Classwork $\mathrm{N}^{\circ} 3$
due to 9th March 2012

## 1. Normal form and Interdefinability of simple combinators

When a combinatorial expression $X$ cannot be anymore reduced by reaching to an expression $x$, we say that $x$ is the normal form of $X$. Give the normal form of the given combinatorial expressions. The $\beta$-reduction rule of the basic combinators is given in the following: $\quad \mathbf{B x y z} \quad \geq_{\beta} x(y z)$

$$
\begin{array}{rll}
\mathbf{C x y z} & \geq_{\beta} x(z y) \\
\mathbf{S x y z} & \geq_{\beta} x z(y z) \\
\mathbf{I} x & \geq_{\beta} x
\end{array}
$$

$\mathbf{K x y} \geq_{\beta} x$
$\mathbf{W} x y \quad \geq_{\beta} \quad x y y$
$\boldsymbol{\Phi} x y z u \quad \geq_{\beta} \quad x(y u)(z u)$
$\psi$ хуzи $\quad \geq_{\beta} \quad x(y z)(y u)$
(1) $W \mathbf{k} x \rightarrow k x x \rightarrow x$
[ $\mathbf{I}=\mathbf{W K}]$
(2) BCCxyz $\rightarrow C(C x) y z \rightarrow C x z y \rightarrow x y z$
[BCC=I]
(3) CSIf $x \rightarrow$ SfIx $\rightarrow f x(I x) \rightarrow f x x$
[ $\mathrm{W}=\mathbf{S}(\mathrm{CI})$ ]
(4) SS(KI) $f x \rightarrow$ SfIx $\rightarrow f x(I x) \rightarrow f x x$
[SS(KI) $=\mathbf{W}]$
(5) $\boldsymbol{B}(\mathbf{B S}) \boldsymbol{B} f x y z \rightarrow B S(B f) x y z \rightarrow S(B f x) y z \rightarrow B f x z(y z) \rightarrow f(x z)(y z)$
$[\mathrm{B}(\mathrm{BS}) \mathrm{B}=\Phi]$
(6) $\mathbf{B B}(\mathbf{B B}) f g x g y \rightarrow B(B B f) g x g y \rightarrow B B f(g x)(g y) \rightarrow B(f(g x)) g y \rightarrow f(g x)(g y)$
(7) S(BBS)(KK)xyz $\rightarrow$ BBSx $(K K) x y z \rightarrow B B S x K y z \rightarrow B(S x) K y z$
$\rightarrow S x(K y) z \rightarrow x z(K y z) \rightarrow x z y$
[S(BBS)(KK)=C]
(8) $\boldsymbol{B}(\mathbf{B W}(\mathbf{B C}) \mathbf{)}(\mathbf{B B}(\mathbf{B B})) f g x y \rightarrow B(B W(B C)) X f g x y \rightarrow B W(B C)(X f) g x y \rightarrow W(B C(X f)) g x y \rightarrow$
$B C(X f) g g x y \rightarrow C(X f g) g x y \rightarrow X f g x g y \rightarrow f(g x)(g y)$
$[B(B W(B C))(B B(B B))=\psi]$
(9) $\Phi(\Phi(\Phi \boldsymbol{B})) \mathbf{B}(\mathbf{K K}) f g x y \rightarrow \Phi(\Phi B)(B f)(K K f) g x y \rightarrow \Phi(\Phi B)(B f) K g x y \rightarrow \Phi B(B f g)(K g) x y$
$\rightarrow B(B f g x)(K g x) y \rightarrow B(f(g x)) g y \rightarrow f(g x)(g y) \quad[\Phi(\Phi(\Phi \mathbf{B})) \mathbf{B}(\mathbf{K K})=\psi]$
Please comment the definitions that you could find by reducing the given combinators. For example, is the definition $[\mathbf{W} \equiv \mathbf{S S}(\mathbf{K I})]$ an acceptable definition according your calculus?

