

Analyzing robustness of biological reaction systems

DTEDI 21. 03. 2012

Sven Dražan

- What is Robustness?
- Dynamic reaction systems
- Behavior and properties
- Computing robustness
- Thesis proposal

Motivation / Bioreactors

Motivation / Photosynthesis

Is stability robustness?

Is homeostasis robustness?

What is robustness

Time (h) Fig. 5.4 Reduced body temperature in man. Response of a group of male

Aborigines (---) and Europeans (----) to a night of moderate cold exposure. From Richards, S.A. (1973). *Temperature Regulation*, Wykeham Publications, Taylor & Francis: London.

What is robustness

Is multistability or instability robustness?

Robustness is a property that allows a system to maintain its function against internal and external perturbations.

Kitano, 2004a

Robustness is a property that allows a system to maintain its function against internal and external perturbations. Kitano, 2004a

function ~ behavior ~ property

$$R_{a,P}^{s} = \int_{P} \psi(p) D_{a}^{s}(p) dp$$

Robustness is a property that allows a system to maintain its property against internal and external perturbations.

Kitano, 2004a

$$R_{a,P}^{s} = \int_{P} \psi(p) D_{a}^{s}(p) dp$$

What is robustness

p16	p26	p36	p46	p56	p66
p15	p25	p35	p45	p55	p65
p14	p24	p34	p44	p54	p64
p13	p23	p33	p43	p53	p63
p12	p22	p32	p42	p52	p62
p11	p21	p31	p41	p51	p61
p10	p20	p30	p40	p50	p60
g1	g2	g3	g4	g5	g6
	p16 p15 p14 p13 p12 p11 p10	p16 p26 p15 p25 p14 p24 p13 p23 p14 p24 p15 p23 p16 p23 p17 p23 p18 p24 p19 p23 p14 p24 p15 p24 p16 p23 p17 p24 p18 p24 p19 p24 p10 p24 p10 p24 p10 p24 p10 p24	p16p26p36p15p25p35p14p24p34p13p23p33p12p22p32p11p21p31p10p20p30g1g2g3	p16p26p36p46p15p25p35p45p14p24p34p44p13p23p33p43p14p24p34p42p14p24p34p42p11p21p31p41p10p20p30p40g1g2g3g4	p16p26p36p46p56p15p25p35p45p55p14p24p34p44p54p13p23p33p43p53p14p22p32p42p52p11p21p31p41p51p10p20p30p40p50g1g2g3g4g5

Features that are perturbed

В	p16	p26	p36	p46	p56	p66
uo	p15	p25	p35	p45	p55	p65
urbati	p14	p24	p34	p44	p54	p64
f perti	p13	p23	p33	p43	p53	p63
ree oi	p12	p22	p32	p42	p52	p62
Deg	p11	p21	p31	p41	p51	p61
	p10	p20	p30	p40	p50	p60
	g1	g2	g3	g4	g5	g6

Features that are perturbed

Robustness and tradeoffs

Α

Robustness-fragility trade-off

Analyzing robustness of biological reaction systems

What is a dynamic reaction system

Demo

Dynamic reaction systems – Example

 $S \xrightarrow{k_1} 2 S$ $W + S \xrightarrow{k_2} 2 W$ $W \xrightarrow{k_3}$

S1 IW.ParticleNumber

Analyzing robustness of biological reaction systems

– [W] |Time – [S] |Time

Dynamic reaction systems – Bigger example

What is a behavior?

98.8% common DNA

Any difference in behavior?

What is a behavior ~ property

Analyzing robustness of biological reaction systems

Current approaches

Breach (Donzé A. and Maler O. 2010)

How does a neighborhood behave?

How does a neighborhood behave?

How does a neighborhood behave?

Sensitivity analysis

Local property robustness

$\mathsf{G}((\mathsf{S}{<}1) \Rightarrow \mathsf{F}(\mathsf{S}{>}2) \land (\mathsf{S}{>}2) \Rightarrow \mathsf{F}(\mathsf{S}{<}1))$

Local property robustness

$G((S<1) \Rightarrow F(S>2) \land (S>2) \Rightarrow F(S<1))$

Local property robustness

$G((S<1) \Rightarrow F(S>2) \land (S>2) \Rightarrow F(S<1))$

Hierarchical refinement

0	0	0	0	O I I I I I I
0	0	0	0	O
0	0	0	0	O
0	0	0	0	O

Hierarchical refinement

^				
Ο	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Hierarchical refinement

			0	0	0	0	0	0	0	0
	0		0	0	0	0	0	0	0	0
	0		0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0
ľ	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

Hierarchical refinement

Hierarchical refinement

Hierarchical refinement

Hierarchical refinement

Hierarchical refinement

- Parallelization faster / bigger models
- GPUs (CUDA)
 - Many small processors
 - Small local memory
- Distance checking instead of sensitivity
- Different hierarchical refinement

Current results / Proposal / Distance checking

Sensitivity analysis

Current results / Proposal / 2n-hierarchical refinement

0

Robustness of Stochastic systems

What have you seen

- What is robustness
- Models of biological systems
- Expressing properties
- Current approaches to robustness of continuous systems
- Innovations in computing robustness of continuous systems
- Robustness of Stochastic systems

Questions and comments are welcome

Thank you for your attention.

• LTL – Linear Temporal Logic

• Amir Pnueli. The temporal logic of programs. In Proc. 18th Annual Symposium on Foundations of Computer Science (FOCS), pages 46–57, 1977.

• STL – Signal Temporal Logic

- O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In FOR- MATS/FTRTFT, pages 152–166, 2004.
- Donzé, A., & Maler, O. (2010). Robust satisfaction of temporal logic over real-valued signals. *Formal Modeling and Analysis of Timed Systems*, 92–106. Springer. doi:10.1007/978-3-642-15297-9_9

Sources

Google Images

- http://www.nature.com/msb/journal/v4/n1/images/msb200812-f2.jpg
- http://wolf-happy-blog.blog.cz/profil
- http://www.publicdomainpictures.net/view-image.php?picture=ovce-a-jeji-dite&image=124

Photosynthesis model

- Lazár Dušan (2009) Modelling of light-induced chlorophyll a fluorescence rise (O-J-I-P transient) and changes in 820 nm-transmittance signal of photosynthesis. Photosynthetica 47(4):483-498, DOI:10.1007/s11099-009-0074-8
- http://www.e-photosynthesis.org/projects/

Software

- NetLogo http://ccl.northwestern.edu/netlogo
- Copasi http://www.copasi.org
- Biocham http://contraintes.inria.fr/BIOCHAM
- Breach http://www-verimag.imag.fr/~donze/breach_page.html

• Wikipedia

- http://en.wikipedia.org/wiki/Lotka_Volterra_equation
- http://en.wikipedia.org/wiki/Snowshoe_Hare
- http://en.wikipedia.org/wiki/Lynx
- Other
 - Jan Papoušek's Bacelor thesis: https://is.muni.cz/auth/th/325494/fi_b/thesis.pdf
 - Human vs. Chimp: http://www.sciencedirect.com/science/article/pii/S0002929707640968