Spring 2012 Juyeon Kang qkang@fi.muni.cz B410, Faculty of Informatics, Masaryk University, Brno, Czech Rep. IA165 Combinatory Logic for Computational Semantics Some Tools ● https://files.nyu.edu/cb125/public/Lambda/ski.html (Chris Barker) ➢ S-K-I proofness checking ● http://www.angelfire.com/tx4/cus/combinator/birds.html (Chris Rathman) ➢ elementary combinators calculator ● http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo (Johan Bos) ➢ based on the DRT (generation of the DRS) ➢ Boxing: process of turning real texts into the box-like semantic representation used in DRT ➢ http://homepages.inf.ed.ac.uk/jbos/comsem/book2.html Summing up-1 ● Combinators ➢ elementary combinators: B, C, W, C*, Φ ... ➢ derived combinators ➢ Deferred combinators: B2 , C3 ... ➢ Powers of combinators:B3 , C2 ... ==> Remind the beta-reduction rules of each combinator Summing up-2 1. Reflexivisation: the operator SELF 2.Passivisation: the operator PASS 3. Aspecto-temporal relation: the operators STATE, PROC, EVENT 4. Quantification: the operators Π and Σ 1. Reflexivisation Mary despised herselfherself herself =def  SELFherself =def  SELF P2  SELF =def  SELF P1 P2  SELF =def  SELF P1 SELF =def  WSELF =def  W Mary despised MaryMary 2. Passivisation-1 The man has been killed by the enemy ↓ The enemy has killed the man The man has been killed by the enemy ↓ The enemy has killed the man [PASS = B   C ]Σ[PASS = B   C ]Σ (EΣ 1  E2 )   (E→ 1  x E2 )(EΣ 1  E2 )   (E→ 1  x E2 ) Passivisation-2 The lexical predicate “give­to” has a predicate converse associated to “receive­from”; [receive­from z y x = give­to x y z] The lexical predicate “give­to” has a predicate converse associated to “receive­from”; [receive­from z y x = give­to x y z]  [ give­to = BC (C (BC (receive­from))) ] [ give­to = BC (C (BC (receive­from))) ] PROCJ0  ((I­SAY) (& (ASPI  ( )) [I REP JΛ 0 ])) comment: the aspectual process PROCJ0  is applied on the result of the application of (I­ SAY) on a conjunction of an aspectualized predicative relation ASPI  ( )  and a Λ temporal relation [I REP J0 ] between the interval I related to the predicative  relation and an interval J0  related to enunciative process. PROCJ0  ((I­SAY) (& (ASPI  ( )) [I REP JΛ 0 ])) comment: the aspectual process PROCJ0  is applied on the result of the application of (I­ SAY) on a conjunction of an aspectualized predicative relation ASPI  ( )  and a Λ temporal relation [I REP J0 ] between the interval I related to the predicative  relation and an interval J0  related to enunciative process. 3. Aspecto-temporal relation-1 Aspecto-temporal relation-2 ● Operators of the aspectuality a. COMPLETE-EVENT-PAST: e.g. Verbal ending -ed  [COMPLETE­EVENT­PAST=X & ([ (Fδ 4 ) <  (Jδ 0 )]) I­am­saying EVENF4 ] where X is  B6 C3 C3 CB2 b. INC-PRST: verbal ending -e [INC_PRST J1  J0  =déf B2  (C2  B) B2  I­am­sayingJ0  & PROCJ1  ([ (Jδ 1 )= (Jδ y )])]  4. Quantification ● Theories of quantification a. Fregean teories with bound variables 1. Classical theory in First­Order Language 2. Montague’s quantification expressed in Church’s λ­Calculus b. Fregean theory without bound variables  3. Illative theory expressed in Curry’s Combinatory Logic a. Fregean teories with bound variables 1. Classical theory in First­Order Language 2. Montague’s quantification expressed in Church’s λ­Calculus b. Fregean theory without bound variables  3. Illative theory expressed in Curry’s Combinatory Logic ● Illative universal quantifiers: Π1 and Π2 ● Illative existential quantifiers: Σ1 and Σ2 Definition of the universal quantifier [ Π2  =def  ((B(CB2 ) ) => Φ Π1 ) ] Definition of the universal quantifier [ Π2  =def  ((B(CB2 ) ) => Φ Π1 ) ] Definition of the existential quantifier [ Σ2 =def (B(CB2 )Φ) & Σ1 ] Definition of the existential quantifier [ Σ2 =def (B(CB2 )Φ) & Σ1 ] Text analysis using combinators ● ...Max opened the door. The room was pitch dark. He so switched on  the light. John was waiting there. When John greeted him, Max felt  a shrap pain from his back.... ● ...Anna is drawing herself in front of a mirror. The deadline is  announced by the teacher.  All students should finish it fast. But  some may need more times... Open­ed EVENT was STATE switch­ed EVENT was­ing PROC greet­ed EVENT felt EVENT is­ing PROC SELF Reflexe SELF Reflexie PASS Passivisation Π Quantification Σ Quantification 13 Next week... ● Course Examination on 25 May 2012 – from 2pm-4pm – B410 – Any materials are allowed