Classwork ${ }^{\circ}{ }^{\circ} 3$
due to 9th March 2012

1. Normal form

When a combinatorial expression X cannot be anymore reduced by reaching to an expression x, we say that x is the normal form of X. Give the normal form of the given combinatorial expressions. The β-reduction rule of the basic combinators is given in the following:

$$
\begin{array}{ccc}
\mathbf{B x y z} & \geq_{\beta} x(y z) \\
\mathbf{C} x y z & z_{\beta} & x(z y) \\
\mathbf{S x y z} & \geq_{\beta} & x z(y z) \\
\mathbf{I} x & z_{\beta} \quad x \\
\mathbf{K} x y & \geq_{\beta} x \\
\mathbf{W} x y & \geq_{\beta} \quad x y y \\
\boldsymbol{\Phi} x y z u & \geq_{\beta} & x(y u)(z u) \\
\Psi x y z u & \geq_{\beta} \quad x(y z)(y u)
\end{array}
$$

(1) $W K x$
(2) BCCxyz
(3) CSIf x
(4) $\operatorname{SS}(K I) f x$
(5) $\boldsymbol{B}(\mathbf{B S}) \boldsymbol{B} f x y z$
(6) $\boldsymbol{B B}(\mathbf{B B})$ fgxgy
(7) $\boldsymbol{S}(\mathbf{B B S})(K K) x y z$
(8) $\boldsymbol{B}(\boldsymbol{B W}(\mathbf{B C}))(\boldsymbol{B B}(\mathbf{B B})) f g x y$
(9) $\Phi(\Phi(\Phi \boldsymbol{B}) \mathbf{B (K K) f g x y ~}$

Please comment the definitions that you could find by reducing the given combinators. For example, is the definition $[\mathbf{W} \equiv \mathbf{S S}(\mathbf{K I})]$ an acceptable definition according your calculus?

