Spring 2012 Juyeon Kang qkang@fi.muni.cz B410, Faculty of Informatics, Masaryk University, Brno, Czech Rep. IA165 Combinatory Logic for Computational Semantics ● Tom is mortal is-mortal(Tom)→ ● Dick is mortal is-mortal (Dick)→ ● Fido is mortal is mortal (Fido)→ --------------> Everything is mortal is-mortal(everything)→ → ”?” is-mortal(x) Quantification_Introduction1 ● Universal quantifier The expression: ∀x P(x), denotes the universal quantification of the atomic formula P(x). ➢ ∀ is called the universal quantifier, and x means all the objects x in the universe. If this is followed by P(x) then the meaning is that P(x) is true for every object x in the universe. ➢ For example, "All cars have wheels" could be transformed into the propositional form, ∀x P(x), where: ✗ P(x) is the predicate denoting: x has wheels, and ✗ the universe of discourse is only populated by cars. ● Socretes is handsome is-handsome(Socretes)→ ● Tom is handsome is-handsome (Tom)→ ● Harry is handsome is handsome (Harry)→ -------------> Something is handsome is-handsome(something)→ → ”?” is-handsome(x) Quantification_Introduction2 ● Existential quantifier The expression: ∃xP(x), denotes the existential quantification of P(x). ➢ "There exists an x such that P(x)" or "There is at least one x such that P(x)". ➢ ∃ is called the existential quantifier, and x means at least one object x in the universe. If this is followed by P(x) then the meaning is that P(x) is true for at least one object x of the universe. ➢ For example, "Someone loves you" could be transformed into the propositional form, ∃xP(x), where: ✗ P(x) is the predicate meaning: x loves you, ✗ The universe of discourse contains (but is not limited to) all living creatures. Quantification_Preliminary work1 ● Quantifiers: ”universal” and ”existential” Natural language quantifiers have traditionally been categorised as either type or type quantifiers. : Quantifiers of type are properties of sets and are expressed through pronouns like nothing, everybody or no one. They combine with a verb phrase to form a sentence: Everybody enjoyed the party.Everybody enjoyed the party. : Quantifiers of type are binary relations between sets and are expressed through determiners like some, all or no. They combine with a noun phrase (the restriction of the quantifier) and a verb phrase (its scope) to form a sentence: All guests enjoyed the party.All guests enjoyed the party. Quantification_Preliminary work2 ● Theories of quantification a. Fregean teories with bound variables 1. Classical theory in First­Order Language 2. Montague’s quantification expressed in Church’s λ­Calculus b. Fregean theory without bound variables  3. Illative theory expressed in Curry’s Combinatory Logic a. Fregean teories with bound variables 1. Classical theory in First­Order Language 2. Montague’s quantification expressed in Church’s λ­Calculus b. Fregean theory without bound variables  3. Illative theory expressed in Curry’s Combinatory Logic Examples a) Fregean analysis of Quantifiers in First-order language b) Logical representations of quantifiers using Church’s λ-calculus Everybody is pretty Every girl is pretty Some is pretty Some girl is pretty a)  (∀x)[is­pretty’(x)] b)  (λP.((∀x)[P(x)])(is­pretty’)) a)  (∀x)[girl’(x) => is­pretty’(x)] b)  (λP.λQ((∀x)[P(x) => Q(x)])(girl’s)(is­pretty’)) a)  (∃x)[is­pretty’(x)] b)  (λP.((∃x)[P(x)])(is­pretty’)) a)  (∃x)[girl’(x) & is­pretty’(x)] b)  (λP.λQ((∃x)[P(x) & Q(x)])(girl’s)(is­pretty’)) Quantification_Formal analysis ● Illative quantifiers in CL framework ➢ Illative operators “represent” classical quantifiers inside Curry’s Combinatory Logic formalism. ➢ Illative operators are adjoined to the “pure” applicative formalism and their actions are defined, by means of elimination and introduction rules in Gentzen’s Natural Deduction style, without using bound variables. ● Illative universal quantifiers: Π1 and Π2  Π1 f: every is f  Π2 fg: every f is g The two quantifiers Π1 and Π2 are not independent since it is possible to define Π2 , inside Combinatory Logic, from Π1 by the following relation between operators: These are propositions Definition of the universal quantifier [ Π2  =def  ((B(CB2 ) ) => Φ Π1 ) ] Definition of the universal quantifier [ Π2  =def  ((B(CB2 ) ) => Φ Π1 ) ] ● This relation shows that the restricted illative quantifier Π2 is defined by means of a Combinator B(CB2 ) that combines the implication operatorΦ => with the quantifier Π1 . 1/ Π2 fg hyp. 2/ [ Π2 =def (B(CB2 )Φ) => Π1 ]  def. de Π2 3/ ((B(CB2 )Φ) => Π1 ) fg  rempl. 2., 1. 4/ (CB2 )(Φ =>) Π1 fg  [e­B] 5/ B2  Π1 (Φ =>) fg  [e­C] 6/ Π1  (Φ => fg)  [e­B2 ] The elimination rule [e-Π2 ] is deduced from [e-Π1 ]: 1/ Π1 (Φ => fg)  hyp. 2/ fx  hyp. 3/ (Φ => fg) x  [e­Π1 ],1. 4/ =>(fx)(gx)  [e­Φ],3. Definitions of the [e­Π2 ] and [e­Π1 ]: Π1 f      Π2 fg         f(x) ­­­­­­­­­­­[e­Π1 ] ­­­­­­­­­­­­­­­­­­­­[e­Π2 ]      fx g(x) Definitions of the [e­Π2 ] and [e­Π1 ]: Π1 f      Π2 fg         f(x) ­­­­­­­­­­­[e­Π1 ] ­­­­­­­­­­­­­­­­­­­­[e­Π2 ]      fx g(x) Modus ponens P   Q , P→ ­­­­­­­­­­­­­­ Q Comment: whenever an instance of ”P   Q” and ”P” appear → by themselves on lines of a logical proof, ”Q” can validly be  placed on a subsequent line.   Modus ponens P   Q , P→ ­­­­­­­­­­­­­­ Q Comment: whenever an instance of ”P   Q” and ”P” appear → by themselves on lines of a logical proof, ”Q” can validly be  placed on a subsequent line.   ● Illative existential quantifiers: Σ1 and Σ2  “Σ1 f” (“there is a f”)  “Σ2 fg” (“there is a f which is g”) ● Expression of Σ2 in terms of & (conjunction) and 1 :Σ These are propositions Definition of the existential quantifier [ Σ2 =def (B(CB2 )Φ) & Σ1 ] Definition of the existential quantifier [ Σ2 =def (B(CB2 )Φ) & Σ1 ] ● Examples Jane is pretty → (C*Jane)(is-pretty) Everybody is pretty → Π1 (is-pretty) Every girl is pretty → (Π2 (girl))(is-pretty) Somebody runs → Σ1 (runs) Some girl is pretty → (Σ2 (girl))(is-pretty) Every boy love some girl → (Π2 (boy))(love(Σ2 (girl))) ● Every man like itself 1/(every man) (like itself) 2/ Π2 man (like itself) 3/ ((B(CB2 ) ) => Φ Π1 ) man (like itself) 4/ (CB2 )(   =>) Φ Π1  man (like itself) 5/ B2 Π1 (   =>)  man (like itself)Φ 6/ Π1 ((   =>)  man (like itself)Φ ) 7/ ((   =>)  man (like itself)Φ ) x 8/   =>  (man x) ((like itself) x) [ Π2  =def  ((B(CB2 ) ) => Φ Π1 ) ][ Π2  =def  ((B(CB2 ) ) => Φ Π1 ) ] Definitions of the [e­Π2 ] and [e­Π1 ]: Π1 f      Π2 fg         f(x) ­­­­­­­­­­­[e­Π1 ] ­­­­­­­­­­­­­­­­­­­­­­[e­Π2 ]      fx g(x) Definitions of the [e­Π2 ] and [e­Π1 ]: Π1 f      Π2 fg         f(x) ­­­­­­­­­­­[e­Π1 ] ­­­­­­­­­­­­­­­­­­­­­­[e­Π2 ]      fx g(x) ● Some girl is pretty    there is (exist at least one) a girl who is pretty→ 1/ (some(girl))(is­pretty) 2/(Σ2 (girl))(is­pretty) 3/ ((B(CB2 )Φ) & Σ1 (girl)) (is­pretty) 4/ ((CB2 ) (Φ  &) Σ1 (girl)) (is­pretty) 5/ (B2  Σ1  (Φ  &) (girl)) (is­pretty) 6/ Σ1   ((Φ  &) (girl) (is­pretty)) 7/   ((Φ  &) (girl) (is­pretty)) x 8/ & (girl(x)) ((is­pretty) x) [ Σ2 =def (B(CB2 )Φ) & Σ1 ][ Σ2 =def (B(CB2 )Φ) & Σ1 ] Definitions of the [e­Σ2 ] and [e­Σ1 ]:     Σ1 f             Σ2 fg         f(x) ­­­­­­­­­­­[e­Σ1 ] ­­­­­­­­­­­­­­­­­­­­[e­Σ2 ]      fx          g(x) Definitions of the [e­Σ2 ] and [e­Σ1 ]:     Σ1 f             Σ2 fg         f(x) ­­­­­­­­­­­[e­Σ1 ] ­­­­­­­­­­­­­­­­­­­­[e­Σ2 ]      fx          g(x) 18 Next week... ● Continue about the application of the combinators to natural language analysis: RevisionRevision