Classwork $\mathrm{N}^{\circ} .2$
due to 2nd March 2012

1. Combinatory base : \mathbf{S} and \mathbf{K}

Proof of the completeness of the S-K basis
Question: Calculate the following combinatorial expressions using the rules:

$$
\text { Sxyz: }=x z(y z)
$$

$$
\mathbf{K} x y:=x
$$

$$
\mathbf{I} x:=x
$$

(1) S K K x
$=\mathrm{Kx}(\mathrm{Kx})$
=x
(2) \mathbf{S} (K S) $\mathbf{K} \mathrm{x} y \mathrm{z}$
$=\mathrm{KSx}(\mathrm{Kx}) \mathrm{yz}$
$=S(K x) y z$
$=\mathrm{Kxz}(\mathrm{yz})$
$=x(y z)$
(3) S (K (S I)) K x y
$=K(S I) x(K x) y$
$=S$ I (K x)y
$=I y(K x y)$
$=y(\mathrm{~K} \mathrm{x} \mathrm{y})$
$=(y x)$
(4) S (K (S I)) (S (K K) I) x y

$$
\begin{aligned}
& =K(S I) x(S(K K) I ~ x) y \\
& =S ~ I(S ~(K ~ K)) I ~ x) y \\
& =I ~ y ~(S ~(K ~ K) ~ I ~ x ~ y) ~ \\
& =y(S(K ~ K) I ~ x ~ y ~ \\
& =y(K ~ K ~ x ~(I ~ x) ~ y) ~ \\
& =y(K(I ~ x) y) \\
& =y(I ~ x) \\
& =(y ~ x)
\end{aligned}
$$

2. Abstraction algorithm

T [] may be defined as follows:
$1^{\prime} \mid \quad T[v]=>v$
$2^{\prime} \mid \quad T[(\mathrm{E} 1 \mathrm{E} 2)]=>(T(\mathrm{E} 1) T(\mathrm{E} 2))$
$3^{\prime} \mid \quad T[\lambda \mathrm{x} . \mathrm{E}]=>(\mathbf{K} T[\mathrm{E}])$
$4^{\prime} \mid \quad T[\lambda \mathrm{x} . \mathrm{x}]=>\mathbf{I}$
$5^{\prime} \mid \quad T[\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{E}]=>T[\lambda \mathrm{x} . T[\lambda \mathrm{y} . \mathrm{E}]]$
$6^{\prime} \mid \quad T[\lambda x .(E 1 E 2)]=>(S T[\lambda x . E 1] T[\lambda x . E 2])$
Question: Convert the lambda term $\lambda x . \lambda y$.($y x$) to a combinator:
a)

$$
\begin{aligned}
& T[\lambda x . \lambda y .(y x)] \\
& =T[\lambda x . T[\lambda y .(y x)] \text { (by 5) } \\
& =T[\lambda \mathrm{x} .(\mathrm{S} \mathrm{~T}[\lambda \mathrm{y} .(\mathrm{y})] \mathrm{T}[\lambda \mathrm{y} \cdot \mathrm{x}])] \text { (by } 6 \text {) } \\
& =T[\lambda x .(S I T[\lambda y . x])] \text { (by 4) } \\
& =T[\lambda \mathrm{x} .(\mathrm{S} I(\mathrm{Kx}))](\text { by } 3 \text { and } 1) \\
& =(\mathrm{S} T[\lambda \mathrm{x} .(\mathrm{S} \mathrm{I})] \mathrm{T}[\lambda \mathrm{x} .(\mathrm{Kx}))] \text { (by } 6) \\
& =(\mathrm{S} \mathrm{~K} \mathrm{(S} \mathrm{I)]} \mathrm{T[} \lambda \mathrm{x} .(\mathrm{Kx}))] \text { (by 3) } \\
& =(S \mathrm{~K}(\mathrm{~S} I))(\mathrm{S} T[\lambda \mathrm{x} . \mathrm{K}] \mathrm{T}[\lambda \mathrm{x} . \mathrm{x}]))(\mathrm{by} 6)
\end{aligned}
$$

=(S K (S I)) (S (K K) T[$\lambda \mathrm{x} . \mathrm{x}])$) (by 3)
$=(\mathrm{S} \mathrm{K} \mathrm{(S} \mathrm{I))} \mathrm{(S} \mathrm{(K} \mathrm{K)} \mathrm{I} \mathrm{)} \mathrm{)} \mathrm{(by} \mathrm{4)}$
b) $\lambda x \cdot \lambda y$. $(x y)$
$=T[\lambda x . \lambda y .(x y)]$
$=\mathrm{T}[\lambda \mathrm{x} . \mathrm{T}[\lambda \mathrm{y} .(\mathrm{xy})]]$ (by 5)
$=T[\lambda x .(S T[\lambda y \cdot x] T[\lambda y \cdot y])]$ (by 6)
$=T[\lambda x .(S T[\lambda y . x]$ I) $]$ (by 4)
$=\mathrm{K}$ S (T[$\lambda \mathrm{y} \cdot \mathrm{x}] \mathrm{I})(\mathrm{by} 3)$
$=$ K S K x I (by 3)
$=$ K S x (by e.-K)
$=$ S (by e.-K)

