IA165 Combinatory Logic for Computational Semantics

Spring 2012

Juyeon Kang

gkang@fi.muni.cz

B410, Faculty of Informatics, Masaryk University, Brno, Czech Rep.

Some Tools

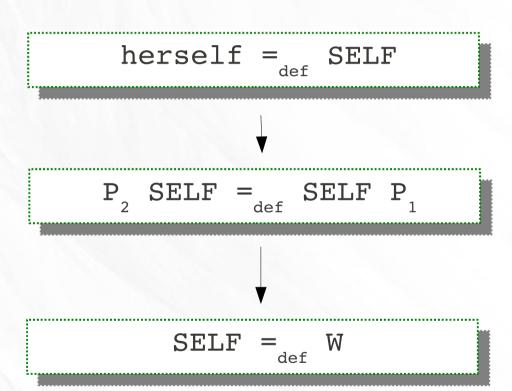
- https://files.nyu.edu/cb125/public/Lambda/ski.html (Chris Barker)
 - > S-K-I proofness checking
- http://www.angelfire.com/tx4/cus/combinator/birds.html (Chris Rathman)
 - · elementary combinators calculator
- http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo (Johan Bos)
 - > based on the DRT (generation of the DRS)
 - Boxing: process of turning real texts into the box-like semantic representation used in DRT
 - > http://homepages.inf.ed.ac.uk/jbos/comsem/book2.html

Summing up-1

· Combinators

- ≥ elementary combinators: B, C, W, C*, Φ ...
- > derived combinators
 - » Deferred combinators: B2, C3...
 - > Powers of combinators: B3, C2...

==> Remind the beta-reduction rules of each combinator


Summing up-2

- 1. Reflexivisation: the operator SELF
- 2. Passivisation: the operator PASS
- 3. Aspecto-temporal relation: the operators STATE, PROC, EVENT
- 4. Quantification: the operators Π and Σ

1. Reflexivisation

Mary despised herself

Mary despised Mary

2. Passivisation-1

The man <u>has been killed</u> by the enemy

 \downarrow

The enemy <u>has killed</u> the man

[PASS = B
$$\Sigma$$
 C]

$$\Sigma(\mathrm{E}^1\;\mathrm{E}^2)\to(\mathrm{E}^1\;\mathrm{x}\;\mathrm{E}^2)$$

Passivisation-2

The lexical predicate "give-to" has a predicate converse associated to "receive-from";

[receive-from z y x = give-to x y z]

[give-to = BC (C (BC (receive-from)))]

3. Aspecto-temporal relation-1

$$PROC_{J_0} ((I-SAY) (\& (ASP_I (\Lambda)) [I REP J^0]))$$

comment:

the aspectual process $PROC_{J_0}$ is applied on the result of the application of (I-SAY) on a conjunction of an aspectualized predicative relation $ASP_{I}(\Lambda)$ and a temporal relation [I REP J^0] between the interval I related to the predicative relation and an interval J^0 related to enunciative process.

Aspecto-temporal relation-2

· Operators of the aspectuality

b. INC-PRST: verbal ending -e $[INC_PRST_{J1\ J0} = def B^2 (C_2 B) B^2 I-am-saying_{J0} \& PROC_{J1} ([\delta(J^1) = \delta(J^y)])]$

4. Quantification

· Theories of quantification

a. Fregean teories with bound variables

- 1. Classical theory in First-Order Language
- 2. Montague's quantification expressed in Church's λ -Calculus
 - b. Fregean theory without bound variables
- 3. Illative theory expressed in Curry's Combinatory Logic

. Illative universal quantifiers: $\Pi_{_1}$ and $\Pi_{_2}$

Definition of the universal quantifier

$$[\Pi_2 =_{\text{def}} ((B(CB_2)\Phi) => \Pi_1)]$$

. Illative existential quantifiers: $\boldsymbol{\Sigma}_{_{\! 1}}$ and $\boldsymbol{\Sigma}_{_{\! 2}}$

Definition of the existential quantifier

$$\left[\sum_{2} =_{\text{def}} \left(B(CB^{2}) \Phi \right) \& \sum_{1} \right]$$

Text analysis using combinators

PASS Anna is drawing herself in front of a mirror. The deadline is announced by the teacher. All students should finish it fast. But some may need more times...

Quantification

Next week ...

· Course Examination on 25 May 2012

- from 2pm-4pm
- B410
- Any materials are allowed