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ABSTRACT

Motivation: Many computerized methods for RNA–RNA interaction
structure prediction have been developed. Recently, O(N6) time
and O(N4) space dynamic programming algorithms have become
available that compute the partition function of RNA–RNA interaction
complexes. However, few of these methods incorporate the
knowledge concerning related sequences, thus relevant evolutionary
information is often neglected from the structure determination.
Therefore, it is of considerable practical interest to introduce a
method taking into consideration both: thermodynamic stability as
well as sequence/structure covariation.
Results: We present the a priori folding algorithm ripalign,
whose input consists of two (given) multiple sequence alignments
(MSA). ripalign outputs (i) the partition function, (ii) base
pairing probabilities, (iii) hybrid probabilities and (iv) a set of
Boltzmann-sampled suboptimal structures consisting of canonical
joint structures that are compatible to the alignments. Compared
to the single sequence-pair folding algorithm rip, ripalign

requires negligible additional memory resource but offers much
better sensitivity and specificity, once alignments of suitable quality
are given. ripalign additionally allows to incorporate structure
constraints as input parameters.
Availability: The algorithm described here is implemented in C
as part of the rip package. The supplemental material, source
code and input/output files can freely be downloaded from
http://www.combinatorics.cn/cbpc/ripalign.html.
Contact: duck@santafe.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
RNA–RNA interactions play a major role at many different levels
of the cellular metabolism such as plasmid replication control,
viral encapsidation, or transcriptional and translational regulation.
With the discovery that a large number of transcripts in higher

∗To whom correspondence should be addressed.

eukaryotes are non-coding RNAs, RNA–RNA interactions in
cellular metabolism are gaining in prominence. Typical examples of
interactions involving two RNAmolecules are snRNAs (Forne et al.,
1996); snoRNAs with their targets (Bachellerie et al., 2002); micro-
RNAs from the RNAi pathway with their mRNA target (Ambros,
2004; Murchison and Hannon, 2004); sRNAs from Escherichia coli
(Hershberg et al., 2003; Repoila et al., 2003); and sRNA loop–loop
interactions (Brunel et al., 2003). The common feature in many
ncRNA classes, especially prokaryotic small RNAs, is the formation
of RNA–RNA interaction structures that are much more complex
than the simple sense–antisense interactions.

As it is the case for the general RNA folding problem with
unrestricted pseudoknots (Akutsu, 2000), the RNA–RNA interaction
problem (RIP) is NP-complete in its most general form (Alkan et al.,
2006; Mneimneh, 2009). However, polynomial-time algorithms can
be derived by restricting the space of allowed configurations in
ways that are similar to pseudoknot folding algorithms (Rivas
and Eddy, 1999). The simplest approach concatenates the two
interacting sequences and subsequently employs a slightly modified
standard secondary structure folding algorithm. The algorithms
RNAcofold (Bernhart et al., 2006; Hofacker et al., 1994),
pairfold (Andronescu et al., 2005) and NUPACK (Dirks et al.,
2007; Zadeh et al., 2010) subscribe to this strategy. A major
shortcoming of this approach is that it cannot predict important
motifs such as kissing-hairpin loops. The paradigm of concatenation
has also been generalized to the pseudoknot folding algorithm of
Rivas and Eddy (1999). The resulting model, however, still does not
generate all relevant interaction structures (Chitsaz et al., 2009b).
An alternative line of thought is to neglect all internal base pairings
in either strand and to compute the minimum free energy (MFE)
secondary structure for their hybridization under this constraint. For
instance, RNAduplex and RNAhybrid (Rehmsmeier et al., 2004)
follows this line of thought. RNAup (Mückstein et al., 2006, 2008)
and intaRNA (Busch et al., 2008) restrict interactions to a single
interval that remains unpaired in the secondary structure for each
partner. These models have proved particularly useful for bacterial
sRNA/mRNA interactions (Geissmann and Touati, 2004).

Pervouchine (2004) and Alkan et al. (2006) independently
proposed MFE folding algorithms for predicting the joint structure
of two interacting RNA molecules with polynomial time complexity.
In their model, a ‘joint structure’ means that the intramolecular
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structures of each molecule are pseudoknot-free, the intermolecular
binding pairs are non-crossing and there exist no so-called ‘zig-
zags’, see Supplementary Material for detailed definition. The
optimal joint structure is computed in O(N6) time and O(N4) space
via a dynamic programming (DP) routine.

A more reliable approach is to consider the partition function,
which by construction integrates over the Boltzmann-weighted
probability space, allowing for the derivation of thermodynamic
quantities, like e.g. equilibrium concentration, melting temperature
and base pairing probabilities. The partition function of joint
structures was independently derived by Chitsaz et al. (2009b) and
Huang et al. (2009).

A key quantity here is the probability of hybrids, which cannot
be recovered from base pairing probabilities since the latter can
be highly correlated. Huang et al. (2010) presented a new hybrid-
based decomposition grammar, facilitating the computation of the
non-trivial hybrid probabilities as well as the Boltzmann sampling
of RNA–RNA interaction structures. The partition function of joint
structures can be computed in O(N6) time and O(N4) space and
current implementations require very large computational resources.
Salari et al. (2009) recently achieved a substantial speed-up making
use of the observation that the external interactions mostly occur
between pairs of unpaired regions of single structures. Chitsaz
et al. (2009a) introduced tree-structured Markov Random Fields
to approximate the joint probability distribution of multiple (≥3)
contact regions.

Unfortunately, incompleteness of the underlying energy model,
in particular for hybrid- and kissing-loops, may result in prediction
inaccuracy. One way of improving this situation is to involve
phylogenetic information of multiple sequence alignments (MSAs).

In an MSA, homologous nucleotides are grouped in columns,
where homologous is interpreted in both: structural as well as
evolutionary sense. That is a column of nucleotides occupies
similar structural positions and all diverge from a common
ancestral nucleotide. Also, many ncRNAs show clear signs of
undergoing compensatory mutations along evolutionary trajectories.
In conclusion, it seems reasonable to stipulate that a non-negligible
part of the existing RNA–RNA interactions contain preserved but
covarying patterns of the interactions (Seemann et al., 2010a, b).
Therefore, we can associate a consensus interaction structure to pairs
of interacting MSAs (see Section 2.1).

Along these lines, Seemann et al. (2010a, b) presented an
algorithm PETcofold for prediction of RNA–RNA interactions
including pseudoknots in given MSAs. Their algorithm is an
extension of PETfold (Seemann et al., 2008) using elements of
RNAcofold (Bernhart et al., 2006) and computational strategies for
hierarchical folding (Gaspin and Westhof, 1995; Jabbari et al., 2007).
However, PETcofold is an heuristics-based algorithm. A detailed
comparative analysis also including the algorithm inteRNA (Salari
et al., 2009) will be given in Section 3.

Here, we present the algorithm ripalign which computes the
partition function, base pairing as well as hybrid probabilities and
performs Boltzmann sampling on the level of MSAs. ripalign
represents a generalization of rip to pairs of interacting MSAs
and a new grammar of canonical interaction structures. The latter
is of relevance since there are no isolated base pairs in molecular
complexes.

One important step consists in identifying the notion of a joint
structure compatible to a pair of interacting MSAs. Our notion

Fig. 1. The four basic types of tight structures are given as follows:
◦: {RiSh}=Ji,j;h,� and i= j, h=�; �: RiRj ∈Ji,j;h,� and ShS� �∈Ji,j;h,�; � :
{RiRj,ShS�}∈Ji,j;h,�; �: ShS� ∈Ji,j;h,� and RiRj �∈Ji,j;h,�.

is based on the framework of Hofacker et al. (2002), where a
sophisticated cost function capturing thermodynamic stability as
well as sequence covariation is employed. Furthermore, ripalign
is tailored to take structure constraints, such as blocked nucleotides
known e.g. from chemical probing, into account.

2 THEORY

2.1 MSAs and compatibility
An MSA, R̄, consists of mR̄ RNA sequences of known species. Denoting
the length of the aligned sequences by N , R̄ constitutes a mR̄ ×N matrix,
having 5′ −3′ oriented rows, R̄i and columns, R̄i. Its (i,j)-th entry, R̄i

j , is a
nucleotide, A,U,G,C or a gap denoted by ..

For any pair (R̄,S̄), we assume that S̄ is a mS̄ ×M matrix, whose rows
carry 3′ −5′ orientation.

In the following, we shall assume that a pair of RNA sequences can only
interact if they belong to the same species. A pair (R̄,S̄) can interact if for
any row R̄i, there exist at least one row in S̄ that can interact with R̄i.

Given a pair of interacting MSAs (R̄,S̄), let m be the total number
of potentially interacting pairs. ripalign exhibits a pre-processing step
which generates a m×N-matrix R and a m×M-matrix S such that (Ri,Si)
range over all m potentially interacting RNA pairs, see Section 1.2. of
Supplementary Material for details.

In the following, we shall refer to R and S as MSAs ignoring the fact that
they have multiple sequences.

We proceed by defining joint structures that are compatible to a fixed
(R,S). To this end, let us briefly review some concepts introduced in Huang
et al. (2009).

A joint structure J(R,S,I) is a graph consisting of

(j1) Two secondary structures R and S, whose backbones are drawn as
horizontal lines on top of each other and whose arcs are drawn in the
upper and lower halfplane, respectively. We consider R over a 5′ to 3′
oriented backbone (R1,...,RN ) and S over a 3′ to 5′ oriented backbone
(S1,...,SM ) and refer to any R- and S-arcs as interior arcs.

(j2) An additional set I , of non-crossing arcs of the form RiSj (exterior arc),
where Ri and Sj are unpaired in R and S.

(j3) J(R,S,I) contains no ‘zig-zags’.

The subgraph of a joint structure J(R,S,I) induced by a pair of
subsequences (Ri,Ri+1,...,Rj) and (Sh,Sh+1,...,S�) is denoted by Ji,j;h,�.
In particular, J(R,S,I)=J1,N;1,M and Ji,j;h,� ⊂Ja,b;c,d if and only if Ji,j;h,� is
a subgraph of Ja,b;c,d induced by (Ri,...,Rj) and (Sh,...,S�). In particular,
we use S[i,j] to denote the subgraph of J1,N;1,M induced by (Si,Si+1,...,Sj),
where i≤ j. In particular, in case of i= j, we identify S[i,i] with the vertex Si.

Given a joint structure, Ja,b;c,d , a tight structure (TS), Ji,j;h,�, (Huang et al.,
2009) is a specific subgraph of Ja,b;c,d indexed by its type ∈{◦,�,�,�}, see
Figure 1. For instance, we use J�

i,j;h,�
to denote a TS of type �.

A hybrid is a joint structure JHy
i1,i�;j1,j�

, i.e. a maximal sequence
of intermolecular interior loops consisting of a set of exterior arcs
(Ri1 Sj1 ,...,Ri� Sj� ) where Rih Sjh is nested within Rih+1 Sjh+1 and where the

457

 at M
asaryk U

niversity on F
ebruary 21, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[12:44 22/1/2011 Bioinformatics-btq659.tex] Page: 458 456–463

A.X. Li et al.

internal segments R[ih +1,ih+1 −1] and S[jh +1,jh+1 −1] consist of single-
stranded nucleotides only. That is, a hybrid is the maximal unbranched
stem-loop formed by external arcs.

A joint structure J(R,S,I) is called canonical if and only if:

(c1) each stack in the secondary structures R and S is of size at least two,
i.e. there exist no isolated interior arcs,

(c2) each hybrid contains at least two exterior arcs.

In the following, we always assume a joint structure to be canonical.
Next, we come to (R,S)-compatible joint structures. In difference to single

sequence compatibility, this notion involves statistical information of the
MSAs.

The key point consists in specifying under which conditions two
vertices contained in (R1,...,RN ,S1,...,SM ) can pair. This is obtained by
a generalization of the RNAalifold approach (Hofacker et al., 2002). We
specify these conditions for interior (cR

i,j), (cS
i,j) and exterior pairs (cR,S

i,j ) in
Equation (2.3)–(2.5).

For interior arcs (Ri,Rj), let X,Y∈{A,U,G,C}. Let f R
ij (XY) be the

frequency of (X,Y) which exists in the 2-column submatrix (Ri,Rj) as a
row-vector and

CR
i,j =

∑

XY,X′Y′
f R
ij (XY)DR

XY,X′Y′ f R
ij (X′Y′). (2.1)

Here, XY and X′Y′ independently range over all 16 elements of
{A,U,G,C}×{A,U,G,C} and DR

XY,X′Y′ =dH (XY,X′Y′), i.e. the Hamming

distance between XY and X′Y′ in case of XY and X′Y′ being Watson–Crick,
or GU wobble base pair and 0, otherwise. Furthermore, we introduce qR

i,j to
deal with the inconsistent sequences

qR
i,j =1− 1

m

∑

h

{�h
i,j(R)+δ(Rh

i ,.)δ(Rh
j ,.)}, (2.2)

where δ(x,y) is the Kronecker delta and �h
i,j(R) is equal to 1 if Rh

i and Rh
j

are Watson–Crick or GU wobble base pair and 0, otherwise. Now we obtain
BR

i,j =CR
i,j −φ1qR

i,j . Based on sequence data, the threshold for pairing BR∗ as
well as the weight of inconsistent sequences φ1 are computed. We have

(cR
i,j) BR

i,j ≥BR∗ . (2.3)

The case of two positions Si and Sj is completely analogous

(cS
i,j) BS

i,j ≥BS∗, (2.4)

where BS
i,j and BS∗ are analogously defined.

As for (cR,S
i,j ) a further observation factors in: since many ncRNA show

clear signs of undergoing compensatory mutations in the course of evolution
(Marz et al., 2008; Seemann et al., 2010b), we postulate the existence of
a non-negligible amount of RNA–RNA interactions containing conserved
pairs, consistent mutations, compensatory mutations as well as inconsistent
mutations. Based on this observation we arrive at

(cR,S
i,j ) BR,S

i,j ≥BR,S∗ , (2.5)

where BR,S
i,j and BR,S∗ are analogously defined as the case BR

i,j and BR∗ .
A joint structure J is compatible to (R,S) if for any J-arc, the

corresponding intra- or inter-positions can according to Equation (2.3)–(2.5)
pair.

2.2 Energy model
According to Huang et al. (2009), joint structures can be decomposed into
disjoint loops. These loop types include standard hairpin-, bulge-, interior-
and multi-loops found in RNA secondary structures as well as hybrids and
kissing-loops. Following the energy parameter rules of Mathews et al. (1999),
the energy of each loop can be obtained as a sum of the energies associated
with non-terminal symbols, i.e. graph properties (sequence independent)
and an additional contributions that depend uniquely on the terminal bases
(sequence dependent).

Fig. 2. Interior loop energy: an interior loop formed by RiRj and RhR�, where
i<h<�< j are the alignment positions. Gray bands are used to denote the
positions we omit between segment (i,h), (h,�) and (�,j).

Suppose we are given a joint structure J , compatible to a pair P = (R,S).
Let L∈J be a loop and let FL,i represent the loop energy of the i-th interaction
pair (Ri,Si). Then the loop energy of P is

FL,P =1/m
∑

i

FL,i. (2.6)

We consider the energy of the structure as the sum of all loop contributions:

FJ =
∑

L∈J

FL,P . (2.7)

To save computational resources, gaps are treated as bases in ripalign.
Thus, only alignment positions contribute as indices and loop sizes. Since
no measured energy parameters for non-standard base pairs are available at
present time, additional terminal-dependent contributions for the latter are
ignored. For instance, let Inti,j;h,l denote an interior loop formed by RiRj and

RhR� and F i,j;h,�

Int,P denote the free energy of Inti,j;h,l with respect to the aligned

sequences in P . Then F i,j;h,�

Int,P associated to the three aligned subsequences
of Figure 2 reads

F Int,P
i,j;h,�

= 1

3
(3GInt

i,j;h,� +GInt∗,G,C;G,C +GInt∗,G,U;G,U +GInt∗,G,C;.,.). (2.8)

Here GInt
i,j;h,�

represents contributions related exclusively to the positions of

the interior loop while GInt∗,A,B;C,D represents additional contributions related

to the specific nucleotides which form the interior loop. We set GInt∗,G,C;.,. to
be zero.

2.3 The grammar of canonical joint structures and the
partition function

The partition function algorithm is easily extended to work with the
modified energy functions given in Equation (2.7). The reformulation of
the original hybrid-grammar into a grammar of canonical joint structures
represents already for single interaction pairs a significant improvement in
prediction quality. The original rip-grammar would oftentimes encounter
joint structures having a hybrid composed by a single isolated exterior arc. In
order to decompose canonical joint structures via the unambiguous grammar,
detailed in the Section 2 of Supplementary Material, we distinguish the two
types (Type cc and Type c) of TS’s of type �, � or �. Given a TS of type �,
denoted by J�

i,j;h,�
, we write depending on whether Ri+1Rj−1 ∈J�

i,j;h,�
, J�,cc

i,j;h,�

and J�,c
i,j;h,�

, respectively. Analogously, we define J�,cc
i,j;h,�

, J�,c
i,j;h,�

and J�,cc
i,j;h,�

,

J�,c
i,j;h,�

, see Figure 3.
As illustrated in the Figure 4 of Supplementary Material, there are two

basic steps of the canonical-grammar: (i) interior arc-removal to reduce
TS and (ii) block-decomposition to split a joint structure into two smaller
blocks. The key feature here is, that since J is canonical, the smaller
blocks are still canonical after block decomposition. Each decomposition step
results in substructures which eventually break down into generalized loops
whose energies can be directly computed. More details of the decomposition
procedures are described in Section 2 of Supplementary Material, where
we prove that for any canonical joint structure J , there exists a unique
decomposition tree (parse-tree), denoted by TJ , see Figure 4.
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Fig. 3. Examples of two TS-types. We display �, �, or �-tight structures:
Type cc (top) and Type c (bottom).

Fig. 4. Example of the parse tree. The parse tree of the canonical joint
structure J1,17;1,9.

2.4 Probabilities and the Boltzmann sampling
A dynamic programming scheme for the computation of a partition
function implies a corresponding computation of probabilities of specific
substructures is obtained ‘from the outside to the inside’ and a stochastic
backtracing procedure that can be used to sample from the associated
distribution (Ding and Lawrence, 2003; Huang et al., 2010; McCaskill,
1990). We remark that the time complexity does not increase linearly as
a function of m (see Supplementary Table S6). Along the lines of the design
of the Vienna software package (Hofacker et al., 1994), ripalign now
offers the following features as optional input parameters:

(i) a position i can be restricted to form an interior or an exterior arc
(denoted by ‘−’ and ‘ ^’, respectively);

(ii) a position i can be forced to be unpaired (denoted by ‘x’);

(iii) a position i can be restricted to form an (interior or an exterior) arc with
some position j (denoted by ‘∗’);

(iv) a pair of positions i and j can be forced to form an interior or exterior
arc (denoted by ‘()’ or ‘[]’, respectively).

However, the above features are optional. Thus, ripalign can deal with
both scenarios: the absence of any a priori information and the existence of
specific information, e.g. the location of the Sm-binding site, see Figure 7.

3 RESULTS AND DISCUSSION
This discussion is organized into three parts: Firstly, we apply ripalign to
two well-known ncRNA interactions: the fhlA/OxyS and the CopT/CopA. In
the process, we provide a comparative analysis with rip, PETcofoldwith
stem constraints (PETcofold+), without stem constraints (PETcofold−)
and InteRNA. The stem extension constraint of PETcofold represents
a specific programming technique of Seemann et al. (2010a, b) to avoid
incomplete stems. Secondly we study two interactions whose consensus
structures are still under investigation: (i) the interaction of the spliceosomal
RNAs U4/U6 snRNA and (ii) the interaction of the SmY-10/SL-1 RNA

Table 1. Comparative analysis of ripalign with rip Huang et al.
(2009), PETcofold Seemann et al. (2010b): PETcofold− (PC−) and
PETcofold+ (PC+) and InteRNA Salari et al. (2009)

rip ripalign PC− PC+ InteRNA

fhlA/OxyS (entire joint structure predicted)
Sensitivity 0.6286 0.7714 0.4143 0.6286 0.7143
Specificity 0.9987 0.9990 0.9992 0.9995 0.9985
PPV 0.5714 0.6835 0.6042 0.7857 0.5747
MCC 0.5981 0.7253 0.4991 0.7020 0.6396
ACC 0.9976 0.9983 0.9976 0.9985 0.9977
MFE −61.96 −89.91 −32.75 −57.48 −81.13
Runtime 4.11d 3.91d 35 s 33 s 4.13 h

CopT /CopA (entire joint structure predicted)
Sensitivity 0.9091 0.9091 0.9091 0.8864 0.9091
Specificity 0.9984 0.9984 0.9981 0.9984 0.9986
PPV 0.8000 0.8000 0.7692 0.7959 0.8163
MCC 0.8517 0.8517 0.8350 0.8388 0.8604
ACC 0.9978 0.9978 0.9975 0.9976 0.9979
MFE −57.64 −57.64 −52.11 −57.20 −56.12
Runtime 8.63 h 10.16 h 3.589 s 3.065 s 5.20 m

We consider sensitivity, specificity, PPV, ACC, MCC and the MFE of the predicted
structures. The fhlA/OxyS-joint structures of ripalign and PETcofold are based
on the MSAs displayed in Figure 5. The fhlA/OxyS-joint structures predicted by rip and
InteRNA are based on the 8th pair of sequences displayed in Figure 5. All quantities
are based on the natural structure derived in Seemann et al. (2010b), free energy is given
in kcal/mol. The CopT /CopA-joint structures are based on the sequences presented in
Wagner and Flärdh (2002). All calculations were performed on an Intel(R) Xeon(R)
E5410 @ 2.33 GHz (eight cores), 48 GB memory, CentOS release 5.3. The runtime is
given in day (d), hour (h), minute (m) and second (s).

proposed by MacMorris et al. (2007). Thirdly, we integrate our findings
and give concluding remarks.

3.1 The fhlA/OxyS interaction
The OxyS RNA represses fhlA mRNA translation initiation through base
pairing with two short sequences (Argaman and Altuvia, 2000), one of
which overlaps the ribosome binding sequence and the other resides further
downstream, within the coding region of fhlA. We can report that ripalign
improves the computational results in terms of sensitivity, specificity, positive
prediction value (PPV), accuracy (ACC), Matthew’s correlation coefficient
(MCC) in comparison with rip. Furthermore, we can report improvements
compared to the existing alignment interaction programs, see Table 1. The
exception here is the PPV 0.7857 achieved by PETcofold+.

Comparison of the predicted interaction (Fig. 5) shows that ripalign
and PETcofold− produce a similar result and agree well with the natural
structure derived in Argaman and Altuvia (2000). In contrast, rip and
PETcofold+ predict joint structures that differ significantly from Argaman
and Altuvia (2000). We display for ripalign each contact region having
a probability >10% and accordingly highlight in Figure 5D four distinct
contact regions. The two additional contact regions, identified in the partition
function, exhibit a significantly lower probability. An additional hairpin over
R[72,89] is predicted in OxyS, instead of the unpaired segment occurring in
the natural structure, can be understood in the context of minimizing free
energy.

3.2 The CopT/CopA interaction
It is known that the antisense RNA CopA binds to the leader region of
the repA mRNA. The target here is named CopT (Kolb et al., 2000;
Wagner and Flärdh, 2002). In lack of MSA for CopT /CopA, we cannot
utilize the full potential of ripalign; however, the interaction is well
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A

B

C

D

Fig. 5. Alignment-based prediction of fhlA/OxyS (A) the annotated structure
of Argaman and Altuvia (2000), (B) the PETcofold− structure, (C)
the PETcofold+ structure and (D) the joint structure as predicted by
ripalign based on the entire MSA. Target site (grey blocks) probabilities
[as detailed in Section 4 of Supplementary Material, Equation (5.5)],
computed by ripalign, are annotated explicitly if they exceed 10% or
just by ≤10%, otherwise.

known and included for reference purposes. The quality of the prediction
is comparable to that of PETcofold+, PETcofold− or InteRNA, see
Table 1. CopT /CopA exhibits two distinct interactions. While the first (main)
interaction is correctly identified as JHy

25,30;20,27 by ripalign, the second

interaction is ranked fifth, JHy
54,57;53,56 with a probability of 6.14%, see Table 2.

3.3 The U4/U6 interaction
U4 and U6 are two spliceosomal RNAs (snRNAs) that are known to be
involved in splicing pre-mRNA. For at least a quarter century, these two
ncRNA molecules have been conjectured to interact. The precise nature of
their interaction and related proteins is still the subject of investigation.

Table 2. Top five hybrids and their hybrid-probabilities (H-prob)

Rank fhlA/OxyS CopT /CopA

Hybrid H-prob (%) Hybrid H-prob (%)

1 JHy
25,30;20,27 55.41 JHy

17,38;17,38 38.71

2 JHy
98,102;69,73 27.33 JHy

17,37;17,37 13.12

3 JHy
34,36;42,44 21.37 JHy

16,39;16,39 10.33

4 JHy
56,59;41,44 20.17 JHy

18,37;18,37 8.43

5 JHy
101,102;98,99 16.22 JHy

54,57;53,56 6.14

The hybrid-probabilities of CopT /CopA and fhlA/OxyS listed in the table as predicted
by ripalign.

Adopting an evolutionary perspective, we notice that there are significant
distinctions between the different clades (ranging from simple protostomes
to higher deuterostomes) in which this interaction is described (López et al.,
2008; Otake et al., 2002; Shambaugh et al., 1994; Shukla et al., 2002; Thomas
et al., 1990). We find for, instance, a discussed 5’ stem of U6 as well as
stem I between U4 and U6. Furthermore, even within e.g. human a third
interaction (stem III) is discussed (Brow and Vidaver, 1995; Jakab et al.,
1997 A. Bindereif and S. Rader, personal communication). Figure 6A shows
a consensus of the previously described U4/U6 interactions.

We divide all known metazoan U4 and U6 snRNAs into three
distinct groups and alignments: protostomia without insects, insects and
deuterostomia. Marz et al. (2008) observed that insects behave in their
secondary structure different from other protostomes. Comparing all
predicted U4/U6 interactions, displayed in Figure 6B–E, we draw the
following conclusions:

(i) The secondary partial structures of the U4/U6 complex for all
three groups predicted by ripalign agree predominantly with
the described secondary structures in metazoans: Stem I and II are
conserved at present, as well as the four commonly described hairpins.

(ii) For all three groups, Stem II (Fig. 6, top) is highly conserved. External
ascendancies, such as protein interactions are discussed to stabilize
Stem II additionally. Stem I is also highly conserved except for insects,
which agrees with the literature.

(iii) For all three groups, the 5′ hairpin of U4 snRNA seems highly
conserved to interact with the U6 snRNA (‘N’). This RNA feature
is not fully understood, since this element is also believed to contain
intraloop interactions and may bind to a 15.5-kDa protein (Vidovic
et al., 2000).

(iv) For all metazoans, the U6 snRNA shows conserved intramolecular
interactions (3’stem ‘3’s’).

(v) Stem III (Brow and Vidaver, 1995; Jakab et al., 1997) seems to be
not a conserved feature; however; the same region of U6 interacts
in deuterostomes significantly with a probability of 24.3% in higher
metazoans with the central stem loop of U4 (Fig. 6E, ‘J’).

(6) For both: protostomia (without insects) and deuterostomes, the 5′
hairpin of U6 snRNA seems to interact with the U4 3′ hairpin (‘M’).
However, this observation does not hold for insects, which agrees with
a systematically different secondary structure of spliceosomal RNAs
in insects (Marz et al., 2008).

Since the three divergent groups of metazoans independently exhibit
analogous secondary structure features, ripalign has led to observations
(3)–(6), potentially having biological relevance.
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Fig. 6. The U4/U6 interaction prediction with Sm-binding site constraint in
U4. The Sm-binding site in molecule U4 is 5′-AAUUUUUG-3′(black frames

3.4 The SmY-10/SL-1 interaction of Caenorhabditis
elegans

MacMorris et al. (2007) stipulated that SmY-10 RNA, is possibly involved
in trans-splicing, interacts with the splice leader RNA (SL-1 RNA). This
interaction has never been identified before. In Figure 7, we show that the
Sm-binding sites of the RNA molecules SmY-10 and SL-1 are R[56,62] and
S[25,31], respectively. In Figure 7A, the structure is being predicted by rip
(Huang et al., 2010). We observe two unsatisfying phenomena: a stack in
SmY-10 is formed by a single intra arc S24S67 and there exist intra arcs
in the Sm-binding sites. The canonical grammar presented here restricts
the configuration ensemble to canonical joint structures, resulting in the
structure presented in Figure 7B in which the peculiar isolated interaction arc
disappears. However, the nucleotides of the Sm-binding sites still form either
intra or inter-molecular base pairs. Incorporating the structural constraints
option, we derive the structure displayed in Fig. 7C. Here the Sm-binding
sites are constrainted to be single stranded. Since the predicted interactions
have either a low probability or consist of two base pairs only, we conclude
that if SmY -10 is interacting with SL-1 in vivo, this interaction has to be
stabilized further by e.g. proteins.

Our case studies show that ripalign improves the prediction of
interaction regions significantly at the expense of computational cost. The
case studies of the fhlA/OxyS and the CopT /CopA interaction show that
ripalign’s full potential comes to bear when MSAs are present. It is
then that our method can reliably predict the joint secondary structures. We
remark that structure prediction is just part of the ripalign-functionalities.
Derived thermodynamic quantities, in particular the base pairing and hybrid
probabilities, are also useful in a variety of ways. For instance, they help to
improve the accuracy of other software tools such as RactIP (Kato et al.,
2010).

The quality of prediction depends critically on the quality of the MSAs.
The issue of alignment quality is not easily solved: creating an alignment
without knowing the structure is unlikely to produce a structural alignment.
In this work, we mainly used handmade alignments considering sequence
and structure derived from literature knowledge. In case of automatically
derived alignments, it might be an option to realign the sequences of an
RNA family taking both the predicted secondary structures and predicted
joint structure with other RNA families into consideration.

Clearly,ripalign is limited by its a priori output class of joint structures
and can in particular not identify any joint structures exhibiting pseudoknots.
To save computational resources, we stipulate that only alignment positions
contribute as indices and loop sizes. This assumption may cause the existence
of some interior arcs RiRj having arc length smaller than three. However,
Bernhart et al. (2008) showed that this problem can be improved substantially
by introducing a different, more rational handling of alignment gaps, and
by replacing the rather simplistic model of covariance scoring with more
sophisticated RIBOSUM-like scoring matrices.

Table 1 makes evident that approximation algorithms are much faster. For
instance PETcofold (Seemann et al., 2010a, b), has a time complexity of
O(m(N +M)3 n), where m is the number of sequences in the MSA, N and M
being the sequence lengths of the longer and shorter alignment, respectively,
and n<N/2 is the number of iterations for the adaption of the threshold
value to find likely partial secondary structures. Their basic assumption of
PETcofold being that the two secondary structures fold independently and
that intra-loop evaluation differences are negligible.

The flip side of reducing the complexity of a folding problem by
introducing additional assumptions, is the uncertainty of the quality of the

labeled with Sm). (A) Consensus structure of previously published U4/U6
interactions. (B) The consensus structure of ripalign results shows
several possible conserved interactions. (C–E) The joint structures of
protostomia (without insects), insects and deuterostomia are predicted by
ripalign under the Sm-binding site constraint. The target site (grey
blocks) probabilities computed by ripalign are annotated explicitly if
>10% or just by ≤10%, otherwise.
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B

C

Fig. 7. ripalign versus rip: interaction of two specific RNA
molecules, SL-1 and SmY-10 of C.elegans. The Sm-binding sites (black
frames labeled with Sm) in the RNA molecules SmY-10 and SL-1
are 5′ −AAUUUUUG−3′(R[56,62]) and 3′ −GUUUUAA−5′(S[25,31]),
respectively. The joint structure contains a single interior arc S24S67(A),
which is predicted by rip implemented by Huang et al. (2010).
The joint structure (B) is predicted by ripalign without any
structural constraints. The joint structure (C) is predicted by ripalign
under the structural constraints that 5′ −AAUUUUUG−3′(R[56,62]) and
3′ −GUUUUAA−5′(S[25,31]) are Sm-binding sites in the RNA molecules
SmY-10 and SL-1, respectively. The target site (grey blocks) probabilities
computed by ripalign are annotated explicitly if >10% or just by ≤10%,
otherwise.

solution. Point in case here is that arguably the two secondary structures did
not evolve independently, but rather correlated by means of their functional
interaction.

The RNA–RNA interaction problem exhibits a challenge long absent
from the folding of RNA secondary structures: the time efficient folding
of MFE configurations. While the O(N3) time complexity of the latter is,
even for long sequences, easy to work with, it is clear that the O(N6)
time complexity of the former has to be improved. At present, the only
alternative to the DP-paradigm are heuristic-based algorithms and both
approaches complement each other well. When encountering new scenarios,
like the U4/U6 interaction or the SmY-10/SL-1 interaction of C.elegans,
it seems however safer to explore the entire configuration space and
make use of statistical information via the partition function–even at the
high computational cost. For the U4/U6 and the SmY-10/SL-1 interaction,
ripalign offers a detailed picture of the interaction and identifies potential
interaction regions. Within its complexity limitations, ripalign is capable
capturing the entire space of RNA interaction structures and allows to
reconstruct the latter via Boltzmann sampling.

It is likely that the next milestone for RNA–RNA folding algorithms lies
neither in DP-foldings nor in heuristics. Deeper structural understanding
of the landscape generated by arc-configurations over fixed sequence
alignments is the key here. Advances on this topic will eventually lead to
provable error bounds and thereby simultaneously make the DP-paradigm
and heuristics obsolete. At the same time, this might allow us to understand
the ad hoc definition of joint structures due to Alkan et al. (2006), which is
intimately connected to the topology of the configuration.
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