
IA159 Formal Verification Methods
Introduction

Jan Strejček

Department of Computer Science
Faculty of Informatics
Masaryk University



Agenda

Agenda
basic information about the course
quick overview
motivation

IA159 Formal Verification Methods: Introduction 2/31



What does “Formal Verification Methods” mean?

Formal methods are a collection of notations and techniques
for describing and analyzing systems. Methods
are formal in the sense that they are based on
some mathematical theories, such as logic,
automata or graph theory. [Pel01]

Verification is the process of applying a manual or an
automatic technique that is supposed to establish
whether the code either satisfies a given property
or behaves in accordance with some higher-level
description of it. [Pel01]

IA159 Formal Verification Methods: Introduction 3/31



What does “Formal Verification Methods” mean?

In the context of this course, formal verificatin methods are
techniques (usually based on mathematical theories) for
analysing systems with the aim to improve their quality and
reliability.

IA159 Formal Verification Methods: Introduction 4/31



Focus of the course

The course is focused on theoretical and algorithmic bases
of verification methods.
The software engineering aspects of verification methods
are beyond the scope of this course.

IA159 Formal Verification Methods: Introduction 5/31



Literature

There is no single reading material covering the course.
Two main sources:

D. A. Peled: Software Reliability Methods, Springer, 2001.
E. M. Clarke, O. Grumberg, and D. A. Peled: Model
Checking, MIT, 1999.

Other sources (mainly recent journal or conference
papers) will be referred.

IA159 Formal Verification Methods: Introduction 6/31



Connections to other courses

The course assumes familiarity with the following notions:
IB005 Formal Languages and Automata I (aka FJA I)
- pushdown automata
IA006 Selected topics on automata theory (aka FJA II)
- infinite words, Büchi automata, bisimulation equivalence
IA040 Modal and Temporal Logics for Processes
- temporal logics, mainly LTL
IV113 Introduction to Validation and Verification
- automata based LTL model checking

IA159 Formal Verification Methods: Introduction 7/31



Connections to other courses

Other relevant courses:
MA015 Graph Algorithms
IV010 Communication and Parallelism
IB002 Design of Algorithms I
IV022 Design and Verification of Algorithms
PA008 Compiler Construction

IA159 Formal Verification Methods: Introduction 8/31



Connections to other courses

Courses following (is some sense) our course:
IV101 Seminar on verification
IV115 Parallel and Distributed Laboratory Seminar
IV074 Laboratory for Parallel and Distributed Systems
IA072 Seminar on Concurrency

IA159 Formal Verification Methods: Introduction 9/31



Examination

There will be an oral exam at the end.
No intrasemestral tests, no written exams, no homeworks.

IA159 Formal Verification Methods: Introduction 10/31



Overview of verification methods



Basic verification methods

testing
deductive verification (with use of theorem provers)
equivalence checking
reachability and model checking
static analysis and abstract interpretation
symbolic execution

Other related techniques
abstraction
slicing
SAT/SMT solving

IA159 Formal Verification Methods: Introduction 12/31



Abstraction

reduces the size of systems to be analyzed
can transform an infinite-state system into a finite one
the set of system behaviours is usually increased (source
of false alarms)

IA159 Formal Verification Methods: Introduction 13/31



Slicing

reduces the size of systems on the level of source code
the reduced system preserves values of given variables at
given control locations
M. Weiser: Program Slicing, IEEE Transactions on
Software Engineering 10(4), 1984.

IA159 Formal Verification Methods: Introduction 14/31



Slicing: example

1: char *copy(char *dst, char *src, int n, int *L) {
2: int i, len;
3: len = 0;
4: if (src != NULL && dst != NULL) {
5: len = n;
6: lock(L);
7: }
8: i = 0;
9: while (i < len) {

10: dst[i] = src[i];
11: i++;
12: }
13: if (len > 0) {
14: unlock(L);
15: }
16: return dst;
17: }

Assume that we are interested only in values of lock L at the end of line 16.

IA159 Formal Verification Methods: Introduction 15/31



Slicing: example

1: char *copy(char *dst, char *src, int n, int *L) {
2: int len;
3: len = 0;
4: if (src != NULL && dst != NULL) {
5: len = n;
6: lock(L);
7: }
8:
9:

10:
11:
12:
13: if (len > 0) {
14: unlock(L);
15: }
16: return ;
17: }

Assume that we are interested only in values of lock L at the end of line 16.

IA159 Formal Verification Methods: Introduction 16/31



SAT/SMT solving

SAT problem is to decide satisfiability of propositional logic
formulae.

Satisfiability Modulo Theories (SMT) problem is to decide
satisfiability of first-order logic formulea with
respect to a given theory (e.g. theory of integers
with addition and substraction).

crucial for symbolic execution, abstraction, deductive
verification
A. R. Bradley amd Z. Manna: The Calculus of
Computation: Decision Procedures with Applications to
Verification, Springer, 2007.

IA159 Formal Verification Methods: Introduction 17/31



Testing

simple, feasible, very good cost/performance ratio
very effective in early stages of debugging process
applicable directly to real systems
cannot guarantee that there are no errors
in practice: standard technique for enhancing the quality of
systems, wide tool support

IA159 Formal Verification Methods: Introduction 18/31



Deductive verification

Deductive verification is a method for proving that, for any input
values satisfying a given initial condition, a given program
terminates and resulting variable values satisfy a given final
assertion.

If initial condition x2 > 0 holds, then the execution of

y1=0;
y2=0;
while (y2 < x2) {

y1 = y1 + x1;
y2++;

}

always terminates and the resulting variable values satisfy final
assertion y1 = x1 ∗ x2 .

IA159 Formal Verification Methods: Introduction 19/31



Deductive verification

applicable to models of real systems
needs a huge effort of an expert on both deductive
verification and systems under verification
can guarantee that (a model of) a real system satisfies a
given property
in practice: used rarely (e.g. partial correctness of FPU in
AMD processors)

IA159 Formal Verification Methods: Introduction 20/31



Equivalence checking

Equivalence checking decides whether two given systems are
equivalent with respect to a given equivalence.

applicable to models of real systems
needs a detailed formal specification of a system under
verification (or another “second system”)
there are no algorithms for reasonable equivalences and
infinite-state systems
in practice: some specific applications (e.g. equivalence of
different levels of hardware design)

IA159 Formal Verification Methods: Introduction 21/31



Reachability and model checking

Reachability decides whether any execution of a given program
can reach a given state. Model checking deficed whether each
execution of a given program satisfies a given property (which
is typically described by a temporal logic formula).

applicable to (usually finite-state) models of real systems
needs formal description of the property to be checked
fully automatic, but feasible only for relatively small
finite-state systems
succesfull verification of real systems may require
provision of a suitable abstraction
in practice: a standard technique for verification of simple
hardware designs, used also for verification of small
systems (e.g. communication protocols)

IA159 Formal Verification Methods: Introduction 22/31



Static analysis and abstract interpretation

Static analysis and abstract interpretation is typically used to
overapproximate or underapproximate a set of reachable states
of selected program variables in each program location. The
analyzed code is not executed.

Consider the following states of a lock x :

U L

lock(x)

unlock(x)

DU

unlock(x)

DL

lock(x)

U = unlocked error states: DU = double unlock
L = locked DL = double lock

IA159 Formal Verification Methods: Introduction 23/31



Static analysis and abstract interpretation

1: char *copy(char *dst, char *src, int n, int *L) {
2: int i, len; // {U}
3: len = 0; // {U}
4: if (src != NULL && dst != NULL) { // {U}
5: len = n; // {U}
6: lock(L); // {L}
7: } // {U,L}
8: i = 0; // {U,L}
9: while (i < len) { // {U,L}

10: dst[i] = src[i]; // {U,L}
11: i++; // {U,L}
12: } // {U,L}
13: if (len > 0) { // {U,L}
14: unlock(L); // {DU,U}
15: } // {U,L}
16: return dst; // {U}
17: }

The indicated double unlock error is a false positive.

IA159 Formal Verification Methods: Introduction 24/31



Static analysis and abstract interpretation

applicable directly to source code of real systems (or
directly to executables)
feasible
can verify only a specific class of properties (including
many interesting properties)
may produce false alarms
fully automatic
in practice: some static analysis is performed by almost
every compiler, there are very efficient tools (e.g. Coverity,
CodeSonar, Stanse) able to work with big pieces of real
software (e.g. Linux kernel)

IA159 Formal Verification Methods: Introduction 25/31



Symbolic execution

Symbolic execution executes the code on abstract symbols
instead of input values.

true false
x1>x2−3

x2:=3*x2

x2:=16 x1:=5

x1=a; x2=b

true

true

x1=a; x2=3b

a<=3b−3

a<=3b−3

x1=5; x2=3b

a>3b−3

x1=a; x2=3b

a>3b−3

x1=a; x2=16

begin

x1=a; x2=3b

IA159 Formal Verification Methods: Introduction 26/31



Symbolic execution

can be seen as exhaustive testing
applicable directly to source code of real systems (or
directly to executables)
fully automatic
do not report false alarms
feasible, but the computation usually did not finish due to
large or even infinite number of execution paths
in practice: several successful applications, but
computational cost of pure symbolic execution is too high

IA159 Formal Verification Methods: Introduction 27/31



Combined methods

popular combinations:
abstraction + model checking
model checking + counter-example guided abstraction
refinement (CEGAR)
abstract interpretation + CEGAR
testing + model checking
testing + symbolic execution

the aim is to develop methods which are automatic (as
much as possible) and applicable directly to sources or
binaries of real systems
may be incomplete and/or produce some false alarms
in practice: already has some specific applications in
verification (e.g. verification of Windows drivers by Static
Driver Verifier) and many applications in test-generation
and bug-finding (e.g. SAGE, PEX, Coverity)
combination of basic techniques is definitely the most
promising approach

IA159 Formal Verification Methods: Introduction 28/31



Actual topics

deductive software verification: verification of flowcharts,
axiomatic program verification
theorem prover ACL2 (with a demo)
model checking of infinite-state systems (an overview)
LTL model checking of pushdown systems
abstraction and CEGAR
symbolic execution (and whitebox fuzz testing)
abstract interpretation

IA159 Formal Verification Methods: Introduction 29/31



Motivation

Formal verification is used in Microsoft, Intel, AMD,. . .
Formal verification is usually a supplementary method, the
main methods are testing or simulation.
In development of execution cluster of Core i7, formal
verification has been used as a primary validation vehicle
(simulation has been dropped)
only 3 bugs escaped to silicon (2 other bugs were detected
during the pre-silicon stage by full chip testing)
this number is usually about 40
the previous minimum is 11
More information in Kaivola et al: Replacing Testing with
Formal Verification in Intel Core i7 Processor execution
Engine Validation, CAV 2009, LNCS 5643, Springer, 2009.

IA159 Formal Verification Methods: Introduction 30/31



Coming next week

Deductive software verification

prehistory of formal verification: 40+ years old technique!
Does my program terminate? For all inputs?
If yes, does it do what it is supposed to do?
Can it be proven automatically?

IA159 Formal Verification Methods: Introduction 31/31


