# IA165 Combinatory Logic for Computational Semantics

Spring 2012

Juyeon Kang

gkang@fi.muni.cz

B410, Faculty of Informatics, Masaryk University, Brno, Czech Rep.

# Summing up: last lecture

- · How to apply the combinators to natural language analysis
  - 1) using introduction and elimination rules by beta-reduction of combinators: control heurstic of combinatorial application and bracketing
  - 2) using a syntactic tool for controlling the application of combinators
  - : CCG assumes the preliminary steps to find a well-structured normal form, that is, a formal semantic structure

## Remind ...

· Combinator W



: The combinator W takes one functor f and applies the functor f to the argument x by duplicating the argument  $x_* \rightarrow duplication$ 

Intro. and Elim. Rules of the combinator W  $(Wf)(x) \qquad \qquad (f(x))(x)$   $----- \qquad \qquad (Wf)(x)$  (Wf)(x)

### Short introduction to "Reflexivization"-1

· In binding theory (P. Schlenker, UCLA, presented in ESSLLI04')

"Conditions of acceptance of the reflexivization"

<u>Condition A</u>: A reflexive (or reciprocal) pronoun must be bound within its local domain.

- a. John likes himself
- b. \*[John's mother] likes himself,
- c.\*John, thinks that Mary, likes himself,

<u>Condition B</u>: A non-reflexive pronoun must be free (cannot be bound) within its local domain.

- a. \*John likes him
- b. [John's mother] likes him,
- c. John thinks that Mary likes him

Condition C: An R-expression (=proper noun) must be free.

- a. ?? John likes John (\*He likes John)
- b. [John's mother] likes John
- c. ? ? John thinks that Mary likes John

Mary thinks that Mary is clever is "interpretable"

however it is ruled out on pragmatic ground because there is a 'better' logical form to express the same meaning, namely Mary thinks that she is clever

· Counter-example of the condition A

English reflexives have logophoric homonyms that are pronominal <a href="mailto:example:">example:</a>

Albert  $_{_{i}}$  was upset that Mary had endangered Gordon and  $\mathsf{himself}_{_{i}}$  on the climbing trip.

## Formal semantic analysis of the "Reflexivization"

- the pronoun itself, like all noun phrases, is type-raised
   ==> (operator SELF).
- Unlike most arguments, it is a clitic, like French (and Czech) se, which
  means that it is specialized to apply only to <u>lexical verbal categories</u>.
  The natural way to capture this specialization is to define it as a
  "lexicon-internal morphological operator"

(sentences given by <u>Johan van Benthem</u>, <u>Computational Linguistics and Formal Semantics</u>)

- Example : Reflexives I
  - 1. Mary despised herself
  - 2. ?Mary, despised Mary,
  - 3. John despised Anna

- 1'. DESPISE(ONESELF)(MARY)
  - 2'. DESPISE (MARY)(MARY)
  - 3'. DESPISE (ANNA)(JOHN)

· Mary despised herself

Definition of the operator "SELF"

: is an operator which operates on the binary predicate despise to form the unary predicate "SELF-despise"

Important remark:

The paraphrase of the Mary despised herself is Mary despise Mary, that is, "one has an acitivity to despise and it is Mary who is this person".

$$P_2$$
 SELF  $=_{def}$  SELF  $P_1$ 

1/ Mary despised herself

2/C\*Mary despised herself

3/C\*Mary SELF despised

4/C\*Mary W despised

4/B(C\*Mary W) despised

5/(C\*Mary) (W despised)

6/(W despised ) Mary

7/ (despised ) Mary Mary

Hypothesis 1 [C\*Mary=Mary]

Hypothesis 2 [P2 SELF = def SELF P1]

Hypothesis 3 [SELF=W]

Intro. Of B

Elim. of B

Elim. of C\*

Elim. of W

$$SELF =_{def} W$$

1/ ((herself)despisedP)Mary

2/((SELF)despised)Mary

3/(W despised )Mary

4/(despised (Mary))Mary

Hypothesis 1 [herself=SELF]

Hypothesis 2 [SELF=W]

Elim. Of W

## Reflexive-marked predicate: 'seem' and 'believe'

- <u>Condition A</u>: A reflexive-marked predicate must be semantically reflexive.
- <u>Condition B</u>: A semantically reflexive predicate must be reflexive—marked.

Conditions A and B effect beyond the domain of the predicate.

- a. John seems to himself to be sick.
- a'. seems to himself [John to be sick]
- b. John believes himself to be sick
- b'. John believes [himself to be sick]

- a'. seems to himself [John to be sick]
- b'. John believes [himself to be sick]

there appears to be a relation of "reflexivization" between a semantic argument of the embedded clause and a semantic argument of the matrix verb.

John believes himself to be sick

```
C*John REF believes to-be-sick

==> [C*John'=John] [himself=SELF] [SELF=REF]

B(B(C*John' REF)believes)to-be-sick

(C*John')(W(believes(to-be-sick)))

==> [REF=W]

(believes(to-be-sick)John) John
```

## Multilingual examples of Reflexives-1

#### · French

- 1. Jean se rase (John SE shaves)
- 2. Jean rase lui-meme (John shaves HIMSELF)
- 3.  $?Jean_i$  rase  $Jean_i$  (John shaves JOHN)
- 4. Le coiffeur rase Pierre (The barber shaves Pierre)
  - 1'. (SE RASE) JEAN
  - 2'. RASE(LUI-MEME)JEAN
  - 3'. RASE (JEAN)(JEAN)
  - 4'. RASE PIERRE (LE COIFFEUR)

• Jean se rase ≈ Jean rase Jean

#### Definition of the operator "REF"

: is an operator which operates on the binary predicate rase to form a unary predicate "REF-rase"

#### Question.

How to explain the paraphrastic relation between Jean se rase and \*Jean rase Jean?

Possibility: consider the reflexive se as the linguistic trace of the combinator W

· Law of the reflexivization

8/ (rase(Jean)) Jean

[REF] 
$$[REF =_{def} W]$$

Elim. of W

#### 1/Jean se rase

2/C\*Jean se rase
 Hypothesis 1 [Jean=C\*Jean]
3/C\*Jean REF rase
 Hypothesis 2 [REF=se]
4/C\*Jean W rase
 Law of Reflex. [REF=W]
5/B(C\*Jean W) rase
 Intro. of B
6/ (C\*Jean) (W rase)
 Elim. of C\*

## Multilingual examples of Reflexives-2

· Czech

Marie slyšela Petra mluvit.

Mary heard Peter-Acc speak-Inf.

'Mary heard Peter speaking.'

≈ Mary heard that Peter is speaking

(Slyšela (Petra(mluvit)))Marie

Marie se slyšela mluvit (v rádiu).

Mary SE heard speak-Inf (in a radio).

'Mary heard herself speaking (in a radio)'

≈ Mary heard that Mary is speaking

(Slyšela (Marie(mluvit)))Marie

· Definition of the operator "REF"

: is an operator which operates on the binary predicate slyšela to form a unary predicate REF-slyšela

Definition1
[REF=se]

Definition 2
[REF] [REF = W]

The reflexive "se" is a linguistic trace of the combinator W

#### Marie slyšela Petra mluvit

1/Marie slyšela Petra mluvit
2/C\*Marie slyšela Petra mluvit Intro of C\*
3/(B(C\*Marie) slyšela) Petra mluvit Intro of B
4/(B(B(C\*Marie) slyšela) Petra) mluvit Intro of B
5/((B(C\*Marie) slyšela) (Petra mluvit)) Elim. Of B
6/(C\*Marie) (slyšela (Petra mluvit)) Elim. Of B
7/(slyšela (Petra mluvit))(Marie) Elim. Of C\*

#### Marie se slyšela mluvit (v rádiu)

```
1/Marie se slyšela mluvit
2/C*Marie se slyšela mluvit
                                         Hypothesis 1 [C*Marie=Marie]
3/C*Marie REF slyšela mluvit
                                         Hypothesis 2 [REF=se]
4/B((C*Marie) REF) slyšela mluvit
                                         Intro of B
5/B(B((C*Marie) REF) slyšela) mluvit
                                         Intro of B
6/B(B((C*Marie) W) slyšela) mluvit
                                         Hypothesis 3 [REF=W]
                                         Elim of B
7/B((C*Marie) W) (slyšela mluvit)
8/(C*Marie) (W (slyšela mluvit))
                                         Elim of B
9/ (W (slyšela mluvit))(Marie)
                                         Elim of C*
10/ ((slyšela mluvit)(Marie))(Marie)
                                         Elim of W
```

## Next week ...

 Continue about the application of the combinators to natural language analysis: passivization