IA159 Formal Verification Methods

Model Checking: An Overview

Jan Strejcek

Department of Computer Science
Faculty of Informatics
Masaryk University

Focus and sources

Focus

m model checking in general

m specifications, linear temporal logic (LTL), Blichi automata

m models, Kripke structure, process rewrite systems (PRS)
m model checking problems and decidability
m LTL model checking of finite systems
m state explosion problem

Sources

m Chapters 1, 2, 3 and 9 of E. M. Clarke, O. Grumberg, and
D. A. Peled: Model Checking, MIT, 1999.

m R. Mayr: Decidability and Complexity of Model Checking
Problems for Infinite-State Systems. PhD thesis, 1998.

I1A159 Formal Verification Methods: Model Checking: An Overview 2/38

Model checking schema

model M specification S

N 7

model checking
algorithm

SN

M does not satisfy S
(+ counterexample)

YES,
M satisfies S

1A159 Formal Verification Methods: Model Checking: An Overview 3/38

Model checking

Specification

1A159 Formal Verification Methods: Model Checking: An Overview 4/38

m a finite formal description of some property that should be
satisfied by all behaviours of the system

m usually does not fully specify the system

m typically given by a formula of some temporal logic

m Linear Temporal Logic (LTL) (linear time)
m Computational Tree Logic (CTL) (branching time)
m CTL*, Hennessy—Milner logic, u calculus, ...

m can be given also by a Bichi automaton, etc.

I1A159 Formal Verification Methods: Model Checking: An Overview 5/38

The hierarchy of basic temporal logics.

modal u-calculus

CTL*

Henessy-Milner logic

The hierarchy of selected temporal logics according to their
expressive power.

1A159 Formal Verification Methods: Model Checking: An Overview 6/38

State-based vs. action-based logics

state-based These logics talk about properties of states of a
system. Properties of a single state are reflected
by validity of atomic propositions in the state.
State-based logic are interpreted over behaviours
of the system represented by sequences (or trees)
of sets of valid atomic propositions.

action-based Every transition of a system is labelled with an
action. Action-based logic are interpreted over
behaviours of the system represented only by
sequences (or trees) of actions.

We provide definition of both state-based and action-based LTL.

I1A159 Formal Verification Methods: Model Checking: An Overview 7/38

Syntax of state-based LTL

State-based Linear Temporal Logic (LTL) is defined by
pu=Tlal | wingz | Xe | p1Ugz
where T stands for irue and a ranges over a countable set AP

of atomic propositions.

Abbreviations 1L=-T Fo=TUp Gy = ~F-p

Terminology and intuitive meaning

Xa next ed e o o ...

aub until aa...abee o ...
Fa eventually e ... 030 0 o ...
Ga always aaaa...

I1A159 Formal Verification Methods: Model Checking: An Overview 8/38

Semantics of state-based LTL

Let & = 247", where AP’ C AP is a finite subset. We interpret
LTL on infinite words w = w(0)w(1) ... € ¥“. By w; we denote
the suffix of w of the form w(i)w(i +1)w(i+2)....

The validity of an LTL formula ¢ for w € ¥, written w = ¢, is

defined as
wET
wE a iff aec w(0)
wE —p iff wleep
WEeiApp iff wEe AW E@
w = Xp iff wy=o

W)=g01U302 iff HiENoZWi)ZQOQ/\VOSj<I':Wj|:(p1

Given an alphabet X, an LTL formula ¢ defines the language

(o) ={wex¥|wkE o}

I1A159 Formal Verification Methods: Model Checking: An Overview 9/38

Action-based LTL

Differences between action-based and state-based LTL
m In the syntax, a ranges over countable set of actions Act.

m Formulae of action-based LTL are then interpreted over
infinite sequences w of actions from a finite subset

Act’ C Act.
m Semantics of formula a is defined as follows:
W= a iff a= w(0)

I1A159 Formal Verification Methods: Model Checking: An Overview 10/38

Examples of LTL formulae

m G—error - safety property
m G(p = Fq) - response property
m GFp - liveness property

1A159 Formal Verification Methods: Model Checking: An Overview 11/38

Bichi automata

A Bichi automaton (BA) is atuple A = (X, Q, 4, o, F), where
¥ is afinite alphabet,

m Qis a finite set of states,

B J:Qx X — 2%is atransition function,

(]

[]

Qo € Qs an initial states,
F C Qis a set of accepting states.

A run of A on inifnite word w = w(0)w(1)... € X¥ is an infinite
sequence of states o = ¢(0)o(1)..., where o(0) = gp and
o(i+1) € d(a(i), w(i)) holds for all i.

A run o is accepting if Inf(o) N F # (), where Inf(o) is the set of
the states appearing in o infinitely often. An automaton A
accepts a word w if there is an accepting run of A on w. We set

L(A) ={w € X¥| A accepts w}.

I1A159 Formal Verification Methods: Model Checking: An Overview 12/38

Example of a Blchi automaton

1A159 Formal Verification Methods: Model Checking: An Overview 13/38

Example of a Blchi automaton

N o

Accepts the words with infinitely many occurences of a.

1A159 Formal Verification Methods: Model Checking: An Overview 14/38

Model checking

Model

1A159 Formal Verification Methods: Model Checking: An Overview 15/38

m a finite formal description of all possible behaviours of the
system to be verified

m behaviour is a sequence (or a tree) of states/actions

m state is an image of the system in a certain moment
(current values of variables, program counter, etc.)

m a state is characterized by validity of atomic propositions
(e.g. PC == start, x > 5)
m many possible formalisms
m standard languages C, Java, VHDL, ...
m dedicated languages, e.g. ProlMela (Process or Protocol
Meta Language)
m process rewrite systems (infinite-state systems)
BPA, BPP, PA, pushdown processes, Petri nets, ...
m low-level formalisms: Kripke structure (for state-based
approach) and labelled transition systems (for action-based
approach)

I1A159 Formal Verification Methods: Model Checking: An Overview 16/38

Example: mutual exclusion in ProMelLa

byte cnt = 0; // number of processes in critical sections
byte turn = 0; // token for entering a critical section

init {
run(P0); run(Pl); // parallel execution of PO a P1

proctype PO () proctype P1()
{ {
// sO //sl
do do
// NCO (noncritical section) // NC1 (noncritical section)
:: do :: do
(turn == 0) -> break; :: (turn == 1) —-> break;
else; :: else;
od; od;
// CSO (critical section) // CS1 (critical section)
cnt = cnt + 1; cnt = cnt + 1;
cnt = cnt - 1; cnt = cnt - 1;
turn = 1; turn = 0;
od; od;

1A159 Formal Verification Methods: Model Checking: An Overview 17/38

Kripke structure

Let AP be a countable set of atomic propositions.

A Kripke structure is a tuple M = (S, R, S, L), where
m Sis a set of states
m R C S x Sis transitions relation
m Sy C Sis asetofinitial states

m L:S— 24P s alabelling function associating to each state
s € S the set of atomic propositions that are true in s.

A path in M starting in a state s is an infinite sequence

T = SpS1S2... Of states such that sy = s and (s;, s;1) € R holds
for every i.

I1A159 Formal Verification Methods: Model Checking: An Overview 18/38

Example: mutual exclusion as a Kripke structure

TREE
CTPRE D PRETD)
€« CEP)

1A159 Formal Verification Methods: Model Checking: An Overview 19/38

Process rewrite systems: motivation

m finite-state systems have very limited expressive power

m there are some classes of infinite-state systems with
decidable LTL model checking problem

m many standard classes of infinite-state systems are
definable uniformly as subslasses of Process Rewrite
Systems (PRS)

I1A159 Formal Verification Methods: Model Checking: An Overview 20/38

Process rewrite systems: process terms

Let Const = {A, B, C, ...} be a countably infinite set of process
constants. Process terms are defined by the abstract syntax

ti=ec | Al tie | tlt,

where
m ¢ is the empty term,

m A e Constis a process constant (used as an atomic
process),

m ’|' means a parallel composition, and
® '’ means a sequential composition.

We always work with equivalence classes of terms modulo
commutativity and associativity of ’||" ((A||B)||C = B||(A||C))
and modulo associativity of "." ((A.B).C = A.(B.C)).

I1A159 Formal Verification Methods: Model Checking: An Overview 21/38

Process rewrite systems: classes of process terms

We distinguish four classes of process terms as:
“1” terms consisting of a single process constant only

(.,e.e £ 1), e.g. A
“S” sequential terms without parallel composition, e.g. A.B.C.

“P” parallel terms without sequential composition. e.g. A||BJ|C.
“G” general terms with arbitrarily nested sequential and parallel
compositions.

I1A159 Formal Verification Methods: Model Checking: An Overview 22/38

Process rewrite systems: syntax

Let Act = {a, b, - - - } be a countably infinite set of aiomic
actionsand o, 8 € {1, S, P, G} such that « C 5. An (., 7)-PRS
(process rewrite system) is a pair A = (R, fp), where

B R C ((a~{e}) x Act x) is afinite set of rewrite rules, and
m iy € Sis an initial term.

We write (t A) € Rinstead of (t1,a,t) € R.

1A159 Formal Verification Methods: Model Checking: An Overview 23/38

Process rewrite systems: semantics

An (a, 5)-PRS A = (R, fp) defines a labelled transition system
where

m states are process terms of 3,
m {y is the initial state,

m the transition relation — is the least relation satisfying the
following inference rules:

(t1<i>t2)€R 4 i)tg I8 —a)tg

t 5t tilt - bt ot - bt

I1A159 Formal Verification Methods: Model Checking: An Overview 24/38

Process rewrite systems: example

b b
a a a
AB ——= (AB)IC ——= (AB)|CIIC —

(S, G)-PRS (R, BJ|C) with rewrite rules
R={ B AB, AB3(AB)C, CSe)

1A159 Formal Verification Methods: Model Checking: An Overview 25/38

Process rewrite systems: power of rewrite rules

(1,1)-PRS finite-state systems

x:=x+1

n simple sequential programs
without procedures

(1,S)-PRS basic process algebra
call p .
< " po.n programs with procedure calls

no global variables and return values

(S, S)-PRS pushdown systems

call p . '
g.m < g.po.n sequential programs with procedures
global variables, return values

I1A159 Formal Verification Methods: Model Checking: An Overview 26/38

Process rewrite systems: power of rewrite rules

(1, P)-PRS basic parallel processes

t th d £ . .
FEE ST T n|fy programs with simple parallel threads
no communication

(P, P)-PRS Petri nets
mllp “"EM nilg programs with parallel threads

communication between threads

1A159 Formal Verification Methods: Model Checking: An Overview 27/38

Process rewrite systems hierarchy (PRS-hierarchy)

The hierarchy compares expressive power of many classes of
infinite-state systems including BPA, BPP, PA, Petri nets (PN),
and pushdown processes (PDA). FS stands for finite systems.

PRS
(G,G)-PRS
PAD / \ PAN
(S,G)-PRS (P,G)-PRS
| |
PDA \ PA / PN
(S,5)-PRS (1,G)-PRS (P,P)-PRS
|
BPA / \ BF|’P
(1,5)-PRS (1,P)-PRS
(1,1)-PRS

I1A159 Formal Verification Methods: Model Checking: An Overview 28/38

Model checking

Decidability of model checking

1A159 Formal Verification Methods: Model Checking: An Overview 29/38

Model checking

Model checking problem is to decide whether all behaviours of
a given system satisfy a given specification.

m specific problems for specific input
m state-based LTL model checking of finite systems
m action-based CTL model checking of finite systems
m state-based LTL model checking of pushdown processes
m action-based LTL model checking of pushdown processes
m ...

m model checking problem is not decidable for some kinds of
input (e.g. action-based LTL model checking of PA
processes)

m even small changes of the problem can be important:
action-based LTL model checking of PN is decidable, while
state-based LTL model checking of PN in undecidable

m all model checking problems are decidable for finite
systems

I1A159 Formal Verification Methods: Model Checking: An Overview 30/38

The decidability boundary

The decidability boundary of the action-based LTL model
checking in the PRS-hierarchy.

PRS
undecidable \

\
PAN
/ - -
decidable PDA - - - §
/ \
BPP
\ /
FS

1A159 Formal Verification Methods: Model Checking: An Overview 31/38

=

PAD
PA

B

Model checking

Automata-based LTL model checking of finite systems

1A159 Formal Verification Methods: Model Checking: An Overview 32/38

Automata-based LTL model checking of finite systems

Kripke structure M

with finitely many states LTL formula ¢

Buichi automaton Ay Buichi automaton A_,
accepts paths of M starting in initial AP(¢) vinlati
states and projected by L to 24P(¥) words over 2771 violating

N

product Bichi automaton B
L(B) = L(Am) N L(A-yp)

!

?
L(B) =0
e.g. nested DFS algorithm

/ \NO

YES

+ counterexample

I1A159 Formal Verification Methods: Model Checking: An Overview 33/38

Complexity notes

Complexity

Time and space complexity of the LTL model checking
algorithm is O(|M| - 29(#1)), where |M| is the number of states
and transitions in the Kripke structure M.

m LTL model checking problem is PSPACE-complete.
m staie explosion problem - |M| is often exponential in the
size of implicit description of the system due to
m parallelism
m large data domains
m dynamically allocated memory
...

I1A159 Formal Verification Methods: Model Checking: An Overview 34/38

State explosion problem - an example

byte x 0;
byte y = 0;

proctype A() { proctype B() { proctype C() {
x =x + 1; X =X + 2; y =y + 5;
} } }

x=x+2; X=xX+2;

1A159 Formal Verification Methods: Model Checking: An Overview 35/38

Partial solutions of the state explosion problem

m abstraction
m partial order reduction

m symmetry reduction

m on-the-fly algorithms

m symbolic model checking
m distributed algorithms

[]

1A159 Formal Verification Methods: Model Checking: An Overview 36/38

m translation LTL—BA (via alternating 1-weak BA)

m partial order reduction

m state-based LTL model checking of pushdown processes
m abstraction

m counterexample guided abstraction refinement (CEGAR)

I1A159 Formal Verification Methods: Model Checking: An Overview 37/38

Coming next week

LTL model checking of pushdown system

m How can | denote an infinite-state system?
m Can | verify an infinite-state system?

m What are pushdown processes good for?
m Can | do LTL model checking for them?

1A159 Formal Verification Methods: Model Checking: An Overview 38/38

