
Chapter 5Chapter 5

Large and Fast: Large and Fast:

Exploiting Memory Exploiting Memory

Hierarchy

Memory Technology
§
5
.1
 In
tro
d
u
c
tio
n

Memory Technology

� Static RAM (SRAM)

5
.1
 In
tro
d
u
c
tio
n� Static RAM (SRAM)

� 0.5ns – 2.5ns, $2000 – $5000 per GB

5
.1
 In
tro
d
u
c
tio
n

� Dynamic RAM (DRAM)

� 50ns – 70ns, $20 – $75 per GB� 50ns – 70ns, $20 – $75 per GB

� Magnetic disk� Magnetic disk

� 5ms – 20ms, $0.20 – $2 per GB

Ideal memory� Ideal memory

� Access time of SRAM� Access time of SRAM

� Capacity and cost/GB of disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Principle of LocalityPrinciple of Locality

� Programs access a small proportion of � Programs access a small proportion of
their address space at any time

Temporal locality� Temporal locality

� Items accessed recently are likely to be � Items accessed recently are likely to be
accessed again soon

e.g., instructions in a loop, induction variables� e.g., instructions in a loop, induction variables

� Spatial locality� Spatial locality

� Items near those accessed recently are likely
to be accessed soonto be accessed soon

� E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

� E.g., sequential instruction access, array data

Taking Advantage of LocalityTaking Advantage of Locality

� Memory hierarchy� Memory hierarchy

� Store everything on disk

� Copy recently accessed (and nearby)
items from disk to smaller DRAM memoryitems from disk to smaller DRAM memory

� Main memoryMain memory

� Copy more recently accessed (and
nearby) items from DRAM to smaller nearby) items from DRAM to smaller
SRAM memorySRAM memory

� Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Memory Hierarchy LevelsMemory Hierarchy Levels

� Block (aka line): unit of copyingBlock (aka line): unit of copying
� May be multiple words

� If accessed data is present in � If accessed data is present in
upper level
� Hit: access satisfied by upper levelHit: access satisfied by upper level

� Hit ratio: hits/accesses

� If accessed data is absent� If accessed data is absent
� Miss: block copied from lower level

� Time taken: miss penalty

� Miss ratio: misses/accesses
= 1 – hit ratio

� Then accessed data supplied from � Then accessed data supplied from
upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Cache Memory
§
5
.2
 T
h
e
 B
a
s
ic
s
 o
f C
a
c
h
e
s

Cache Memory

� Cache memory

5
.2
 T
h
e
 B
a
s
ic
s
 o
f C
a
c
h
e
s

� Cache memory

� The level of the memory hierarchy closest to
the CPU

5
.2
 T
h
e
 B
a
s
ic
s
 o
f C
a
c
h
e
s

the CPU

� Given accesses X1, …, Xn–1, Xn

5
.2
 T
h
e
 B
a
s
ic
s
 o
f C
a
c
h
e
s

� Given accesses X1, …, Xn–1, Xn

� How do we know if
the data is present?the data is present?

� Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Direct Mapped CacheDirect Mapped Cache

� Location determined by address� Location determined by address

� Direct mapped: only one choice

� (Block address) modulo (#Blocks in cache)

� #Blocks is a
power of 2power of 2

� Use low-order
address bitsaddress bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Tags and Valid BitsTags and Valid Bits

� How do we know which particular block is � How do we know which particular block is
stored in a cache location?

Store block address as well as the data� Store block address as well as the data

� Actually, only need the high-order bits� Actually, only need the high-order bits

� Called the tag

� What if there is no data in a location?

� Valid bit: 1 = present, 0 = not present� Valid bit: 1 = present, 0 = not present

� Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Cache ExampleCache Example

� 8-blocks, 1 word/block, direct mapped� 8-blocks, 1 word/block, direct mapped

� Initial state

Index V Tag DataIndex V Tag Data

000 N

001 N001 N

010 N

011 N011 N

100 N

101 N101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

111 N

Cache ExampleCache Example

Word addr Binary addr Hit/miss Cache blockWord addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Index V Tag DataIndex V Tag Data

000 N

001 N001 N

010 N

011 N011 N

100 N

101 N101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

111 N

Cache ExampleCache Example

Word addr Binary addr Hit/miss Cache blockWord addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Index V Tag DataIndex V Tag Data

000 N

001 N001 N

010 Y 11 Mem[11010]

011 N011 N

100 N

101 N101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

111 N

Cache ExampleCache Example

Word addr Binary addr Hit/miss Cache blockWord addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Index V Tag Data

26 11 010 Hit 010

Index V Tag Data

000 N

001 N001 N

010 Y 11 Mem[11010]

011 N011 N

100 N

101 N101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

111 N

Cache ExampleCache Example

Word addr Binary addr Hit/miss Cache blockWord addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

Index V Tag Data

3 00 011 Miss 011

16 10 000 Hit 000

Index V Tag Data

000 Y 10 Mem[10000]

001 N001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]011 Y 00 Mem[00011]

100 N

101 N101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

111 N

Cache ExampleCache Example

Word addr Binary addr Hit/miss Cache blockWord addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Index V Tag DataIndex V Tag Data

000 Y 10 Mem[10000]

001 N001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]011 Y 00 Mem[00011]

100 N

101 N101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

111 N

Address SubdivisionAddress Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Example: Larger Block SizeExample: Larger Block Size

� 64 blocks, 16 bytes/block� 64 blocks, 16 bytes/block

� To what block number does address 1200
map?map?

� Block address = 1200/16 = 75� Block address = 1200/16 = 75

� Block number = 75 modulo 64 = 11

03491031

Tag Index Offset
4 bits6 bits22 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Block Size ConsiderationsBlock Size Considerations

� Larger blocks should reduce miss rate� Larger blocks should reduce miss rate

� Due to spatial locality

� But in a fixed-sized cache

� Larger blocks ⇒ fewer of them� Larger blocks ⇒ fewer of them

� More competition ⇒ increased miss rate

⇒� Larger blocks ⇒ pollution

� Larger miss penalty� Larger miss penalty

� Can override benefit of reduced miss rate

� Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Cache MissesCache Misses

� On cache hit, CPU proceeds normally� On cache hit, CPU proceeds normally

� On cache miss

� Stall the CPU pipeline

� Fetch block from next level of hierarchy� Fetch block from next level of hierarchy

� Instruction cache miss

� Restart instruction fetch

� Data cache miss� Data cache miss

� Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Write-ThroughWrite-Through

� On data-write hit, could just update the block in On data-write hit, could just update the block in
cache
� But then cache and memory would be inconsistent� But then cache and memory would be inconsistent

� Write through: also update memory

� But makes writes take longer� But makes writes take longer
� e.g., if base CPI = 1, 10% of instructions are stores,
write to memory takes 100 cycleswrite to memory takes 100 cycles

� Effective CPI = 1 + 0.1×100 = 11

� Solution: write buffer� Solution: write buffer
� Holds data waiting to be written to memory

CPU continues immediately� CPU continues immediately
� Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Write-BackWrite-Back

� Alternative: On data-write hit, just update � Alternative: On data-write hit, just update
the block in cache

Keep track of whether each block is dirty� Keep track of whether each block is dirty

� When a dirty block is replaced� When a dirty block is replaced

� Write it back to memory

� Can use a write buffer to allow replacing block
to be read firstto be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Write AllocationWrite Allocation

� What should happen on a write miss?� What should happen on a write miss?

� Alternatives for write-through

� Allocate on miss: fetch the block

� Write around: don’t fetch the block� Write around: don’t fetch the block

� Since programs often write a whole block before
reading it (e.g., initialization)reading it (e.g., initialization)

� For write-back� For write-back

� Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Example: Intrinsity FastMATHExample: Intrinsity FastMATH

� Embedded MIPS processor� Embedded MIPS processor
� 12-stage pipeline

Instruction and data access on each cycle� Instruction and data access on each cycle

� Split cache: separate I-cache and D-cacheSplit cache: separate I-cache and D-cache
� Each 16KB: 256 blocks × 16 words/block

� D-cache: write-through or write-back� D-cache: write-through or write-back

� SPEC2000 miss rates
� I-cache: 0.4%

� D-cache: 11.4%� D-cache: 11.4%

� Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Example: Intrinsity FastMATHExample: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Main Memory Supporting CachesMain Memory Supporting Caches

� Use DRAMs for main memoryUse DRAMs for main memory
� Fixed width (e.g., 1 word)

� Connected by fixed-width clocked bus� Connected by fixed-width clocked bus
� Bus clock is typically slower than CPU clock

� Example cache block read� Example cache block read
� 1 bus cycle for address transfer

� 15 bus cycles per DRAM access� 15 bus cycles per DRAM access

� 1 bus cycle per data transfer

� For 4-word block, 1-word-wide DRAM� For 4-word block, 1-word-wide DRAM
� Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles

Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle� Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Increasing Memory BandwidthIncreasing Memory Bandwidth

� 4-word wide memory
Miss penalty = 1 + 15 + 1 = 17 bus cycles� Miss penalty = 1 + 15 + 1 = 17 bus cycles

� Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

� 4-bank interleaved memory� 4-bank interleaved memory
� Miss penalty = 1 + 15 + 4×1 = 20 bus cycles

� Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

� Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Advanced DRAM OrganizationAdvanced DRAM Organization

� Bits in a DRAM are organized as a � Bits in a DRAM are organized as a
rectangular array

DRAM accesses an entire row� DRAM accesses an entire row

� Burst mode: supply successive words from a � Burst mode: supply successive words from a
row with reduced latency

Double data rate (DDR) DRAM� Double data rate (DDR) DRAM

� Transfer on rising and falling clock edges� Transfer on rising and falling clock edges

� Quad data rate (QDR) DRAM

� Separate DDR inputs and outputs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

DRAM GenerationsDRAM Generations

250

300Year Capacity $/GB

1980 64Kbit $1500000

200

250
1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

150

200

Trac

Tcac

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

100

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

0

50

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250 0

'80 '83 '85 '89 '92 '96 '98 '00 '04 '072007 1Gbit $50

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Measuring Cache Performance
§
5
.3
 M
e
a
s
u
rin
g
 a
n
d
 Im
p
ro
v
in
g
 C
a
c
h
e
 P
e
rfo
rm
a
n
c
e

Measuring Cache Performance

� Components of CPU time

5
.3
 M
e
a
s
u
rin
g
 a
n
d
 Im
p
ro
v
in
g
 C
a
c
h
e
 P
e
rfo
rm
a
n
c
e

Components of CPU time
� Program execution cycles

� Includes cache hit time

5
.3
 M
e
a
s
u
rin
g
 a
n
d
 Im
p
ro
v
in
g
 C
a
c
h
e
 P
e
rfo
rm
a
n
c
e

� Includes cache hit time

� Memory stall cycles
� Mainly from cache misses

5
.3
 M
e
a
s
u
rin
g
 a
n
d
 Im
p
ro
v
in
g
 C
a
c
h
e
 P
e
rfo
rm
a
n
c
e

� Mainly from cache misses

� With simplifying assumptions:

5
.3
 M
e
a
s
u
rin
g
 a
n
d
 Im
p
ro
v
in
g
 C
a
c
h
e
 P
e
rfo
rm
a
n
c
e

5
.3
 M
e
a
s
u
rin
g
 a
n
d
 Im
p
ro
v
in
g
 C
a
c
h
e
 P
e
rfo
rm
a
n
c
e

accessesMemory

cycles stallMemory

5
.3
 M
e
a
s
u
rin
g
 a
n
d
 Im
p
ro
v
in
g
 C
a
c
h
e
 P
e
rfo
rm
a
n
c
e

penalty Missrate Miss
Program

accessesMemory ××=

penalty Miss
nInstructio

Misses

Program

nsInstructio ××=

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

nInstructioProgram

Cache Performance ExampleCache Performance Example

� GivenGiven
� I-cache miss rate = 2%
� D-cache miss rate = 4%� D-cache miss rate = 4%
� Miss penalty = 100 cycles
� Base CPI (ideal cache) = 2� Base CPI (ideal cache) = 2
� Load & stores are 36% of instructions

Miss cycles per instruction� Miss cycles per instruction
� I-cache: 0.02 × 100 = 2� I-cache: 0.02 × 100 = 2
� D-cache: 0.36 × 0.04 × 100 = 1.44

� Actual CPI = 2 + 2 + 1.44 = 5.44� Actual CPI = 2 + 2 + 1.44 = 5.44
� Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Average Access TimeAverage Access Time

� Hit time is also important for performance� Hit time is also important for performance

� Average memory access time (AMAT)

� AMAT = Hit time + Miss rate × Miss penalty

� Example� Example

� CPU with 1ns clock, hit time = 1 cycle, miss � CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

� AMAT = 1 + 0.05 × 20 = 2ns� AMAT = 1 + 0.05 × 20 = 2ns

� 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Performance SummaryPerformance Summary

� When CPU performance increased� When CPU performance increased

� Miss penalty becomes more significant

� Decreasing base CPI

� Greater proportion of time spent on memory � Greater proportion of time spent on memory
stalls

� Increasing clock rate

� Memory stalls account for more CPU cycles� Memory stalls account for more CPU cycles

� Can’t neglect cache behavior when � Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Associative CachesAssociative Caches

� Fully associative� Fully associative

� Allow a given block to go in any cache entry

Requires all entries to be searched at once� Requires all entries to be searched at once

� Comparator per entry (expensive)� Comparator per entry (expensive)

� n-way set associative

� Each set contains n entries

� Block number determines which set� Block number determines which set

� (Block number) modulo (#Sets in cache)

� Search all entries in a given set at once

� n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

� n comparators (less expensive)

Associative Cache ExampleAssociative Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Spectrum of AssociativitySpectrum of Associativity

� For a cache with 8 entries� For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Associativity ExampleAssociativity Example

� Compare 4-block caches� Compare 4-block caches

� Direct mapped, 2-way set associative,
fully associativefully associative

� Block access sequence: 0, 8, 0, 6, 8� Block access sequence: 0, 8, 0, 6, 8

� Direct mappedDirect mapped
Block
address

Cache
index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Associativity ExampleAssociativity Example

� 2-way set associative� 2-way set associative
Block
address

Cache
index

Hit/miss Cache content after access

Set 0 Set 1Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

� Fully associative
Block Hit/miss Cache content after accessBlock
address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

How Much AssociativityHow Much Associativity

� Increased associativity decreases miss � Increased associativity decreases miss
rate

But with diminishing returns� But with diminishing returns

� Simulation of a system with 64KB� Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000

� 1-way: 10.3%

� 2-way: 8.6%� 2-way: 8.6%

� 4-way: 8.3%

� 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Set Associative Cache OrganizationSet Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Replacement PolicyReplacement Policy

� Direct mapped: no choiceDirect mapped: no choice
� Set associative

� Prefer non-valid entry, if there is one� Prefer non-valid entry, if there is one
� Otherwise, choose among entries in the set

Least-recently used (LRU)� Least-recently used (LRU)
� Choose the one unused for the longest timeChoose the one unused for the longest time

� Simple for 2-way, manageable for 4-way, too hard
beyond that

Random� Random
� Gives approximately the same performance
as LRU for high associativity

� Gives approximately the same performance
as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Multilevel CachesMultilevel Caches

� Primary cache attached to CPU� Primary cache attached to CPU

� Small, but fast

� Level-2 cache services misses from
primary cacheprimary cache

� Larger, slower, but still faster than main
memorymemory

� Main memory services L-2 cache misses� Main memory services L-2 cache misses

� Some high-end systems include L-3 cacheSome high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Multilevel Cache ExampleMultilevel Cache Example

� Given� Given

� CPU base CPI = 1, clock rate = 4GHz

Miss rate/instruction = 2%� Miss rate/instruction = 2%

� Main memory access time = 100ns� Main memory access time = 100ns

� With just primary cache

� Miss penalty = 100ns/0.25ns = 400 cycles

� Effective CPI = 1 + 0.02 × 400 = 9� Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Example (cont.)Example (cont.)

� Now add L-2 cache� Now add L-2 cache

� Access time = 5ns

Global miss rate to main memory = 0.5%� Global miss rate to main memory = 0.5%

� Primary miss with L-2 hit� Primary miss with L-2 hit

� Penalty = 5ns/0.25ns = 20 cycles

� Primary miss with L-2 miss

Extra penalty = 500 cycles� Extra penalty = 500 cycles

� CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4� CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

� Performance ratio = 9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Multilevel Cache ConsiderationsMultilevel Cache Considerations

� Primary cache� Primary cache

� Focus on minimal hit time

� L-2 cache

� Focus on low miss rate to avoid main memory � Focus on low miss rate to avoid main memory
access

Hit time has less overall impact� Hit time has less overall impact

� Results� Results

� L-1 cache usually smaller than a single cache

� L-1 block size smaller than L-2 block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Interactions with Advanced CPUsInteractions with Advanced CPUs

� Out-of-order CPUs can execute � Out-of-order CPUs can execute
instructions during cache miss

Pending store stays in load/store unit� Pending store stays in load/store unit

� Dependent instructions wait in reservation � Dependent instructions wait in reservation
stations

Independent instructions continue� Independent instructions continue

� Effect of miss depends on program data � Effect of miss depends on program data
flow

Much harder to analyse� Much harder to analyse

� Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

� Use system simulation

Interactions with SoftwareInteractions with Software

� Misses depend on � Misses depend on
memory access
patterns

Algorithm behavior� Algorithm behavior

� Compiler � Compiler
optimization for
memory accessmemory access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Virtual Memory
§
5
.4
 V
irtu
a
l M
e
m
o
ry

Virtual Memory

� Use main memory as a “cache” for
secondary (disk) storage

5
.4
 V
irtu
a
l M
e
m
o
ry

Use main memory as a “cache” for
secondary (disk) storage
� Managed jointly by CPU hardware and the

5
.4
 V
irtu
a
l M
e
m
o
ry

� Managed jointly by CPU hardware and the
operating system (OS)

� Programs share main memory� Programs share main memory
� Each gets a private virtual address space
holding its frequently used code and dataholding its frequently used code and data

� Protected from other programs

CPU and OS translate virtual addresses to � CPU and OS translate virtual addresses to
physical addresses
VM “block” is called a page� VM “block” is called a page

� VM translation “miss” is called a page fault

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

� VM translation “miss” is called a page fault

Address TranslationAddress Translation

� Fixed-size pages (e.g., 4K)� Fixed-size pages (e.g., 4K)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Page Fault PenaltyPage Fault Penalty

� On page fault, the page must be fetched � On page fault, the page must be fetched
from disk

Takes millions of clock cycles� Takes millions of clock cycles

� Handled by OS code� Handled by OS code

� Try to minimize page fault rate

� Fully associative placement

� Smart replacement algorithms� Smart replacement algorithms

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Page TablesPage Tables

� Stores placement information� Stores placement information
� Array of page table entries, indexed by virtual
page numberpage number

� Page table register in CPU points to page
table in physical memorytable in physical memory

� If page is present in memory� If page is present in memory
� PTE stores the physical page number

� Plus other status bits (referenced, dirty, …)� Plus other status bits (referenced, dirty, …)

� If page is not present
� PTE can refer to location in swap space on
disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

disk

Translation Using a Page TableTranslation Using a Page Table

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Mapping Pages to StorageMapping Pages to Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Replacement and WritesReplacement and Writes

� To reduce page fault rate, prefer least-
recently used (LRU) replacement
To reduce page fault rate, prefer least-
recently used (LRU) replacement
� Reference bit (aka use bit) in PTE set to 1 on � Reference bit (aka use bit) in PTE set to 1 on
access to page

� Periodically cleared to 0 by OS� Periodically cleared to 0 by OS
� A page with reference bit = 0 has not been
used recentlyused recently

� Disk writes take millions of cycles
Block at once, not individual locations� Block at once, not individual locations

� Write through is impractical
Use write-back� Use write-back

� Dirty bit in PTE set when page is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Dirty bit in PTE set when page is written

Fast Translation Using a TLBFast Translation Using a TLB

� Address translation would appear to require � Address translation would appear to require
extra memory references

� One to access the PTE� One to access the PTE

� Then the actual memory access

But access to page tables has good locality� But access to page tables has good locality

� So use a fast cache of PTEs within the CPU� So use a fast cache of PTEs within the CPU

� Called a Translation Look-aside Buffer (TLB)

� Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 � Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100
cycles for miss, 0.01%–1% miss rate

� Misses could be handled by hardware or software� Misses could be handled by hardware or software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Fast Translation Using a TLBFast Translation Using a TLB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

TLB MissesTLB Misses

� If page is in memory� If page is in memory
� Load the PTE from memory and retry

Could be handled in hardware� Could be handled in hardware
� Can get complex for more complicated page table
structuresstructures

� Or in software
Raise a special exception, with optimized handler� Raise a special exception, with optimized handler

� If page is not in memory (page fault)� If page is not in memory (page fault)
� OS handles fetching the page and updating
the page tablethe page table

� Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

TLB Miss HandlerTLB Miss Handler

� TLB miss indicates� TLB miss indicates

� Page present, but PTE not in TLB

Page not preset� Page not preset

� Must recognize TLB miss before � Must recognize TLB miss before
destination register overwritten

� Raise exception

� Handler copies PTE from memory to TLB� Handler copies PTE from memory to TLB

� Then restarts instructionThen restarts instruction

� If page not present, page fault will occur

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Page Fault HandlerPage Fault Handler

� Use faulting virtual address to find PTE� Use faulting virtual address to find PTE

� Locate page on disk

� Choose page to replace

If dirty, write to disk first� If dirty, write to disk first

� Read page into memory and update page � Read page into memory and update page
table

Make process runnable again� Make process runnable again

� Restart from faulting instruction� Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

TLB and Cache InteractionTLB and Cache Interaction

� If cache tag uses If cache tag uses
physical address
� Need to translate
before cache lookup

� Alternative: use virtual
address tagaddress tag
� Complications due to
aliasingaliasing

� Different virtual
addresses for shared addresses for shared
physical address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Memory ProtectionMemory Protection

� Different tasks can share parts of their � Different tasks can share parts of their
virtual address spaces

But need to protect against errant access� But need to protect against errant access

� Requires OS assistance� Requires OS assistance

� Hardware support for OS protection

� Privileged supervisor mode (aka kernel mode)

� Privileged instructions� Privileged instructions

� Page tables and other state information only
accessible in supervisor modeaccessible in supervisor mode

� System call exception (e.g., syscall in MIPS)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

� System call exception (e.g., syscall in MIPS)

The Memory Hierarchy
§
5
.5
 A
 C
o
m
m
o
n
 F
ra
m
e
w
o
rk
 fo
r M
e
m
o
ry
 H
ie
ra
rc
h
ie
s

The Memory Hierarchy
5
.5
 A
 C
o
m
m
o
n
 F
ra
m
e
w
o
rk
 fo
r M
e
m
o
ry
 H
ie
ra
rc
h
ie
s

The BIG Picture

� Common principles apply at all levels of

5
.5
 A
 C
o
m
m
o
n
 F
ra
m
e
w
o
rk
 fo
r M
e
m
o
ry
 H
ie
ra
rc
h
ie
s

The BIG Picture

� Common principles apply at all levels of
the memory hierarchy

Based on notions of caching

5
.5
 A
 C
o
m
m
o
n
 F
ra
m
e
w
o
rk
 fo
r M
e
m
o
ry
 H
ie
ra
rc
h
ie
s

� Based on notions of caching

� At each level in the hierarchy

5
.5
 A
 C
o
m
m
o
n
 F
ra
m
e
w
o
rk
 fo
r M
e
m
o
ry
 H
ie
ra
rc
h
ie
s

� At each level in the hierarchy

� Block placement

5
.5
 A
 C
o
m
m
o
n
 F
ra
m
e
w
o
rk
 fo
r M
e
m
o
ry
 H
ie
ra
rc
h
ie
s

� Finding a block

� Replacement on a miss

5
.5
 A
 C
o
m
m
o
n
 F
ra
m
e
w
o
rk
 fo
r M
e
m
o
ry
 H
ie
ra
rc
h
ie
s

� Replacement on a miss

� Write policy

5
.5
 A
 C
o
m
m
o
n
 F
ra
m
e
w
o
rk
 fo
r M
e
m
o
ry
 H
ie
ra
rc
h
ie
s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Block PlacementBlock Placement

� Determined by associativity� Determined by associativity

� Direct mapped (1-way associative)

One choice for placement� One choice for placement

� n-way set associative� n-way set associative

� n choices within a set

Fully associative� Fully associative

� Any location

� Higher associativity reduces miss rate

Increases complexity, cost, and access time� Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Finding a BlockFinding a Block

Associativity Location method Tag comparisonsAssociativity Location method Tag comparisons

Direct mapped Index 1

n-way set Set index, then search nn-way set
associative

Set index, then search
entries within the set

n

Fully associative Search all entries #entriesFully associative Search all entries #entries

Full lookup table 0

� Hardware caches
� Reduce comparisons to reduce cost� Reduce comparisons to reduce cost

� Virtual memory
Full table lookup makes full associativity feasible� Full table lookup makes full associativity feasible

� Benefit in reduced miss rate

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

ReplacementReplacement

� Choice of entry to replace on a miss� Choice of entry to replace on a miss

� Least recently used (LRU)

Complex and costly hardware for high associativity� Complex and costly hardware for high associativity

� Random� Random

� Close to LRU, easier to implement

Virtual memory� Virtual memory

� LRU approximation with hardware support� LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Write PolicyWrite Policy

� Write-throughWrite-through
� Update both upper and lower levels
� Simplifies replacement, but may require write � Simplifies replacement, but may require write
buffer

� Write-back� Write-back
� Update upper level only
Update lower level when block is replaced� Update lower level when block is replaced

� Need to keep more state

Virtual memory� Virtual memory
� Only write-back is feasible, given disk write � Only write-back is feasible, given disk write
latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Sources of MissesSources of Misses

� Compulsory misses (aka cold start misses)� Compulsory misses (aka cold start misses)
� First access to a block

Capacity misses� Capacity misses
� Due to finite cache sizeDue to finite cache size

� A replaced block is later accessed again

� Conflict misses (aka collision misses)� Conflict misses (aka collision misses)
� In a non-fully associative cache

� Due to competition for entries in a set

� Would not occur in a fully associative cache of � Would not occur in a fully associative cache of
the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Cache Design Trade-offsCache Design Trade-offs

Design change Effect on miss rate Negative performance
effect

Increase cache size Decrease capacity
misses

May increase access
time

Increase associativity Decrease conflict
misses

May increase access
time

Increase block size Decrease compulsory Increases miss Increase block size Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may block size, may
increase miss rate
due to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Virtual Machines
§
5
.6
 V
irtu
a
l M
a
c
h
in
e
s

Virtual Machines

� Host computer emulates guest operating system

5
.6
 V
irtu
a
l M
a
c
h
in
e
s

� Host computer emulates guest operating system
and machine resources

� Improved isolation of multiple guests

5
.6
 V
irtu
a
l M
a
c
h
in
e
s

� Improved isolation of multiple guests

� Avoids security and reliability problems

Aids sharing of resources

5
.6
 V
irtu
a
l M
a
c
h
in
e
s

� Aids sharing of resources

� Virtualization has some performance impact� Virtualization has some performance impact

� Feasible with modern high-performance comptuers

� Examples� Examples

� IBM VM/370 (1970s technology!)

� VMWare

� Microsoft Virtual PC

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

Microsoft Virtual PC

Virtual Machine MonitorVirtual Machine Monitor

� Maps virtual resources to physical � Maps virtual resources to physical
resources
� Memory, I/O devices, CPUs� Memory, I/O devices, CPUs

� Guest code runs on native machine in user
mode
Guest code runs on native machine in user
mode
� Traps to VMM on privileged instructions and � Traps to VMM on privileged instructions and
access to protected resources

Guest OS may be different from host OS� Guest OS may be different from host OS

� VMM handles real I/O devices� VMM handles real I/O devices
� Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Example: Timer VirtualizationExample: Timer Virtualization

� In native machine, on timer interrupt� In native machine, on timer interrupt

� OS suspends current process, handles
interrupt, selects and resumes next processinterrupt, selects and resumes next process

� With Virtual Machine Monitor� With Virtual Machine Monitor

� VMM suspends current VM, handles interrupt,
selects and resumes next VMselects and resumes next VM

� If a VM requires timer interrupts� If a VM requires timer interrupts

� VMM emulates a virtual timer

Emulates interrupt for VM when physical timer � Emulates interrupt for VM when physical timer
interrupt occurs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

interrupt occurs

Instruction Set SupportInstruction Set Support

� User and System modes� User and System modes

� Privileged instructions only available in
system modesystem mode
� Trap to system if executed in user modeTrap to system if executed in user mode

� All physical resources only accessible
using privileged instructionsusing privileged instructions
� Including page tables, interrupt controls, I/O
registersregisters

� Renaissance of virtualization support� Renaissance of virtualization support
� Current ISAs (e.g., x86) adapting

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Cache Control
§
5
.7
 U
s
in
g
 a
 F
in
ite
 S
ta
te
 M
a
c
h
in
e
 to
 C
o
n
tro
l A
 S
im
p
le
 C
a
c
h
e

Cache Control

� Example cache characteristics

U
s
in
g
 a
 F
in
ite
 S
ta
te
 M
a
c
h
in
e
 to
 C
o
n
tro
l A
 S
im
p
le
 C
a
c
h
e

� Example cache characteristics

� Direct-mapped, write-back, write allocate

� Block size: 4 words (16 bytes)

U
s
in
g
 a
 F
in
ite
 S
ta
te
 M
a
c
h
in
e
 to
 C
o
n
tro
l A
 S
im
p
le
 C
a
c
h
e

� Block size: 4 words (16 bytes)

� Cache size: 16 KB (1024 blocks)

32-bit byte addresses

U
s
in
g
 a
 F
in
ite
 S
ta
te
 M
a
c
h
in
e
 to
 C
o
n
tro
l A
 S
im
p
le
 C
a
c
h
e

� 32-bit byte addresses

� Valid bit and dirty bit per block

U
s
in
g
 a
 F
in
ite
 S
ta
te
 M
a
c
h
in
e
 to
 C
o
n
tro
l A
 S
im
p
le
 C
a
c
h
e

� Blocking cache
� CPU waits until access is complete

U
s
in
g
 a
 F
in
ite
 S
ta
te
 M
a
c
h
in
e
 to
 C
o
n
tro
l A
 S
im
p
le
 C
a
c
h
e

CPU waits until access is complete

U
s
in
g
 a
 F
in
ite
 S
ta
te
 M
a
c
h
in
e
 to
 C
o
n
tro
l A
 S
im
p
le
 C
a
c
h
e

03491031

U
s
in
g
 a
 F
in
ite
 S
ta
te
 M
a
c
h
in
e
 to
 C
o
n
tro
l A
 S
im
p
le
 C
a
c
h
e

Tag Index Offset
4 bits10 bits18 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

U
s
in
g
 a
 F
in
ite
 S
ta
te
 M
a
c
h
in
e
 to
 C
o
n
tro
l A
 S
im
p
le
 C
a
c
h
e

Interface SignalsInterface Signals

Read/Write Read/WriteRead/Write

Valid

Address
32

Read/Write

Valid

Address
32

CacheCPU Memory

Address

Write Data

Read Data

32

32

Address

Write Data

Read Data

128

128
Read Data

Ready

32
Read Data

Ready

128

Multiple cycles
per access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 72

Finite State MachinesFinite State Machines

� Use an FSM to Use an FSM to
sequence control steps

� Set of states, transition � Set of states, transition
on each clock edge
� State values are binary � State values are binary
encoded

� Current state stored in a � Current state stored in a
register

� Next state� Next state
= f

n
(current state,

current inputs)

� Control output signals
= f

o
(current state)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 73

= f
o
(current state)

Cache Controller FSMCache Controller FSM

Could
partition into partition into
separate
states to

reduce clock reduce clock
cycle time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Cache Coherence Problem
§
5
.8
 P
a
ra
lle
lis
m
 a
n
d
 M
e
m
o
ry
 H
ie
ra
rc
h
ie
s
: C
a
c
h
e
 C
o
h
e
re
n
c
e

Cache Coherence Problem

� Suppose two CPU cores share a physical

P
a
ra
lle
lis
m
 a
n
d
 M
e
m
o
ry
 H
ie
ra
rc
h
ie
s
: C
a
c
h
e
 C
o
h
e
re
n
c
e

Suppose two CPU cores share a physical
address space
� Write-through caches

P
a
ra
lle
lis
m
 a
n
d
 M
e
m
o
ry
 H
ie
ra
rc
h
ie
s
: C
a
c
h
e
 C
o
h
e
re
n
c
e

� Write-through caches

P
a
ra
lle
lis
m
 a
n
d
 M
e
m
o
ry
 H
ie
ra
rc
h
ie
s
: C
a
c
h
e
 C
o
h
e
re
n
c
e

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

P
a
ra
lle
lis
m
 a
n
d
 M
e
m
o
ry
 H
ie
ra
rc
h
ie
s
: C
a
c
h
e
 C
o
h
e
re
n
c
e

step cache cache

0 0

P
a
ra
lle
lis
m
 a
n
d
 M
e
m
o
ry
 H
ie
ra
rc
h
ie
s
: C
a
c
h
e
 C
o
h
e
re
n
c
e

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

P
a
ra
lle
lis
m
 a
n
d
 M
e
m
o
ry
 H
ie
ra
rc
h
ie
s
: C
a
c
h
e
 C
o
h
e
re
n
c
e

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

P
a
ra
lle
lis
m
 a
n
d
 M
e
m
o
ry
 H
ie
ra
rc
h
ie
s
: C
a
c
h
e
 C
o
h
e
re
n
c
e

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

P
a
ra
lle
lis
m
 a
n
d
 M
e
m
o
ry
 H
ie
ra
rc
h
ie
s
: C
a
c
h
e
 C
o
h
e
re
n
c
e

Coherence DefinedCoherence Defined

� Informally: Reads return most recently � Informally: Reads return most recently
written value

� Formally:� Formally:
� P writes X; P reads X (no intervening writes)
⇒ read returns written value
P writes X; P reads X (no intervening writes)
⇒ read returns written value

� P1 writes X; P2 reads X (sufficiently later)� P1 writes X; P2 reads X (sufficiently later)
⇒ read returns written value

� c.f. CPU B reading X after step 3 in example� c.f. CPU B reading X after step 3 in example

� P1 writes X, P2 writes X
⇒ all processors see writes in the same order⇒ all processors see writes in the same order

� End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

Cache Coherence ProtocolsCache Coherence Protocols

� Operations performed by caches in � Operations performed by caches in
multiprocessors to ensure coherence
� Migration of data to local caches� Migration of data to local caches

� Reduces bandwidth for shared memory

Replication of read-shared data� Replication of read-shared data
� Reduces contention for access

� Snooping protocols
� Each cache monitors bus reads/writes� Each cache monitors bus reads/writes

� Directory-based protocols
� Caches and memory record sharing status of
blocks in a directory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

blocks in a directory

Invalidating Snooping ProtocolsInvalidating Snooping Protocols

� Cache gets exclusive access to a block � Cache gets exclusive access to a block
when it is to be written
� Broadcasts an invalidate message on the bus� Broadcasts an invalidate message on the bus

� Subsequent read in another cache misses
Owning cache supplies updated value� Owning cache supplies updated value

CPU activity Bus activity CPU A’s CPU B’s MemoryCPU activity Bus activity CPU A’s
cache

CPU B’s
cache

Memory

00

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

Memory ConsistencyMemory Consistency

� When are writes seen by other processorsWhen are writes seen by other processors
� “Seen” means a read returns the written value

� Can’t be instantaneously� Can’t be instantaneously

� Assumptions
� A write completes only when all processors have seen � A write completes only when all processors have seen
it

� A processor does not reorder writes with other � A processor does not reorder writes with other
accesses

� Consequence� Consequence
� P writes X then writes Y
⇒ all processors that see new Y also see new X⇒ all processors that see new Y also see new X

� Processors can reorder reads, but not writes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 79

Multilevel On-Chip Caches
§
5
.1
0
 R
e
a
l S
tu
ff: T

h
e
 A
M
D
 O
p
te
ro
n
 X
4
 a
n
d
 In
te
l N
e
h
a
le
m

Multilevel On-Chip Caches
5
.1
0
 R
e
a
l S
tu
ff: T

h
e
 A
M
D
 O
p
te
ro
n
 X
4
 a
n
d
 In
te
l N
e
h
a
le
m

Intel Nehalem 4-core processor

5
.1
0
 R
e
a
l S
tu
ff: T

h
e
 A
M
D
 O
p
te
ro
n
 X
4
 a
n
d
 In
te
l N
e
h
a
le
m

5
.1
0
 R
e
a
l S
tu
ff: T

h
e
 A
M
D
 O
p
te
ro
n
 X
4
 a
n
d
 In
te
l N
e
h
a
le
m

5
.1
0
 R
e
a
l S
tu
ff: T

h
e
 A
M
D
 O
p
te
ro
n
 X
4
 a
n
d
 In
te
l N
e
h
a
le
m

5
.1
0
 R
e
a
l S
tu
ff: T

h
e
 A
M
D
 O
p
te
ro
n
 X
4
 a
n
d
 In
te
l N
e
h
a
le
m

5
.1
0
 R
e
a
l S
tu
ff: T

h
e
 A
M
D
 O
p
te
ro
n
 X
4
 a
n
d
 In
te
l N
e
h
a
le
m

5
.1
0
 R
e
a
l S
tu
ff: T

h
e
 A
M
D
 O
p
te
ro
n
 X
4
 a
n
d
 In
te
l N
e
h
a
le
m

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 80

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

2-Level TLB Organization2-Level TLB Organization

Intel Nehalem AMD Opteron X4Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits

Physical addr 44 bits 48 bitsPhysical addr 44 bits 48 bits

Page size 4KB, 2/4MB 4KB, 2/4MB

L1 TLB L1 I-TLB: 128 entries for small L1 I-TLB: 48 entriesL1 TLB
(per core)

L1 I-TLB: 128 entries for small
pages, 7 per thread (2×) for
large pages

L1 D-TLB: 64 entries for small

L1 I-TLB: 48 entries

L1 D-TLB: 48 entries

Both fully associative, LRU
replacementL1 D-TLB: 64 entries for small

pages, 32 for large pages

Both 4-way, LRU replacement

replacement

L2 TLB
(per core)

Single L2 TLB: 512 entries

4-way, LRU replacement

L2 I-TLB: 512 entries

L2 D-TLB: 512 entries

Both 4-way, round-robin LRUBoth 4-way, round-robin LRU

TLB misses Handled in hardware Handled in hardware

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 81

3-Level Cache Organization3-Level Cache Organization

Intel Nehalem AMD Opteron X4Intel Nehalem AMD Opteron X4

L1 caches
(per core)

L1 I-cache: 32KB, 64-byte
blocks, 4-way, approx LRU
replacement, hit time n/a

L1 I-cache: 32KB, 64-byte
blocks, 2-way, LRU
replacement, hit time 3 cyclesreplacement, hit time n/a

L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU

replacement, hit time 3 cycles

L1 D-cache: 32KB, 64-byte
blocks, 2-way, LRU blocks, 8-way, approx LRU

replacement, write-
back/allocate, hit time n/a

blocks, 2-way, LRU
replacement, write-
back/allocate, hit time 9 cycles

L2 unified 256KB, 64-byte blocks, 8-way, 512KB, 64-byte blocks, 16-way, L2 unified
cache
(per core)

256KB, 64-byte blocks, 8-way,
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified
cache
(shared)

8MB, 64-byte blocks, 16-way,
replacement n/a, write-
back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way,
replace block shared by fewest
cores, write-back/allocate, hit (shared) back/allocate, hit time n/a cores, write-back/allocate, hit
time 32 cycles

n/a: data not available

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 82

n/a: data not available

Mis Penalty ReductionMis Penalty Reduction

� Return requested word first� Return requested word first

� Then back-fill rest of block

� Non-blocking miss processing

� Hit under miss: allow hits to proceed� Hit under miss: allow hits to proceed

� Mis under miss: allow multiple outstanding
missesmisses

� Hardware prefetch: instructions and data� Hardware prefetch: instructions and data

� Opteron X4: bank interleaved L1 D-cache� Opteron X4: bank interleaved L1 D-cache

� Two concurrent accesses per cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 83

Pitfalls
§
5
.11
 F
a
lla
c
ie
s
 a
n
d
 P
itfa
lls

Pitfalls

� Byte vs. word addressing

5
.11
 F
a
lla
c
ie
s
 a
n
d
 P
itfa
lls

� Byte vs. word addressing

� Example: 32-byte direct-mapped cache,
4-byte blocks

5
.11
 F
a
lla
c
ie
s
 a
n
d
 P
itfa
lls

4-byte blocks

� Byte 36 maps to block 1

5
.11
 F
a
lla
c
ie
s
 a
n
d
 P
itfa
lls

� Word 36 maps to block 4

� Ignoring memory system effects when � Ignoring memory system effects when
writing or generating code

� Example: iterating over rows vs. columns of
arraysarrays

� Large strides result in poor locality

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 84

PitfallsPitfalls

� In multiprocessor with shared L2 or L3 � In multiprocessor with shared L2 or L3
cache

Less associativity than cores results in conflict � Less associativity than cores results in conflict
missesmisses

� More cores ⇒ need to increase associativity

Using AMAT to evaluate performance of � Using AMAT to evaluate performance of
out-of-order processorsout-of-order processors

� Ignores effect of non-blocked accesses

Instead, evaluate performance by simulation� Instead, evaluate performance by simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 85

PitfallsPitfalls

� Extending address range using segments� Extending address range using segments

� E.g., Intel 80286

But a segment is not always big enough� But a segment is not always big enough

� Makes address arithmetic complicated� Makes address arithmetic complicated

� Implementing a VMM on an ISA not
designed for virtualization

� E.g., non-privileged instructions accessing � E.g., non-privileged instructions accessing
hardware resources

Either extend ISA, or require guest OS not to � Either extend ISA, or require guest OS not to
use problematic instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 86

use problematic instructions

Concluding Remarks
§
5
.1
2
 C
o
n
c
lu
d
in
g
 R
e
m
a
rk
s

Concluding Remarks

� Fast memories are small, large memories are

5
.1
2
 C
o
n
c
lu
d
in
g
 R
e
m
a
rk
s

Fast memories are small, large memories are
slow
� We really want fast, large memories �

5
.1
2
 C
o
n
c
lu
d
in
g
 R
e
m
a
rk
s

� We really want fast, large memories �

� Caching gives this illusion ☺

� Principle of locality

5
.1
2
 C
o
n
c
lu
d
in
g
 R
e
m
a
rk
s

� Principle of locality
� Programs use a small part of their memory space
frequentlyfrequently

� Memory hierarchy
L1 cache ↔ L2 cache ↔ … ↔ DRAM memory� L1 cache ↔ L2 cache ↔ … ↔ DRAM memory
↔ disk

Memory system design is critical for � Memory system design is critical for
multiprocessors

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

