IA159 Formal Verification Methods Abstraction

Jan Strejček

Department of Computer Science Faculty of Informatics Masaryk University

Focus and sources

Focus

- principle of abstraction
- exact abstractions and non-exact abstractions
- predicate abstraction
- CEGAR: counterexample-guided abstraction refinement

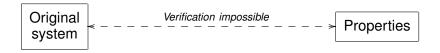
Sources

- Chapter 13 of E. M. Clarke, O. Grumberg, and D. A. Peled: Model Checking, MIT, 1999.
- R. Pelánek: Reduction and Abstraction Techniques for Model Checking, PhD thesis, FI MU, 2002.
- E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith: Counterexample-guided Abstraction Refinement, CAV 2000, LNCS 1855, Springer, 2000.

Motivation

Abstraction is probably the most important technique for reducing the state explosion problem.

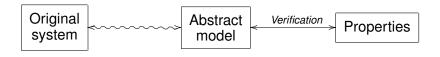
[CGP99]



Motivation

Abstraction is probably the most important technique for reducing the state explosion problem.

[CGP99]

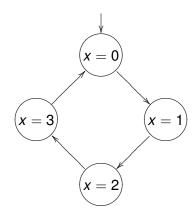


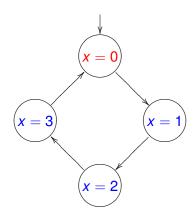
Motivation

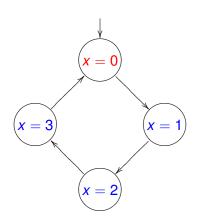
Abstraction is probably the most important technique for reducing the state explosion problem.

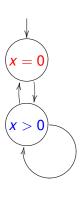
[CGP99]

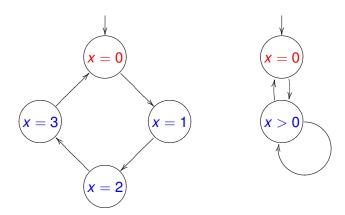
- infinite-state systems → finite systems











- \blacksquare equivalent with respect to F(x > 0)
- \blacksquare nonequivalent with respect to GF(x=0)

Simulation

Given two Kripke structures $M = (S, \rightarrow, S_0, L)$ and $M' = (S', \rightarrow', S'_0, L')$, we say that M' simulates M, written $M \leq M'$, if there exists a relation $R \subseteq S \times S'$ such that:

- lacksquare $\forall s_0 \in S_0 . \exists s_0' \in S_0' : (s_0, s_0') \in R$
- $\blacksquare (s,s') \in R \land s \rightarrow p \implies \exists p' \in S' : s' \rightarrow' p' \land (p,p') \in R$

Simulation

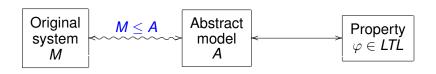
Given two Kripke structures $M = (S, \rightarrow, S_0, L)$ and $M' = (S', \rightarrow', S'_0, L')$, we say that M' simulates M, written $M \leq M'$, if there exists a relation $R \subseteq S \times S'$ such that:

- lacksquare $\forall s_0 \in S_0$. $\exists s_0' \in S_0'$: $(s_0, s_0') \in R$
- $\blacksquare (s,s') \in R \implies L(s) = L'(s')$
- $\blacksquare (s,s') \in R \land s \rightarrow p \implies \exists p' \in S' : s' \rightarrow' p' \land (p,p') \in R$

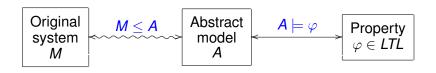
Lemma

If $M \le M'$, then for every path $\sigma = s_1 s_2 \dots$ of M starting in an initial state there is a run $\sigma' = s_1' s_2' \dots$ of M' starting in an initial state and satisfying

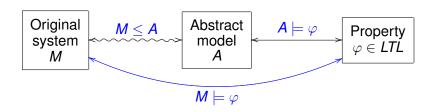
$$L(s_1)L(s_2)\ldots = L'(s_1')L'(s_2')\ldots$$



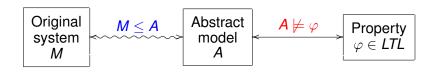
$$M \le A \implies$$
 all behaviours of M are also in A (but not vice versa)



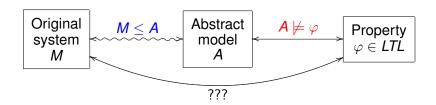
$$M \le A \implies$$
 all behaviours of M are also in A (but not vice versa)



$$M \le A \implies$$
 all behaviours of M are also in A (but not vice versa)

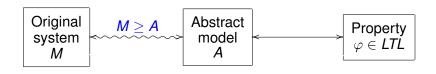


$$M \le A \implies$$
 all behaviours of M are also in A (but not vice versa)

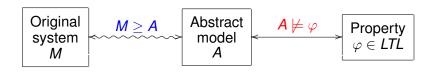


If A has a behaviour violating φ (i.e. $A \not\models \varphi$), then either

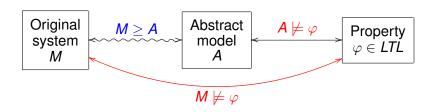
- **11** *M* has this behaviour as well (i.e. $M \not\models \varphi$), or
- 2 M does not have this behaviour, which is then called false positive or spurious counterexample $(M \models \varphi \text{ or } M \not\models \varphi \text{ due to another behaviour violating } \varphi).$



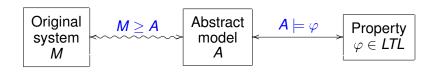
$$M \ge A \implies$$
 all behaviours of A are also in M (but not vice versa)



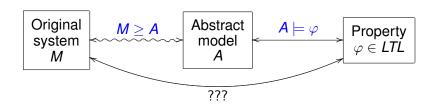
$$M \ge A \implies$$
 all behaviours of A are also in M (but not vice versa)



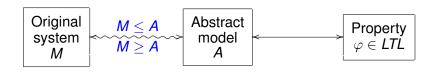
$$M \ge A \implies$$
 all behaviours of A are also in M (but not vice versa)



$$M \ge A \implies$$
 all behaviours of A are also in M (but not vice versa)

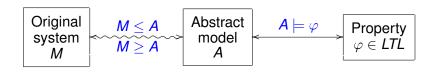


$$M \ge A \implies$$
 all behaviours of A are also in M (but not vice versa)



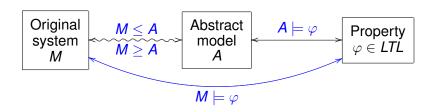
$$M \le A \le M \implies A$$
 and M have the same behaviours A is an exact abstraction of M

Note:
$$A$$
 and M are bisimilar $\Longrightarrow M \le A \le M$ $\Leftarrow =$



$$M \le A \le M \implies A$$
 and M have the same behaviours A is an exact abstraction of M

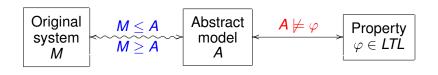
Note:
$$A$$
 and M are bisimilar $\Longrightarrow M \le A \le M$ $\Leftarrow =$



$$M \le A \le M \implies A$$
 and M have the same behaviours A is an exact abstraction of M

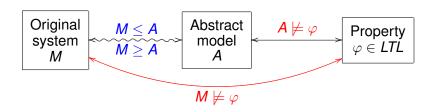
Note: A and M are bisimilar
$$\Longrightarrow M \le A \le M$$

 $\Leftarrow = M$



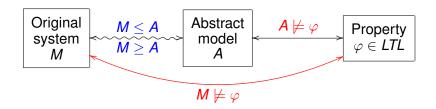
$$M \le A \le M \implies A$$
 and M have the same behaviours A is an exact abstraction of M

Note:
$$A$$
 and M are bisimilar $\Longrightarrow M \le A \le M$ $\Leftarrow =$



$$M \le A \le M \implies A$$
 and M have the same behaviours A is an exact abstraction of M

Note:
$$A$$
 and M are bisimilar $\Longrightarrow M \le A \le M$ $\Leftarrow =$



All these relations hold even for $\varphi \in CTL^*$.

Abstraction

Exact abstractions

Cone of influence (aka dead variables)

Idea

We eliminate the variables that do not influence the variables in the specification.

Cone of influence (aka dead variables)

- let *V* be the set of variables appearing in specification
- cone of influence C of V is the minimal set of variables such that
 - *V* ⊂ *C*
 - if v occurs in a test affecting the control flow, then $v \in C$
 - if there is an assignment v := e for some $v \in C$, then all variables occurring in the expression e are also in C
- C can be computed by the source code analysis
- variables that are not in C can be eliminated from the code together with all commands they participate in

Cone of influence: example

```
S: v := getinput();
   x := getinput();
   y := 1;
   z := 1;
   while v > 0 do
         Z := Z * X;
         x := x - 1;
         V := V * V;
         v := v - 1:
   Z := Z * Y;
E:
```

Specification: F(pc = E)

Cone of influence: example

```
S: v := getinput();
   x := getinput();
   y := 1;
   z := 1;
   while v > 0 do
         Z := Z * X;
         x := x - 1;
         V := V * V;
         v := v - 1:
   Z := Z * Y;
E:
```

Specification:
$$F(pc = E)$$

 $V = \emptyset$, $C = \{v\}$

Cone of influence: example

```
S: v := getinput();
                                       S: v := getinput();
   x := getinput();
                                           skip:
   y := 1;
                                           skip:
   z := 1;
                                           skip:
   while v > 0 do
                                           while v > 0 do
                                                 skip:
         Z := Z * X:
         x := x - 1:
                                                 skip:
         V := V * V;
                                                 skip;
         v := v - 1:
                                                 v := v - 1:
                                           skip;
   Z := Z * Y;
E:
                                       E:
```

 $V = \emptyset$, $C = \{v\}$

Specification: F(pc = E)

Other exact abstractions

Symmetry reduction

in systems with more identical parallel components, their order is not important

Equivalent values

- if the set of behaviours starting in a state s is the same for values a, b of a variable v, then the two values can be replaced by one
- applicable to larger sets of values as well
- used in timed automata for timer values

Abstraction

Non-exact abstractions

Concept

We face two problems

- to find a suitable abstract domain (i.e. a set of abstract states) and a mapping between the original states and the abstract ones
- 2 to compute a transition relation on abstract states

Finding abstract states

Abstract states are usually defined in one of the following ways:

for each variable x, we replace the original variable domain D_x by an abstract domain A_x and we define a total function $h_x: D_x \to A_x$

a state $s = (v_1, \dots, v_m) \in D_{x_1} \times \dots \times D_{x_m}$ given by values of all variables corresponds to an abstract state

$$\textit{h}(\textit{s}) = (\textit{h}_{\textit{x}_1}(\textit{v}_1), \ldots, \textit{h}_{\textit{x}_m}(\textit{v}_m)) \in \textit{A}_{\textit{x}_1} \times \ldots \times \textit{A}_{\textit{x}_m}$$

predicate abstraction - we choose a finite set $\Phi = \{\phi_1, \dots, \phi_n\}$ of predicates over the set of variables; we have several choices of abstract domains

The first approach can be seen as a special case the latter one.

Popular abstract domains for integers

Sign abstraction

$$A_{x} = \{a_{+}, a_{-}, a_{0}\}$$

$$h_{x}(v) = \begin{cases} a_{-} & \text{if } v < 0 \\ a_{0} & \text{if } v = 0 \\ a_{+} & \text{if } v > 0 \end{cases}$$

Parity abstraction

- $A_x = \{a_e, a_o\}$
- good for verification of properties related to the last bit of binary representation

Popular abstract domains for integers

Congruence modulo an integer

- \blacksquare $h_x(v) = v \pmod{m}$ for some m
- nice properties:

```
((x \bmod m) + (y \bmod m)) \bmod m = x + y \pmod m((x \bmod m) - (y \bmod m)) \bmod m = x - y \pmod m((x \bmod m) \cdot (y \bmod m)) \bmod m = x \cdot y \pmod m
```

Representation by logarithm

- $h_{x}(v) = \lceil \log_{2}(v+1) \rceil$
- the number of bits needed for representation of *v*
- good for verification of properties related to overflow problems

Popular abstract domains for integers

Single bit abstraction

- $A_x = \{0, 1\}$
- $h_X(v)$ =the *i*-th bit of v for a fixed i

Single value abstraction

- $A_x = \{0, 1\}$

...and others

Predicate abstraction

Let $\Phi = {\phi_1, \dots, \phi_n}$ be a set of predicates over the set of variables.

Abstract domain $\{0, 1\}^n$

■ a state $s = (v_1, ..., v_m)$ corresponds to an abstract state given by a vector of truth values of $\{\phi_1, ..., \phi_n\}$, i.e.

$$h(s) = (\phi_1(v_1, \dots, v_m), \dots, \phi_n(v_1, \dots, v_m)) \in \{0, 1\}^n$$

- example: $\phi_1 = (x_1 > 3)$ $\phi_2 = (x_1 < x_2)$ $\phi_3 = (x_2 > 10)$ s = (5,7) h(s) = (1,1,0)
- not used in practice (too many transitions) => it is better to assign a single abstract state to a set of original states

Predicate abstraction: abstracting sets of states

- let $\vec{b} = \langle b_1, \dots, b_n \rangle$ be a vector of $b_i \in \{0, 1, *\}$
- we set $[\vec{b}, \Phi] = b_1 \cdot \phi_1 \wedge \ldots \wedge b_n \cdot \phi_n$, where $0 \cdot \phi_i = \neg \phi_i$, $1 \cdot \phi_i = \phi_i$, and $* \cdot \phi_i = \top$
- let X denotes the set of original states

Abstract domain $2^{\{0,1\}^n}$

- $h(X) = {\vec{b} \in {\{0,1\}}^n \mid \exists s \in X : s \models [\vec{b}, \Phi]}$
- example: $\phi_1 = (x_1 > 3)$ $\phi_2 = (x_1 < x_2)$ $\phi_3 = (x_2 > 10)$ $X = \{(5,7), (4,5), (2,9)\}$ $h(X) = \{(1,1,0), (0,1,0)\}$
- nice theoretical properties
- not used in practice (this abstract domain grows too fast)

Predicate abstraction: abstracting sets of states

Abstract domain $\{0, 1, *\}^n$ (predicate-cartesian abstraction)

- $h(X) = \min\{\vec{b} \mid \forall s \in X : s \models [\vec{b}, \Phi]\},$ where min means "the most specific"
- example: $\phi_1 = (x_1 > 3)$ $\phi_2 = (x_1 < x_2)$ $\phi_3 = (x_2 > 10)$ $X = \{(5,7), (4,5), (2,9)\}$ h(X) = (*,1,0)
- this one is used in practice

Abstract structures

Assume that

- we have a Kripke structure $M = (S, \rightarrow, S_0, L)$
- lacktriangle we have an abstract domain A and a mapping $h:S\to A$
- it holds that $A = \{L(s) \mid s \in S\}$ and L = h

To achieve the last condition, we set AP to contain only

- abstraction based on variable domains an atomic proposition (x = a) for each $a \in A_x$
- 2 predicate abstraction an atomic proposition (ϕ_i holds) for every ϕ_i

This abstraction is useful if and only if each abstract state determines validity of $AP(\varphi)$.

Abstract structures

Assume that

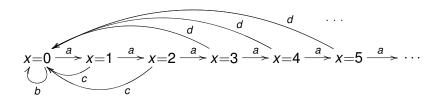
- we have a Kripke structure $M = (S, \rightarrow, S_0, L)$
- lacktriangle we have an abstract domain A and a mapping $h:S\to A$
- it holds that $A = \{L(s) \mid s \in S\}$ and L = h

We define two abstract models:

$$M_{may} = (A, \rightarrow_{may}, A_0, L_A)$$
, where

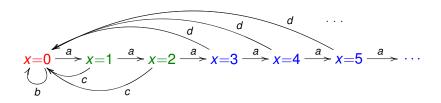
- $lacksquare A_0 = \{ L(s_0) \mid s_0 \in S_0 \}$
- $L_A: A \rightarrow A$ such that $L_A(a) = a$
- $a_1 \rightarrow_{may} a_2$ iff there exist $s_1, s_2 \in S$ such that $L(s_1) = a_1, L(s_2) = a_2$, and $s_1 \rightarrow s_2$

Example *M_{may}*

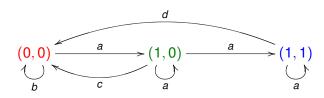


 M_{may} with abstract domain $\{0,1\}^2$ generated by predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$.

Example *M_{may}*



 M_{may} with abstract domain $\{0,1\}^2$ generated by predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$.



Abstract structures

Assume that

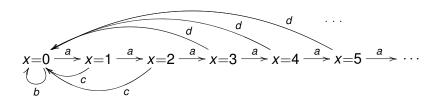
- we have a Kripke structure $M = (S, \rightarrow, S_0, L)$
- lacktriangle we have an abstract domain A and a mapping $h:S\to A$
- it holds that $A = \{L(s) \mid s \in S\}$ and L = h

We define two abstract models:

 $M_{must} = (A, \rightarrow_{must}, A_0, L_A)$, where

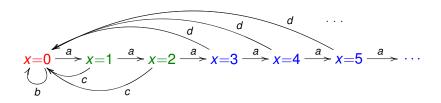
- $lacksquare A_0 = \{ L(s_0) \mid s_0 \in S_0 \}$
- $L_A: A \rightarrow A$ such that $L_A(a) = a$
- $a_1 o_{must} a_2$ iff for each $s_1 \in S$ satisfying $L(s_1) = a_1$ there exists $s_2 \in S$ such that $L(s_2) = a_2$ and $s_1 \to s_2$

Example *M*_{must}

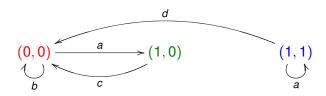


 M_{must} with abstract domain $\{0,1\}^2$ generated by predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$.

Example *M*_{must}



 M_{must} with abstract domain $\{0,1\}^2$ generated by predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$.



Relations between M, M_{must} , and M_{may}

Lemma

For every Kripke structure M, abstract domain A with a mapping function h it holds:

$$M_{must} \leq M \leq M_{may}$$

Relations between M, M_{must} , and M_{may}

Lemma

For every Kripke structure M, abstract domain A with a mapping function h it holds:

$$M_{must} \leq M \leq M_{may}$$

- computing M_{must} and M_{may} requires constructing M first (recall that M can be very large or even infinite)
- lacktriangle we compute an under-approximation M'_{must} of M_{must} and
- an over-approximation M'_{may} of M_{may} directly from an implicit representation of M
- it holds that $M'_{must} \leq M_{must} \leq M \leq M_{may} \leq M'_{may}$

Abstraction

Abstraction in practice

Guarded command language

Syntax

- let V be a finite set of integer variable
- expressions over V use standard boolean (=,<,>) and binary $(+,-,\cdot,\ldots)$ operations
- Act is a set of action names
- model is a pair M = (V, E), where $E = \{t_1, \dots, t_m\}$ is a finite set of transitions of the form $t_i = (a_i, g_i, u_i)$, where
 - $\mathbf{a}_i \in Act$
 - lacksquare g_i is a boolean expression over V
 - $lue{u}_i$ is a sequence of assignments over V

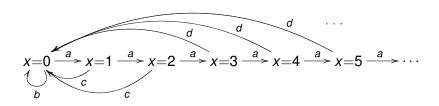
Guarded command language

Syntax

- let *V* be a finite set of integer variable
- expressions over V use standard boolean (=,<,>) and binary $(+,-,\cdot,\ldots)$ operations
- Act is a set of action names
- model is a pair M = (V, E), where $E = \{t_1, ..., t_m\}$ is a finite set of transitions of the form $t_i = (a_i, g_i, u_i)$, where
 - $a_i \in Act$
 - \blacksquare g_i is a boolean expression over V
 - \mathbf{u}_i is a sequence of assignments over V

Semantics

- *M* defines a labelled transition system where
 - states are valuations of variables $S = 2^{V \to \mathbb{Z}}$
 - initial state is the zero valuation $s_0(v) = 0$ for all $v \in V$
 - $lacksquare s \stackrel{a_i}{
 ightarrow} s'$ whenever $s \models g_i$ and $s' = u_i(s)$



implicit description in guarded command language:

$$V = \{x\}$$

 $(a, \ \top, \qquad x := x + 1)$
 $(b, \ \neg(x > 0), \qquad x := 0)$
 $(c, \ (x > 0) \land (x \le 2), \ x := 0)$
 $(d, \ (x > 2), \qquad x := 0)$

Abstraction in practice

- we use predicate abstraction with domain $\{0, 1, *\}^n$
- **given** a formula φ with free variables from V, we set

$$pre(a_i, \varphi) = (g_i \implies \varphi[\vec{x}/u_i(\vec{x})])$$

■ we use a sound decision procedure is_valid, i.e.

$$\mathit{is_valid}(\varphi) = \top \implies \varphi \text{ is a tautology}$$

(the procedure is_valid does not have to be complete)

Abstraction in practice

for every abstract state $\vec{b} \in \{0, 1, *\}^n$ and for every transition $t_i = (a_i, g_i, u_i)$, we compute an over-approximation of a may-successor of \vec{b} under t_i as

- if $is_valid([\vec{b}, \Phi] \implies \neg g_i)$ then there is no successor
- otherwise, the successor \vec{b}' is given by

$$b'_j = \begin{cases} 1 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \phi_j)) \\ 0 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \neg \phi_j)) \\ * & \text{otherwise} \end{cases}$$

$$b_j' = \begin{cases} 1 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \phi_j)) \\ 0 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \neg \phi_j)) \\ * & \text{otherwise} \end{cases}$$

$$(a, \top, x := x + 1)$$

using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we compute the transition

$$(1,0)\stackrel{a}{
ightarrow}_{may'}(~,~)$$

$$b_j' = \begin{cases} 1 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \phi_j)) \\ 0 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \neg \phi_j)) \\ * & \text{otherwise} \end{cases}$$

$$(a, \top, x := x + 1)$$

using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we compute the transition

$$(1,0)\stackrel{a}{
ightarrow}_{may'}(1,)$$

$$\blacksquare$$
 $(x>0) \land (x\leq 2) \implies (\top \implies (x+1>0))$ is true

$$b_j' = \begin{cases} 1 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \phi_j)) \\ 0 & \text{if } \textit{is_valid}([\vec{b}, \Phi] \implies \textit{pre}(a_i, \neg \phi_j)) \\ * & \text{otherwise} \end{cases}$$

$$(a, \top, x := x + 1)$$

using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we compute the transition

$$(1,0)\stackrel{a}{
ightarrow}_{may'}(1,*)$$

- \blacksquare $(x>0) \land (x\leq 2) \implies (\top \implies (x+1>0))$ is true
- \blacksquare $(x>0) \land (x\leq 2) \implies (\top \implies (x+1>2))$ is not true
- \blacksquare $(x > 0) \land (x \le 2) \implies (\top \implies (x + 1 \le 2))$ is not true

Abstraction in practice

- for every transition, we compute successors of all abstract states
- based on the successors, we transform the original implicit representation of a system into a boolean program
- **b**oolean program is an implicit representation of an over-approximation of M_{may}
- it uses only boolean variables \vec{b} representing the validity of abstraction predicates Φ
- boolean program can be used as an input for a suitable model checker (of finite-state systems)

$$V = \{x\}$$

 $(a, \top, x := x + 1)$
 $(b, \neg(x > 0), x := 0)$
 $(c, (x > 0) \land (x \le 2), x := 0)$
 $(d, (x > 2), x := 0)$

using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we get the boolean program (defining an over-approximation) of M_{may}

$$V = \{b_1, b_2\}$$
, where b_1, b_2 represents validity of ϕ_1, ϕ_2 (a, \top , $b_1 := \text{if } b_1 \text{ then 1 else } *$ $b_2 := \text{if } b_2 \text{ then 1 else if } b_1 \text{ then } * \text{ else 0}$) (b, $\neg b_1$, $b_1 := 0$, $b_2 := 0$) (c, $b_1 \land \neg b_2$, $b_1 := 0$, $b_2 := 0$) (d, b_2 , $b_1 := 0$, $b_2 := 0$)

Example of a real NQC code and its absraction

```
int x = 0:
                                  bool b = false:
 while (true) {
                                 while (true) {
   if (LIGHT > LIGHT THRESHOLD) {
                                 if (*) {
     PlaySound(SOUND CLICK):
     Wait (30);
     x = x + 1;
                                     b = b ? true : *;
                                   } else {
   } else {
     if (x > 2) {
                                     if (b) {
      PlaySound(SOUND_UP);
      ClearTimer(0):
      brick = LONG;
                                      brick = LONG;
     } else if (x > 0) {
                                     } else if (b ? true : *) {
      PlaySound(SOUND_DOUBLE_BEEP);
      ClearTimer(0);
      brick = SHORT:
                                       brick = SHORT:
     x = 0;
                                     b = false;
```

Abstraction

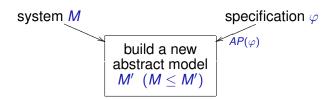
CEGAR: counterexample-guided abstraction refinement

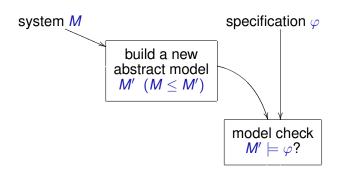
Motivation

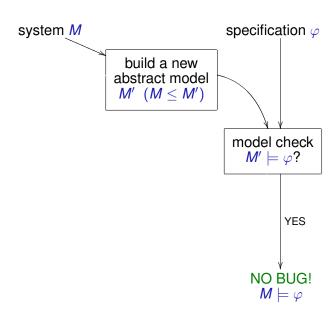
- it is hard to find a small and valuable abstraction
- abstraction predicates are usually provided by a user
- CEGAR tries to find a suitable abstraction automatically
- implemented in SLAM, BLAST, and Static Driver Verifier (SDV)
- incomplete method, but very successfull in practice

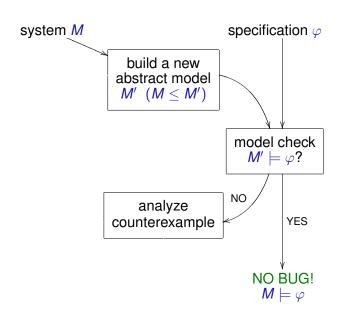
system M

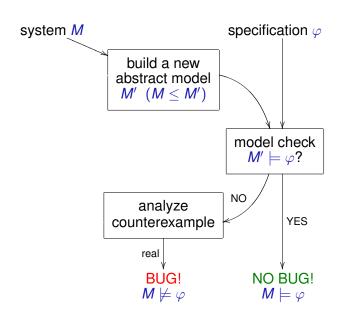
specification φ

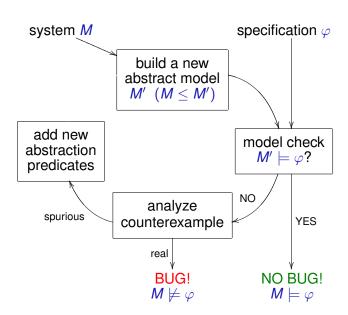


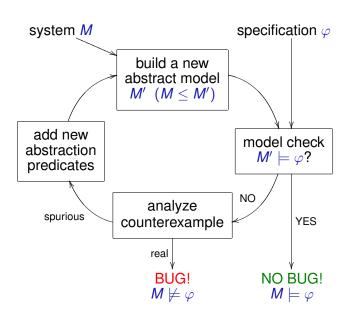












Notes

- added abstraction predicates ensure that the new abstract model M' does not have the behaviour corresponding to the spurious counterexample of the previous M'
- the analysis of an abstract counterexample and finding new abstract predicates are nontrivial tasks
- the method is sound but incomplete (the algorithm can run in the cycle forever)

Coming next week

Symbolic execution

- Can we perform more executions simultaneously?
- Can we perform all possible executions?
- Are there any modern applications of symbolic execution?