IA165 Combinatory Logic for Computational Semantics

Spring 2012

Juyeon Kang

gkang@fi.muni.cz

B410, Faculty of Informatics, Masaryk University, Brno, Czech Rep.

Application of the combinators to natural language analysis

Introduction and elimination rule of combinators

Elim. Rules	Intro. Rules
1 f	f
[e- 1]	[i-]]
f	If
Kfx	f
[e-K]	[i-K]
f	Kfx

Intro. Rules
×f
[i-C*]
f(xy)
[i-B]
Bfxy
f(xz)(yz)
[i-Φ]
Φfxyz

· Bracketing: associativity

$$\geq B(BXY)Zx$$

$$\geq BXY(Zx)$$

$$\geq X(Y(Z\times))$$

$$\leq X(BYZx)$$

$$\leq BX(BYZx)$$

$$xyz=x(yz)$$

Equivalence to Church's λ - expressions

- The most important difference between the CL and λ -calculus is the use of the bounded variables.
- Every combinator is an λ -expression.

$$K \equiv \lambda \times y \cdot \times$$

$$T \equiv \lambda \times ... \times$$

$$S \equiv \lambda xyz.xz(yz)$$

- I = def $\lambda x.x$ (identificator)
- $K = def \lambda x. \lambda y. x (cancellator)$
- W = def λx.λy.xyy (duplicator)
- C = def λx.λy.λz.xzy (permutator)
- B = def $\lambda x \cdot \lambda y \cdot \lambda z \cdot x(yz)$ (compositor)
- S = def $\lambda \times .\lambda y .\lambda z . \times z (yz)$ (substitution)
- $\Phi = \text{def } \lambda \times \lambda y \cdot \lambda z \cdot \lambda u \cdot x(yu)(zu)$ (distribution)
- $\psi = \text{def } \lambda x. \lambda y. \lambda z. \lambda u. x(yz)(yu)$ (distribution)

Application of the CL to NLP

- · S. k. Shaumyan (University of Yale, USA)
 - → first application of combinators to natural language analysis
- · M. Steedman (University of Endinburgh, of Pennsylvania, UK, USA)
 - → relation with the extended Categorial Grammar
- · J.-P. Desclés (Paris-Sorbonne University, FR)
 - → application of combinators to complex phenomena

CCG and CL

- several of the combinators which Curry and Feys (1958) use to define the A-calculus and applicative systems in general are of considerable syntactic interest (Steedman, 1988)
- The relationships of these combinators to terms of the λ calculus are defined by the following equivalences (Steedman, 2000):

a. **B**
$$fg \equiv \lambda x. f(g x)$$

b.
$$\mathbf{T}x \equiv \lambda f.fx$$

c. Sfg
$$\equiv \lambda x.fx(g x)$$

b.
$$\mathbf{T}x \equiv \lambda f.fx$$
 c. $\mathbf{S}fg \equiv \lambda x.fx(g x)$ d. $\mathbf{\Phi}fgq \equiv \lambda x.fq(g q)$

Main idea in CCG and application operation

All natural language consists of <u>operators</u> and of <u>operands</u>.

- Operator (functor) and operand (argument)
- Application: (operator(operand))
- Categorial type: typed operator and operand

- Application of the combinators using syntactic tools: typed combinators
 - → CCG (Combinatory Categorial Grammar) offers CCG types and rules
 - $\rightarrow \beta$ -reduction rules of combinators are integrated into the CCG rules
 - → "systematic"

- Application of the combinators directly to the natural language sentences
 - : need to introduce the brackets and decide yourself when you apply the combinators
 - → "heuristic"

Example: use the combinators as a logical tool of semantic analysis

a. apply directly the β -reduction rules of combinators

John is brilliant

- The predicate is brilliant is an operator which operate on the operand John to construct the final proposition.
- The applicative representation associated to this analysis is the following:

(is-brillant)John

· We define the operator John* as being constructed from the lexicon John by

$$[John* = C* John].$$

- 1. John* (is-brillant)
 - 2. [John* = C* John]
- 3. C*John (is-brillant) [e-C*]
 - 4. is-brillant (John)

· Combinator B and C*:

John loves Mary = (loves Mary)John

- 1. C*John loves Mary [i-C*]
- 2. C*John (loves Mary) bracketing
- 3. B(C*John) loves Mary [i-B]
- 4. (C*John) (loves Mary) [e-B]
- 5. (loves Mary) John [e-C*]

John reads a book at home = (at home(reads (a book)))John

- 1. (C*John) reads a book at home [i-C*]
- 2. (B(C*John)reads) a book at home [i-B]
- 3. (B(B(C*John)reads) a) book at home [i-B]
- 4. (B(B(C*John)reads) a) book at home [i-B]
- 5. (B(B(B(C*John)reads) a) book) at home [i-B]
- ?6. (B(B(B(B(C*John)reads) a) book) at) home [i-B]
- ?7. (B(B(B(B(B(C*John)reads) a) book) at) home) [i-B]
- ?. (C*John)(reads(a book((at home)))) [e-B]
- ?. (reads(a book((at home))))John [e-C*]

Example: use the combinators as a logical tool of semantic analysis

b. use the <u>CCG types</u> and <u>rules</u> by integrating the β -reduction rules of combinators into the CCG rules

Introduction to CCG types and rules

· CCG types

primitive types: S for sentence, NP for noun phrase, N for noun derived types: S/NP, N/N, NN, (S/NP)/NP, NP/N...

· Directionality: / (over) and \ (under)

a/b: a applies to b, a\b: b is applied to a

→ direction of application of operator to operand

· CCG rules: basic CG rules + combinators

Functional application (>,<); Functional composition (>B, <B); Type-raising (<C*, >C*); Distribution (<S, >S); Coordination (< Φ , > Φ)

Forward()) and backward (() functional application rules

$$a_{\bullet} \times / Y \qquad Y \Rightarrow X \qquad (>)$$

$$b_{\bullet} Y \qquad X \backslash Y \Rightarrow X \qquad (\langle)$$

$$\times/y$$
 $y \rightarrow \times$ \approx $2/4 * 2 = 4$

$$x/y$$
 $y \rightarrow x$ \approx $2/4 * 2 = 4$

x/y means that an expression el of type x/y waits an expression el of type y to its left in order to obtain an expression (el el)of type x.

Example

x is an expression e1 of type (SNP)/NP: loves

y is an expression e2 of type NP: Anna

 $(S\NP)/NP:loves$ NP:Anna \rightarrow $(S\NP)$

loves (Anna)

Function composition (FC) rules with the combinator B

An expression e1 of type x/y waits an expression e2 of type y/z to obtain an expression Be1 e2 of type x/z by the composition rule.

Example: e1 of type $(S\NP)/NP$: likes and e2 of type (NP/N):

Type-raising rules with the combinator C*

$$X:a \Rightarrow S/(S \setminus X): \lambda f, fa \qquad (>C*)$$

$$X:a \Rightarrow S \setminus (S/X): \lambda f, fa \qquad (

$$e1:x$$

$$-----> (>C*)$$

$$S/(S \setminus X): C*x$$$$

An expression e1 of type x are type-raised to transform e1 into C*e1 by the type-raising rule.

- · Syntax-semantic interface using CCG and typed combinators
 - \rightarrow apply the elimination rules of the combinators to the result obtained from the syntactic analysis
 - → get the semantic representation in terms of operator and operand
 - → make clear two steps at the syntactic and semantic level

· Combinator B and C* in the CCG rules

John likes the puzzle

```
John
          likes
                     the puzzle
          (S\NP)/NP NP/N
NP
S/(S\NP): (C*John)
                                        [ >C*]
     S/NP: B(C*John) likes
                                        [>B]
                     NP: (the puzzle)
                                        [>]
S: B(C*John)likes (the puzzle)
                                        [>]
S: (C*John) (likes (the puzzle))
                                        [e-B]
S: (likes (the puzzle))John
                                        [e-C*]
```

Next week ...

 Continue about the application of the combinators to natural language analysis: more complex phenomena