IA165 Combinatory Logic for Computational Semantics

Spring 2012

Juyeon Kang

gkang@fi.muni.cz

B410, Faculty of Informatics, Masaryk University, Brno, Czech Rep.

- Tom is mortal → is-mortal(Tom)
- Dick is mortal → is-mortal (Dick)
- Fido is mortal → is mortal (Fido)

-----> Everything is mortal → is-mortal(everything)

 \rightarrow "?" is-mortal(x)

Quantification_Introduction1

Universal quantifier

The expression: $\forall x \ P(x)$, denotes the universal quantification of the atomic formula P(x).

- \forall is called the universal quantifier, and x means all the objects x in the universe. If this is followed by P(x) then the meaning is that P(x) is true for every object x in the universe.
- For example, "All cars have wheels" could be transformed into the propositional form, $\forall x \ P(x)$, where:
 - * P(x) is the predicate denoting: x has wheels, and
 - * the universe of discourse is only populated by cars.

- Socretes is handsome → is—handsome (Socretes)
- Tom is handsome → is—handsome (Tom)
- Harry is handsome → is handsome (Harry)
 - ----> Something is handsome → is-handsome (something)
 - \rightarrow "?" is—handsome(x)

Quantification_Introduction2

Existential quantifier

The expression: $\exists x P(x)$, denotes the existential quantification of P(x).

- * There exists an x such that P(x) or "There is at least one x such that P(x)".
- \exists is called the existential quantifier, and x means at least one object x in the universe. If this is followed by P(x) then the meaning is that P(x) is true for at least one object x of the universe.
- For example, "Someone loves you" could be transformed into the propositional form, $\exists x P(x)$, where:
 - * P(x) is the predicate meaning: x loves you,
 - * The universe of discourse contains (but is not limited to) all living creatures.

Quantification_Preliminary works

· Quantifiers: "universal" and "existential"

Natural language quantifiers have traditionally been categorised as either type (a) or type (b) quantifiers.

(a): Quantifiers of type (a) are properties of sets and are expressed through pronouns like nothing, everybody or no one. They combine with a verb phrase to form a sentence:

Everybody enjoyed the party.

(b): Quantifiers of type (b) are binary relations between sets and are expressed through determiners like *some*, all or no. They combine with a noun phrase (the restriction of the quantifier) and a verb phrase (its scope) to form a sentence:

All guests enjoyed the party.

Quantification_Preliminary work2

· Theories of quantification

a. Fregean teories with bound variables

- 1. Classical theory in First-Order Language
- 2. Montague's quantification expressed in Church's λ -Calculus
 - b. Fregean theory without bound variables
- 3. Illative theory expressed in Curry's Combinatory Logic

Examples

- a) Fregean analysis of Quantifiers in First-order language
- b) Logical representations of quantifiers using Church's λ -calculus

Everybody is pretty

a) $(\forall x)[\text{is-pretty'}(x)]$

b) $(\lambda P.((\forall x)[P(x)])(is-pretty'))$

Every girl is pretty

a) $(\forall x)[girl'(x) => is-pretty'(x)]$

b) $(\lambda P.\lambda Q((\forall x)[P(x) \Rightarrow Q(x)])(girl's)(is-pretty'))$

Some is pretty

a) $(\exists x)[\text{is-pretty'}(x)]$

b) $(\lambda P.((\exists x)[P(x)])(is-pretty'))$

Some girl is pretty

a) $(\exists x)[girl'(x) \& is-pretty'(x)]$

b) $(\lambda P.\lambda Q((\exists x)[P(x) \& Q(x)])(girl's)(is-pretty'))$

Quantification_Formal analysis

· Illative quantifiers in CL framework

- Illative operators "represent" classical quantifiers inside Curry's Combinatory Logic formalism.
- Illative operators are adjoined to the "pure" applicative formalism and their actions are defined, by means of elimination and introduction rules in Gentzen's Natural Deduction style, without using bound variables.

- . Illative universal quantifiers: $\Pi_{_1}$ and $\Pi_{_2}$
 - Π_1 f: every is f

These are propositions

• Π, fg: every f is g

The two quantifiers Π_1 and Π_2 are not independent since it is possible to define Π_2 , inside Combinatory Logic, from Π_1 by the following relation between operators:

Definition of the universal quantifier

$$[\Pi_2 =_{\text{def}} ((B(CB_2)\Phi) => \Pi_1)]$$

• This relation shows that the restricted illative quantifier Π_2 is defined by means of a Combinator B(CB²) Φ that combines the implication operator => with the quantifier Π_1 .

1/
$$\Pi_2$$
 fg hyp.

2/ [Π_2 =def ($\mathbf{B}(\mathbf{C}\mathbf{B}^2)\mathbf{\Phi}$) => Π_1] def. de Π_2

3/ (($\mathbf{B}(\mathbf{C}\mathbf{B}^2)\mathbf{\Phi}$) => Π_1) fg rempl. 2., 1.

4/ ($\mathbf{C}\mathbf{B}^2$)($\mathbf{\Phi}$ =>) Π_1 fg [e-**B**]

5/ \mathbf{B}^2 Π_1 ($\mathbf{\Phi}$ =>) fg [e-**C**]

 $[\mathbf{e} \mathbf{B}^2]$

6/ Π_{1} (**Φ** => fg)

The elimination rule $[e-\Pi_2]$ is deduced from $[e-\Pi_1]$:

$$1/\Pi_{1} (\Phi => fg)$$

2/ fx

 $3/(\Phi => fg) x$

4/ => (fx)(gx)

hyp.

hyp.

 $[e-\Pi_{1}],1.$

 $[e-\Phi],3.$

Definitions of the $[e-\Pi_2]$ and $[e-\Pi_1]$:

$$\Pi_1 f$$
 $\Pi_2 f g$ $f(x)$ [e- Π_1] $g(x)$

Modus ponens

$$P \rightarrow Q$$
, P

<u>Comment:</u> whenever an instance of " $P \rightarrow Q$ " and "P" appear by themselves on lines of a logical proof, "Q" can validly be placed on a subsequent line.

- . Illative existential quantifiers: $\Sigma_{_{1}}$ and $\Sigma_{_{2}}$
 - " $\Sigma_1 f$ " ("there is a f") These are propositions
 - " $\sum_{i} fg''$ ("there is a f which is g")
- Expression of Σ_2 in terms of & (conjunction) and Σ_1 :

Definition of the existential quantifier

$$\left[\Sigma_{2} =_{def} \left(B(CB^{2}) \Phi \right) \& \Sigma_{1} \right]$$

Examples

Jane is pretty	\rightarrow	(C*Jane)(is-pretty)
Everybody is pretty	\rightarrow	Π_1 (is-pretty)
Every girl is pretty	\rightarrow	$(\Pi_2(girl))(is-pretty)$
Somebody runs	\rightarrow	$\Sigma_{_{1}}(runs)$
Some girl is pretty	\rightarrow	$(\Sigma_2(girl))$ (is-pretty)
Every boy love some girl	\rightarrow	$(\Pi_{_{2}}(boy))(love(\Sigma_{_{2}}(girl)))$

$$[\Pi_2 =_{\text{def}} ((B(CB^2)\Phi) \Rightarrow \Pi_1)]$$

• Every man like itself

$$2/\Pi_{n}$$
 man (like itself)

$$3/((B(CB^2)\Phi) \Rightarrow \Pi_1)$$
 man (like itself)

4/ (CB²)(
$$\Phi =>$$
) Π_1 man (like itself)

$$5/B^2$$
 $\Pi_1(\Phi =>)$ man (like itself)

$$b/\Pi_1$$
 (($\Phi =>$) man (like itself))

$$7/((\Phi =>) \text{ man (like itself)}) x$$

$$% / => (man x) ((like itself) x)$$

Definitions of the $[e-\Pi_2]$ and $[e-\Pi_1]$:

$$\Pi_1 f$$
 $\Pi_2 fg$ $f(x)$ [e- Π_1] $g(x)$

$$\left[\Sigma_{2} =_{\text{def}} \left(B(CB^{2}) \Phi \right) \& \Sigma_{1} \right]$$

• Some girl is pretty → there is (exist at least one) a girl who is pretty

$$2/(\Sigma_{2}(girl))$$
(is-pretty)

$$3/((B(CB^2)\Phi) \& \Sigma_{1}(girl))$$
 (is-pretty)

$$4/((CB^2)(\Phi \&) \Sigma_{1}(girl))$$
 (is-pretty)

$$5/(B^2 \Sigma_1(\Phi \&) (girl))$$
 (is-pretty)

$$6/\Sigma_{1}$$
 ((Φ &) (girl) (is-pretty))

$$7/$$
 ((Φ &) (girl) (is-pretty)) x

$$8/$$
 & (girl(x)) ((is-pretty) x)

Definitions of the $[e\textbf{-}\Sigma_{_{2}}]$ and $[e\textbf{-}\Sigma_{_{1}}]$:

$$\Sigma_1 f$$
 $\Sigma_2 fg$ $f(x)$
 \cdots
 fx $g(x)$

Next week ...

 Continue about the application of the combinators to natural language analysis: Revision