IA165 Combinatory Logic for Computational Semantics

Spring 2012

Juyeon Kang

gkang@fi.muni.cz

B410, Faculty of Informatics, Masaryk University, Brno, Czech Rep.

Summing up: last lecture

- · How to apply the combinators to natural language analysis
 - 1) using introduction and elimination rules by beta-reduction of combinators: control heurstic of combinatorial application and bracketing
 - 2) using a syntactic tool for controlling the application of combinators
 - : CCG assumes the preliminary steps to find a well-structured normal form, that is, a formal semantic structure

Remind...1

· The combinator C

: expresses the conversion, that is, the permutation of two arguments of an binary operator.

: takes one functor f and two arguments \times and γ . The elimination of the combinator C by β -reduction allows to converse the position of the argument \times with γ .

The introduction and elimination rule of the combiantor C

Remind...2

Associativity of the combinatory logic

$$x(yz)=xyz$$

$$Bxyz = (Bxy)z$$

Proof

$$((X \cdot Y) \cdot Z) \times \geq B(BXY)ZX \geq BXY(ZX) \geq X(Y(ZX)) \leq X(BYZX)$$

$$\leq B \times (B Y Z \times) = \times (Y \cdot Z)$$

Short introduction to "Passivization"

- · Consider the following sentences
 - a. The man has been killed.
 - b. One has killed him.

- → Invariant of meaning
- → Relation between two sentences
 - a'. unary passive predicate (has-been-killed)
 - b'. active transitive predicate (have-killed)

- active agent corresponds optional by phrase in passive; passivization is a form of <u>intransitivation</u>;
 - same semantic role (e.g. agent) (1)
 - some differences (e.g. case) (2)
 - · other complements are unaffected;
 - · changes to morphosyntax of verb (aux be plus passive participle)

- (1) Kim stole the most expensive picture.
- (1') The most expensive picture was stolen by Kim
- (2) He saw her.
- (2') She was seen by him.

· Definition of the operator of passivisation 'PASS'

[PASS = B
$$\Sigma$$
 C]

where B and C are the combinator of composition and of conversion and where Σ is the existential quantificator which, by applying to a binary predicate, transforms it into the unary predicate.

$$\Sigma(\mathbf{E}^1 \; \mathbf{E}^2) \to (\mathbf{E}^1 \; \mathbf{x} \; \mathbf{E}^2)$$

Formal semantic analysis of the "Passivization"

1/	has-	been-l	killed	(the	-man)	
----	------	--------	--------	------	-------	--

2/[has-been-killed=PASS(has killed)]

3/ PASS (has-killed)(the-man)

 $4/[PASS = B \Sigma C]$

 $5/B \Sigma C$ (has-killed)(the-man)

 $6/\Sigma$ (C(has-killed))(the-man)

7/(C(has-killed)) x (the-man)

8/ (has-killed)(the-main) x

9/ [x in the agentive subject position = one]

10/ (has-killed)(the-man)one

hypothesis

passive lexical predicate

repl.2.,1.

definition of 'PASS'

repl.4.,3.

[e-B]

 $[e-\Sigma]$

[e-C]

definition of 'one'

repl.9.,8., normal form

We establish the <u>paraphrastic relation</u> between the passive sentence with expressed agent and its active counterpart:

The man <u>has been killed</u> by the enemy

J

The enemy <u>has killed</u> the man

Relation between give-to and receive-from

The lexical predicate "give-to" has a predicate converse associated to "receive-from";

[receive-from z y x = give-to x y z]

Anna gave a DVD to Nancy

Nancy received a DVD from Anna

 \underline{z} gave \underline{y} to $\underline{x} \rightarrow (gave_to x y z)$

 \underline{x} received \underline{y} from $\underline{z} \rightarrow$ (received_from z y x)

Prove the following relation

[((receive-from) z) y x = give-to x y z]

1/((receive-from) z) y x

2/ C((receive-from) z) x y

3/BC(receive-from) z x y

4/ C(BC(receive-from)) x z y

5/ C(C(BC(receive-from)) x) y z

6/BC(C(BC(receive-from))) x y z

7/ [give-to=BC(C(BC(receive-from)))]

8/ give-to x y z

x: Anna

y: a DVD

z: Nancy

$$x \underline{lead} y \rightarrow (\underline{lead} y) x$$
 $y \underline{follow} x \rightarrow (\underline{follow} x) y$

$$x ext{ chase } y \to (\text{chase } y) x$$

 $y ext{ flee } x \to (\text{flee } x) y$

Combinator C of conversion

$$(f(x)) y \rightarrow (Cf) y x$$

What is the semantic relations between these couples of sentences? (Show in the classwork)

Multilingual examples of Passives-1

· Passive transformation In Czech

Transformation T1

(a)
$$\left[NP^{1}\right]_{NOM} - \left[V^{1}_{lex}\right]_{fin} - \left[NP^{2}\right]_{ACC} \Rightarrow$$
 (b)

(b)
$$[\mathbf{NP}^2]_{\text{NOM}} - [\mathbf{V}^2be]_{\text{fin}} - [\mathbf{V}^1lex]_{\text{part}} - [\mathbf{NP}^1]_{\text{INSTR}}$$

Examples

(a) Petr sliboval Pavlovi, že přijde \Rightarrow (b)

PeterNOM promised PaulDAT that arrives $3SM \Rightarrow (b)$

'Peter promised to Paul that he arrives.'

(b) Pavlovi <u>bylo slibováno</u> (Petrem), že přijde

PaulDAT was promised (PeterINSTR) that arrives3SN

'It was promised to Peter (by Paul) that he arrives.'

Multilingual examples of Passive-2

Consider the following relation:

bylo-slibováno and sliboval

x sliboval y

 \rightarrow ((sliboval y) x)

 \downarrow

y bylo-slibovano (by x)

→ (bylo-slibovano) y

We need to define the operator of the passivisation

[PASS=B $\Sigma C = \Sigma \cdot C$]

· Formal analysis of the passivisation in Czech

```
1/ bylo-slibováno y (by x=Petrem)
2/ [bylo-slibováno=PASS (sliboval)]
3/ PASS (sliboval) y
4/ B Σ C (sliboval) y
5/ Σ (C sliboval) y
6/ (C sliboval) x' y
7/ [x'= agentive subject]
8/ sliboval y x'
```

[bylo-slibováno Pavlovi] =
Passivisation of [sliboval Pavlovi Petr]

Next week ...

 Continue about the application of the combinators to natural language analysis: aspecto-temporal operators