Classwork N°3 due to 9th March 2012

1. Normal form and Interdefinability of simple combinators

When a combinatorial expression X cannot be anymore reduced by reaching to an expression x, we say that x is the normal form of X. Give the normal form of the given combinatorial expressions. The β -reduction rule of the basic combinators is given in the

following: $Bxyz \ge_{\beta} x(yz)$ $Cxyz \ge_{\beta} x(zy)$ $Sxyz \ge_{\beta} xz(yz)$ $Ix \ge_{\beta} x$ $Kxy \ge_{\beta} x$ $Wxy \ge_{\beta} xyy$ $\Phi xyzu \ge_{\beta} x(yu)(zu)$ $\Psi xyzu \ge_{\beta} x(yz)(yu)$

(1) $Wkx \rightarrow kxx \rightarrow x$ [I=WK]

(2) $BCCxyz \rightarrow C(Cx)yz \rightarrow Cxzy \rightarrow xyz$ [BCC=1] (3) $CSIfx \rightarrow SfIx \rightarrow fx(Ix) \rightarrow fxx$ [W=S(CI)] (4) $SS(KI)fx \rightarrow SfIx \rightarrow fx(Ix) \rightarrow fxx$ [SS(KI)=W] (5) $B(BS)Bfxyz \rightarrow BS (Bf)xyz \rightarrow S(Bfx) yz \rightarrow Bfxz(yz) \rightarrow f(xz)(yz)$ [B(BS)B= Φ] (6) $BB(BB)fgxgy \rightarrow B(BBf)gxgy \rightarrow BBf(gx)(gy) \rightarrow B(f(gx))gy \rightarrow f(gx)(gy)$ (7) $S(BBS)(KK)xyz \rightarrow BBSx(KK)xyz \rightarrow BBSxKyz \rightarrow B(Sx)Kyz$ $\rightarrow Sx(Ky)z \rightarrow xz(Kyz) \rightarrow xzy$ [S(BBS)(KK)=C] (8) $B(BW(BC))(BB(BB))fgxy \rightarrow B(BW(BC))Xfgxy \rightarrow BW(BC)(Xf)gxy \rightarrow W(BC(Xf))gxy \rightarrow BC(Xf)ggxy \rightarrow C(Xfg)gxy \rightarrow Xfgxgy \rightarrow f(gx)(gy)$ [B(BW(BC))(BB(BB))= ψ] (9) $\Phi(\Phi(\Phi B))B(KK)fgxy \rightarrow \Phi(\Phi B)(Bf)(KKf)gxy \rightarrow \Phi(\Phi B)(Bf)Kgxy \rightarrow \Phi B(Bfg)(Kg)xy$

 $\rightarrow B(Bfgx)(Kgx)y \rightarrow B(f(gx))gy \rightarrow f(gx)(gy) \quad [\Phi(\Phi(\Phi B))B(KK)=\psi]$

Please comment the definitions that you could find by reducing the given combinators. For example, is the definition **[W=SS(KI)]** *an acceptable definition according your calculus?*