Classwork $\mathrm{N}^{\circ} .2$
due to 2nd March 2012

1. Combinatory base : \mathbf{S} and \mathbf{K}

We have seen that the primitive combinators \mathbf{S} and \mathbf{K} can define all other combinators such as $\mathbf{C}, \mathbf{I}, \mathbf{B}$, etc. Thus, it should be possible to prove it using these two primitive combinators. Show the completeness of the S-K basis by answering to the following question.
Question: Calculate the given combinatorial expressions using the definitions:

$$
\text { Sxyz: }=x z(y z)
$$

$$
\mathbf{K x y :}=x
$$

$$
\mathbf{I} x:=x
$$

(1) S K K x
(2) \mathbf{S} (K S) $\mathbf{K} x \mathrm{y} \mathbf{z}$
(3) S (K (S I)) K x y
(4) S (K (S I)) (S (K K) I) x y

2. Abstraction algorithm

$T[]$ may be defined as follows:
$1^{\prime} \mid T[v]=>v$
$2 ' \mid \quad T[(\mathrm{E} 1 \mathrm{E} 2)]=>(T(\mathrm{E} 1) T(\mathrm{E} 2))$
$3^{\prime} \mid \quad T[\lambda \mathrm{x} . \mathrm{E}]=>(\mathbf{K} T[\mathrm{E}])$
$4^{\prime} \mid \quad T[\lambda \mathrm{x} . \mathrm{x}]=>\mathbf{I}$
$5^{\prime} \mid \quad T[\lambda x . \lambda y . E]=>T[\lambda x . T[\lambda y . E]]$
$6^{\prime} \mid \quad T[\lambda x .(E 1 E 2)]=>(S T[\lambda x . E 1] T[\lambda x . E 2])$
Question: Convert the following lambda terms into a combinator using the $T[]$ definition:
(5) $\lambda x \cdot \lambda y \cdot(y x)$
(6) $\lambda x \cdot \lambda y .(x y)$

