 000 spurious edges. Beyond this, as the number of reads
increases, the number of true edges will remain the same, but the
number of spurious edges will continue to increase linearly. By
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(a) (c)
Sequence: GCTTTCGACGTTTCA
Reverse complement: TGAAACGTCGAAAGC p-mer count | p-mer count
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Fig. 1. A de Bruijn assembly graph and its representation. (a) Source sequence. (b) The corresponding assembly graph. The edges are labelled with counts.
The path marked with bold arrows is TTCGAC. (¢) Extracted p-mers with counts. (d) The sparse bitmap representation. The gray boxes exemplify groups of
edges that proceed from a single node. The arrows show the sequence TTCGAC. (e) Dense array of counts.

#Edges

Total edges

Error edges

True edges

#Reads

Fig. 2. A sketch showing the relationship between the number of sequence
reads and the number of edges in the graph. Because the underlying genome
is fixed in size, as the number of sequence reads increases the number of
edges in the graph due to the underlying genome that will plateau when every
part of the genome is covered. Conversely, since errors tend to be random
and more or less unique, their number scales linearly with the number of
sequence reads. Once enough sequence reads are present to have enough
coverage to clearly distinguish true edges (which come from the underlying
genome), they will usually be outnumbered by spurious edges (which arise
from errors) by a substantial factor.

the time the coverage (the expected count on all the true edges)
reaches 40 (which we have observed in several data sets), we would
expect to see about 14 million spurious edges. That is, the spurious
edges would outnumber the true edges by a factor of 14.

Figure 2 illustrates this problem.

Much of this space is devoted to storing pointers, so the
question naturally arises: are these pointers necessary, or can

they be avoided? Existing assemblers such as velvet (Zerbino
and Birney, 2008) combine nodes corresponding to forward and
reverse complements, and merge nodes on unbranched paths,
and although these techniques significantly reduce the amount of
memory required, they nonetheless represent an ad hoc approach
to the problem of reducing the memory required to represent the
de Bruijn assembly graph.

ABySS (Simpson et al., 2009) goes further, and avoids pointers
in the first place. It represents the graph as a (distributed) hash table,
which acts as a mapping from k-mer to a single byte containing
the connectivity information: a bit indicating the existence of each
of the four forward and four reverse complement edges. ABySS as
described in Simpson et al. (2009) does not record the multiplicity
of the edges. Thus, if we assume we store the k-mers with 2 bits per
base, do not merge non-branching paths and we ignore alignment
issues, the space usage of the graph is |ES|(§ + l)%, where § is
the load factor of the hash table. It is clear that the load factor
is crucial to the effectiveness of this method, and although an
in-depth discussion of hash table implementation is beyond our
current scope, we note that if space usage is to be minimized,
open addressing techniques such as Cuckoo Hashing (Fotakis et al.,
2003; Pagh and Rodler, 2001) should be used. If we assume a space
efficient hashing technique, we might have §=0.8, in which case,
in the case of the human genome above, with 4.8 billion k-mers,
assuming forward edges are combined with reverse compliments,
we would require 43.5 GB. We note that the space usage of this
graph representation, like the node-and-pointer one, is linear in the
number of edges.
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Fig. 3. The number of bits per edge required to represent the de Bruijn graph.
The function is over the range [4%, 1], and although the vertical scale shown
stops at 8 bits per edge, in practice, the number of bits per edge at the left
hand limit of 75 is 2p.

3 APPROACH

Our approach to memory-efficient representation of an assembly
graph begins by re-framing the question of whether the pointers
in a naive graph representation are necessary. Rather we ask what
information is necessary, and what is redundant or ephemeral. How
many bits are required to represent the de Bruijn assembly graph
from an information-theoretic point of view?

The de Bruijn assembly graph is a subset of the de Bruijn graph. Of
the | 2| edges in the de Bruijn graph, the assembly graph contains
|Es|. The self-information of a set of edges that make up an assembly
graph, and hence the minimum number of bits required to encode
the graph, is

4P
#bits = 10g<|E |> (6)
S

(Note, that unless otherwise specified, all logarithms are base 2.)

To appreciate the implications of this lower bound, it is useful
to consider not just the total number of bits, but the number of bits
per edge. In conventional approaches, the number of bits per edge
is approximately constant—doubling the number of edges doubles
the space required. In contrast, if we divide the total number of
bits required according to Equation (6) by the number of edges, we
see that the number of bits per edge monotonically decreases as
the number of edges increases. This function, expressed in terms
of the proportion of edges present, is shown in Figure 3. There
is an empirical validation of this presented in Section 4 of the
Supplementary Materials.

For the de Bruijn assembly graph with k=25, the human genome
(build 37) yields 4796397453 distinct edges, including reverse
complements. By the equation above, taking S to be the genome
itself:

426

#bits=1
fe=log (4,796,397,453

)EIZGB

‘We do not need to store the nodes explicitly, since they are readily
inferred from the edges:

from-node(e) = ¢[0,p—1)
to-node(e) = e[1, p)

Equation (6) gives a lower bound on the number of bits required
to represent the de Bruijn assembly graph. We would like to find a
concrete representation that comes close to that theoretical minimum
while allowing efficient random access. The notion that the assembly
graph is a subset of the de Bruijn graph immediately suggests that
we could create a bitmap with a bit for each edge in the de Bruijn
graph, and set the bits for the edges that occur in the assembly
graph. Such a scheme depends on being able to enumerate the p-
mers (i.e. the edges). This is done trivially by numbering the bases
(weuseA=0,C=1,G=2and T = 3), and interpreting the p symbols
as an integer of length 2p bits. Conceptually, then, we can create a
bitmap with 4 bits, and place 1s in the positions corresponding to
the edges in the assembly graph. In this representation, the k-mers
are represented implicitly. This is an important point since all other
assembly approaches that we are aware of have to store the k-mers
explicitly.

For example, in Figure 1d, the node labelled with the k-mer TTC
has two outgoing edges labelled with the p-mers TTCA and TTCG.
No explicit representation of the k-mer is required because it is
implicit from the existence of the two p-mers. Note that nodes with
incoming but no outgoing edges cannot be interrogated directly, but
because the graph is symmetric over reverse complementation, the
reverse complement nodes will have outgoing edges.

Given such a bitmap, we can determine the successor set of a
given node from the definition of the de Bruijn assembly graph,
by probing the positions corresponding to the four edges that could
proceed from the node. For a node corresponding to a k-mer 7, the
four positions in the bitmap are 4n, 4n+1, 4n+2 and 4n+ 3.

There is a particular formalism, first proposed by Jacobson (1989)
for querying sets of integers represented as bitmaps that is useful in
this setting. Given a bitmap b with the positions of the set members
set to 1 and the rest of the positions set to 0, the formalism uses two
query operators rank and select with the following definitions':

rankp(p) = Y b;

0<i<p
selectp (i) = max{p <n|ranky(p) <i}

Intuitively, ranky(p) is the number of ones in the bitmap b to the
left of position p, and selecty(i) is the position of the i-th set bit,
where the set bits are numbered starting from zero.

Using the rank/select formalism, we can compute the set of the
successor edges for a node n efficiently given a bitmap representing
the set of edges:

succg,(n)= {seleclES (r)|re [rankES (4n),rankg(4n + 4)) }

This forms the basis of a method for efficient traversal of a de Bruijn
assembly graph represented as a set of integers or, equivalently, a
bitmap.

I"The literature contains several slightly different definitions that arise from
different conventions for subscripting arrays: mathematical literature tends
subscript from one; computer science literature from zero. We use the latter.
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Next we consider how the edge counts should be represented. For
this we draw on the rank/select formalism again, and note that while
the edges are sparse (a point that we will come back to shortly), the
ranks of the edges are dense, filling the range [0, |Es]|). Therefore,
we can store the edge counts in a vector of 32 bit integers.

4 METHODS

The preceding discussion presented a technique for representing a de Bruijn
assembly graph as a bitmap using 47 bits. For a typical value of p=26
(i.e. k=25), the bitmap would require 512TB. This is clearly infeasible (and
larger k would be worse), but the bitmap is extremely sparse. Of the 4.5 x 1013
bits, for the human genome, only 4.8 x 10° are 1. That is, the fraction of
the bits that are set is 1078, so a representation which exploits the sparsity
should be used. Equation 6 gives a precise lower bound on the number of bits
that any lossless representation requires, and there has been a large amount
of research in the last two decades on the efficient representation of data
structures that are close to this theoretical limit.

Let B, be the set of bitmaps with v bits, where exactly p bits are set.
Jacobson (1989) defines a succinct representation as a way of mapping
the elements of 3, into a read-only memory such that the amount of
space used to represent a bitmap is close to (1 +o(1))log|Bv,,L| bits. A
succinct data structure is a succinct representation that also supports desired
query operations efficiently. ‘Efficiently’ can mean either low asymptotic
complexity or practical speed on real hardware. In our case, the query
operations that we wish to support are rank and select.

Although Jacobson (1989) defines succinct data structures as read-only
objects, Mikinen and Navarro (2008), among others, show how insert and
delete can be implemented without sacrificing the succinct nature of the
representation, for a suitable definition of ‘succinct’ which takes into account
the dynamic nature of the data structure. We do not consider dynamic succinct
data structures in this work because existing proposals tend to be quite
complex and subtle to implement, and while they tend to have reasonable
time complexity in an asymptotic sense (though they are usually not as fast as
static data structures), they often exhibit prohibitively high constant factors.

A summary [abstracted from Okanohara and Sadakane (2006)] of the data
structures that we use in our implementation is shown in Table 1. Note that
v the number of possible edges is 4°, and therefore increasing p (or by
implication k) will increase the space required, even if the number of extant
edges does not change.

The darray and sarray data structures (Okanohara and Sadakane, 2006)
are optimized for the case when the bitmap is ‘dense’ or ‘sparse’, respectively.
If w/v=1/2, log(/'i)%v, so storing the uncompressed bitmap is already
succinct; in this case, we call the bitmap ‘dense’, and implement rank and
select with o(v) extra space to speed up those operations. If /v %, then
we call the bitmap ‘sparse’; in this case, the bitmap can be compressed close
to optimal space using Elias—Fano coding (Elias, 1974), which is the basis
for sarray. A more detailed discussion of these data structures is presented
in Section 2 of the Supplementary Materials.

We emphasize that although we have used these particular concrete
entropy-bounded sparse bit array structures, our technique (and ultimately
our code) is expressed in terms of rank and select, so it would be a straight
forward matter to substitute other concrete representations [e.g. such as the
version in Claude and Navarro (2008) of the structure originally due to
Raman et al. (2007)].

Table 1. Summary of succinct data structures

Method Size Rank Select
(bits) complexity complexity
darray  v+o(v) o) O(log* 11/logv)

sarray plogk +1.92u+o0(w)  Olog#)+ O(log* iu/logv)  O(log* 1u/logv)

Returning to the representation of the edge counts, in Section 3, we
suggested storing the counts in a vector of 32 bit integers indexed by edge
rank. This actually uses much more memory than necessary. As previously
noted, prior to error removal, a vast majority of edges in the graph are
spurious and will have a very low edge count. Most of the true edges have
modest counts also: edges that are unique in the underlying genome will
have a count somewhere around the basic coverage (e.g. 15-50). For most
edges, 8 bits of storage is sufficient, and for most of the remainder 16 bits
is sufficient. Only a handful of edges, in practice, need more than 16 bits.
Therefore, using 32 bits for every edge is very wasteful.

There are many techniques for creating compressed representations of
vectors of integers [see Moffat and Turpin (2002)], but in most cases they do
not provide efficient random access. Succinct data structures implementing
rank/select yield an effective technique first introduced by Brisaboa et al.
(2009). We split each count into the three parts alluded to above: the least
significant 8 bits, the ‘middle’ 8 bits and the most significant 16 bits. We store
the least significant 8 bits in a dense vector of bytes L. Corresponding to it,
we store a succinct bitmap By, with a 1 marking those entries for which the
middle 8 bits or the most significant 16 bits are non-zero. In a dense vector
of bytes M (indexed by rank in By ), we store the middle 8 bits of those
entries for which a 1 exists in By. Corresponding to M, we store a sparse
bitmap By with a 1 marking those entries for which the most significant 16
bits are non-zero. Finally, we have a dense vector if 16 bit words H (indexed
by rank in Bjs) with the most significant bits of those entries marked in Byy.
The bitmaps By, and By, are represented using sarray.

5 RESULTS

We have created a set of programs that construct and manipulate the
de Bruijn assembly graph representation we have described. These
do not constitute a complete assembler, but represent the kinds of
traversal and manipulation of the graph that are required to build an
assembler.

The proof-of-concept assembly procedure is as follows, with each
step being performed by a separate program that takes an on-disk
representation of the data and produces a new on-disk representation
of the data:

(1) Extract p-mers (forwards and reverse complements) from the
sequence reads and sort them into lexographic order. The
result of the sort operation is a list from which we can extract
p-mer/count pairs from which we construct the the sparse
array for the graph structure and the succinct representation
of the counts. On large datasets, this can be done in parts, and
the resulting partial graphs are merged to form the complete
graph.

(2) Perform a left-to-right traversal of the list of edges/counts
and discard low frequency edges which almost certainly
correspond to errors.

(3) Perform iterations of the tip removal algorithm exactly as
described in Zerbino and Birney (2008).

(4) Perform depth first traversal to read of non-branching paths
within the graph to report as contigs.

The first step demonstrates the feasibility of building the graph
representation; the second, that it is possible to do trivial processing
efficiently; the third, that graph traversal can be done to produce a
modified representation (in this case eliminating paths in the graph
that probably correspond to errors); and the fourth that meaningful
contigs can be obtained. A more detailed description of these steps
including pseudo-code is provided in Section 3 of the Supplementary
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Table 2. Graph size in gigabytes, and build time in minutes, for the main phases of the proof-of-concept assembly

Number of edges Graph size (GB) Counts size (GB) Total size (GB) Build time
Complete graph 12292819311 40.8 (28.5) 11.5 (8.01) 52.3(36.5) 2080
After removing low frequency edges 4799738381 15.1 (27.1) 4.5 (8.02) 19.6 (35.1) 46
After removing tips 3840690715 12.2 (27.2) 3.6 (8.03) 15.8 (35.2) 845

The parenthetical numbers are in bits per edge.

Table 3. Assembly statistics comparing the ABySS assembly of the Yoruban
individual NA18507, using the Illumina reads reported in Simpson et al.
(2009) (SRA accession number SRX016231) with a proof-of-concept
assembly using the succinct graph representation.

ABySS Proof-of-concept
Cores 168 8
Nodes 21 1
Total RAM (GB) 336 32
Minimum contig size >100bp >1kb >100bp >1kb
Number of contigs 4348132 549522  7693.288 41292
Median size (bp) 253 1463 165 1146
Mean size (bp) 484 1703 224 1219
Maximum size (bp) 15911 15911 22032 22032
N50 size (bp) 870 1731 250 1176
Number of contigs >N50 674953 188171 1994863 17939

Sum (Gbp) 2.10 0.94 1.72 0.05

The reported time for the ABySS assembly was 15h, compared with our elapsed time
of 50 h. It is not clear from Simpson et al. (2009) whether the reported time is aggregate
time, or elapsed (wall) time, though the latter seems more likely.

Materials. We believe that this proof-of-concept demonstrates the
feasibility of our method, though a complete assembler would
need to do significantly more processing on the graph (e.g. bubble
removal), should use read-coherence to resolve local ambiguities
and should make use of pairing information to resolve repeats.

We have run this proof-of-concept assembly ‘pipeline’ on the
sequence data from a Yoruban individual from Bentley er al
(2008), sample number NA18507, with k=27. The assembly was
performed using a single computer with 8x2 GHz Opteron cores
and 32 GB RAM. The size of the graph (edges and counts) at the
stages of the pipeline are shown in Table 2. Each step produces a
set of files containing the representation of the graph. These files are
then brought into memory by the program for the next step using
memory-mapped I/O. The complete graph, at the end of the first step,
is 52 GB, which is larger than the 32 GB RAM on the machine, but
the next step (removing low frequency edges) does a sequential pass
over these structures to produce a new, smaller set. So although the
process virtual size is considerably larger than main memory, the
accesses have extreme locality, so the overall behaviour is efficient.

Simpson et al. (2009) report results of assembling the same data
with ABySS. In Table 3, we reproduce the results reported there for
the assembly not using the pairing information from the reads, along
with the results from our proof-of-concept assembly. Importantly,
we have included the scope of the computing resources used in both
cases. Unsurprisingly, our ‘pipeline’, lacking bubble elimination and
read-coherent disambiguation of branches, mostly produces only
short contigs. Curiously, the longest contig at about 22 kb does not

match the reference human genome at all, but is an exact match
in to the Epstein—Barr virus, which is an artifact of the preparation
of the cell line from which the sequence data were obtained. That
this is the longest contig is unsurprising, since viral sequences are
not diploid like the human genome, and therefore are less prone to
bubbles due to heterozygosity; and viral sequences tend to contain
far less repetition than the human genome, and will therefore have
much less branching in their de Bruijn graph representation.

6 DISCUSSION

We have claimed that the number of bits per edge should be
monotonically decreasing with the number of edges. This is clearly
not the case in the results in Table 2: the graph containing all the
edges present in the sequence data uses more bits per edge. The
analysis in Section 3 gives a lower bound for the number of bits
required for the graph. For the 12 billion edges in our complete
graph, this suggests that about 22 bits per edge (or 30.7 GB in total)
are required. From Table 2, we see that for the complete graph 28.5
bits are required. This translates to about 6.5 bits (or 10 GB) of
space used beyond the the theoretical minimum. As discussed in
Section 4 of the Supplementary Materials, this is an artifact of our
implementation, which could be eliminated, but in absolute terms is
very minor. To put it in perspective, 28.5 bits per edge is dramatically
less than the 64 bits required for a pointer, and even a hashing-based
approach would require at least 35 bits per edge.? Other entropy-
compressed bit vector representations may bring the space usage of
the graph closer to the theoretical minimum.

We have presented a practical and efficient representation of
the de Bruijn assembly graph, and demonstrated the kind of the
operations that an assembler needs to perform but of course there is
much more to doing de novo assembly with de Bruijn graph methods
than we have presented. A combinatoric number of Eulerian paths
exist in the de Bruijn assembly graph, among which true paths must
be identified [this is the Eulerian superpath problem described by
Pevzner et al. (2001)]. This is usually done in the first instance
by using the sequence reads to disambiguate paths. In the second
instance, this is done by using paired sequence reads (e.g. paired-
end and mate-pair sequence reads), in a process usually called
scaffolding. The algorithms described in the literature can either
be implemented directly on our representation or, in most cases,
adapted.

2An ABySS-like hashing approach combines forward and reverse-
complement k-mers, so there are half as many keys. However, 2 bits are
required to store each base, so the total size of the hash table, both key and
value, is k4 8 bits per edge. This assumes 100% loading of the hash table,
and no overhead in the storing of the k-mers.
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One important caveat is that our representation depends on the
properties of the de Bruijn graph (i.e. the relationship between
nodes and the edges that connect them). While edges may be added
or removed, the representation cannot be treated as an arbitrary
graph; there cannot, for example, be two nodes that represent the
same k-mer along different paths. We do not believe this is a
significant obstacle to building a complete assembler based on this
representation, and our proof-of-concept implementation supports
this belief.

As well as building a practical assembler based on the
representation we have presented, there are several opportunities
for improving the graph construction. At the moment, the run-
time is dominated by sorting, which is done sequentially, and with
fairly generic sorting code. We speculate that the sequential sorting
speed could be doubled with modest effort, and the whole could be
parallelized fairly easily.

6.1 A succinct representation of sequence reads

Among the several components required for a practical assembler
mentioned above, the use of reads during assembly is worthy of some
further examination. A practical assembler will use the sequence
reads to help disambiguate conflations in the de Bruijn graph. Here,
we present a simple technique that uses succinct data structures
to form a compact representation of the sequence reads, given the
de Bruijn assembly graph.

The de Bruijn graph already contains most of the information
present in the sequence reads. Each sequence read corresponds to
a walk in the de Bruijn assembly graph. The information present
in the sequence reads that is not present in the graph is as follows:
(i) where in the graph the sequence read starts; (ii) where in the
graph it ends (or, equivalently, its length); and (iii) at nodes in the
graph where there is more than one outgoing edge, the edge which
should be followed.

If we sort the sequence reads into lexicographic order (discarding
the original order of the reads), we can efficiently store the initial
k-mer of each read and, moreover, construct an efficient index that
lets us determine which reads begin with a given k-mer. The lengths
of the reads can be stored efficiently by creating a sparse bitmap
corresponding to the concatenation of all the sequence reads, with a
1 denoting the start of a sequence read. The rank and select functions
give an efficient means of determining the position in the bitmap of
the start and end of a given read.

The sequence of choices or the walk that the sequence read
follows may be encoded very efficiently in the following way. At
each node, we can number the extant outgoing edges [0,3], and
assign a rank to the edge taken by a given sequence read. The
ranks may be assigned lexicographically, or in order of edge count
(highest to lowest). These ranks require two bits, which we can
store in a pair of sparse bitmaps—one for the least significant bit
and one for the most significant bit. The positions in these bitmaps
correspond to the positions in the bitmap marking the initial positions
of sequence reads. In practice, a large majority of nodes have only
one outgoing edge, so the rank will be 0, hence the bitmaps will
be sparse. Most of the nodes which have more than one outgoing
edge have only two, so in the vast majority of cases, the most
significant bit of the rank will be zero, making the bitmap for the
most significant bit even more sparse than the one for the least
significant bit.

If one wished to use this encoding to encode sequence reads other
than those represented in the de Bruijn assembly graph, then it is
no longer the case that every sequence read corresponds to a walk
in the graph. In this case, a ‘nearest’ walk could be found, and
the differences between the sequence read and the walk could be
recorded. This could be done using a sparse bitmap to record those
positions at which the walk and the sequence read diverge, and a
corresponding vector (indexed by rank in the said bitmap) of bases
could be used to store the actual base in the sequence read. There
is an optimization problem to find the ‘nearest’ walk, but simple
heuristics are likely to be sufficient.

This scheme could be generalized for sequencing technologies
where we may wish to explicitly encode gaps in the sequence
read, for example strobe reads (Ritz et al., 2010), by the use of
an auxiliary bitmap marking the locations of the gaps. This would
be an interesting line for further research.

7 CONCLUSION

We have presented a memory-efficient representation of the
de Bruijn assembly graph using succinct data structures which
allow us to represent the graph in close to the minimum number
of bits. We have demonstrated its effectiveness by performing a
proof-of-concept assembly of a human genome on a commodity
server; further work will build on this to produce a more complete
assembler.
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